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 Abstract – A new test problem called HIFF-II is presented. 
We propose that HIFF-II discriminates evolutionary algorithms 
that use recombination from those that do not. HIFF-II is a 
variant of the Hierarchical-If-And-Only-If (HIFF) problem 
proposed by Watson [1]. HIFF-II differs from HIFF in one 
significant way. The dependency matrix for HIFF-II is sparser 
than that for HIFF. Two important consequences from this are 
HIFF-II has inter-level interdependencies and there are distinct 
sets of optimal solutions of the same cardinality at every level.  
 We tested the performance of a random mutation hill 
climbing algorithm and a genetic algorithm on HIFF-II. This 
experiment was conducted under “ideal” circumstances for each 
algorithm on the HIFF-II problem. For the random mutation hill 
climbing algorithm, this involved using an altruistic selection 
scheme to induce progress at all levels simultaneously and using a 
reasonably low mutation rate. For the genetic algorithm, this 
meant using the gene-invariant genetic algorithm (GIGA) which 
preserves population diversity throughout a run and selecting 
pairs of parents that are close in aggregate fitness value.  
 This experiment confirmed that random mutation hill 
climbers experienced more difficulty evolving an optimal solution 
for HIFF-II than a genetic algorithm. The disparity between the 
performances of the two algorithms became more apparent as 
the problem size increases.  
 

I. INTRODUCTION 
 

 In a previous paper [2], we proposed a method to enhance 
the adaptive capability of a random mutation hill climbing 
(RMHC) algorithm [3] on the continuous Hierarchical-If-And-
Only-If (HIFF) problem [4]. Our method involved the use of a 
phenotype and a non-altruistic selection scheme. The elements 
of a phenotype are made up of per-level fitness values of the 
genotype. The selection scheme does a pair-wise comparison 
of the elements of two phenotypes in some order, and selects 
the first genotype which confers an advantage. This selection 
scheme is non-altruistic because progress at one level can 
come at the cost of regress at another level in one phenotype. 
Section IV elaborates on the selection scheme. 
 While the results in [2] enhanced the argument that the 
blind process of evolution can produce complex forms, albeit 
abstractly, it once again blurred the distinction between the 
adaptive capabilities of evolutionary algorithms which use 
recombination, typified by genetic algorithms [5] and those 
which do not, typified by hill climbers. This debate about the 
utility of recombination in evolutionary algorithms is a long 
standing one [6]. 
 In this paper, we present HIFF-II, a variant of the HIFF 
problem. Section II gives details on HIFF-II. HIFF-II differs 
from HIFF structurally – the dependency matrix capturing the 
interdependency between variables in HIFF-II is less dense 

than that for HIFF. This seemingly small structural difference 
has some interesting consequences for search difficulty as 
section III explains. 
 HIFF-II is difficult to solve by our previous method [2], 
but can be solved if an altruistic selection scheme is used in 
our previous method. Under an altruistic selection scheme, a 
variant is selected only when progress is achieved at all levels 
simultaneously. Setting aside the question whether an 
altruistic selection scheme is evolutionary, there remains the 
question of the scalability of this solution because constraints 
on all levels must be satisfied before any progress can be 
made.  
 As with HIFF, HIFF-II is solvable by a genetic algorithm 
which maintains population diversity. However, we found the 
Gene-Invariant Genetic Algorithm (GIGA) [7] to be more 
efficient on HIFF-II than a genetic algorithm with 
deterministic-crowding (GA-DC) [8]. Section V reports our 
experimental results on HIFF-II.  
 Our main findings are:  
(i) If one considers an altruistic scheme to be un-evolutionary 
in the sense that natural selection favors short sighted gains, 
then an optimal solution to HIFF-II is difficult to evolve with a 
RMHC algorithm but is evolvable with a genetic algorithm. 
This conclusion holds even when RMHC is enhanced with 
phenotypes and a level directed (non-altruistic) selection 
scheme, and when GA-DC is used instead of GIGA. 
(ii) If one is not concerned with the “evolutionariness” of a 
solution as is often the case in the engineering domain, then an 
optimal solution to HIFF-II is still difficult to evolve with a 
RMHC algorithm but is evolvable with a genetic algorithm. 
This conclusion holds when both the RMHC algorithm and the 
genetic algorithm are run under “ideal” conditions, and when 
the problem size (N) is significantly large. Through our 
experiments, we found N ≥ 256 to be significantly large. 
“Ideal” conditions for a RMHC algorithm include using an 
altruistic selection scheme and a suitably low mutation rate. 
“Ideal” conditions for a genetic algorithm include gene-
invariance (GIGA) and selecting pairs of genotypes with close 
fitness values to mate. 
 In summary, a RMHC algorithm has more difficulty 
evolving an optimal solution to HIFF-II than a genetic 
algorithm. On the basis of these findings, we offer HIFF-II as 
a test problem that highlights the utility of recombination in an 
evolutionary algorithm. 
 

II. THE HIFF-II FUNCTION 
 

 This section defines the HIFF-II function and explains how 
per-level fitness values are calculated to form phenotypes. A 
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phenotype is a multi-dimensional representation of a 
genotype’s (aggregate) fitness. The (aggregate) fitness of a 
genotype is split into a sequence of per-level fitness values 
and represented as a phenotype.  
 As in our previous work [2], fitness of a genotype is 
computed by levels. A genotype is a bit string of length N = 
2n. There are log2 N levels and N/2λ modules of size 2λ at level 
λ for a genotype and λ = 1…n. Table 1 illustrates for N = 8. 
 

TABLE 1 
Level (λ) Number of Modules Module size Bit positions by module 
3 (highest) 1 8 0 1 2 3 4 5 6 7

2 2 4 0 1 2 3 0 1 2 3
1 (lowest) 4 2 0 1 0 1 0 1 0 1

 
 Per-level fitness of a genotype is the sum of the fitness of 
every module at a level. Module fitness is obtained by 
comparing bits in the first half of a module with bits in the 
second half of a module. Fig.1 illustrates this process and 
Table 2 gives an example of a HIFF-II calculation.  
Specifically, fitness of a module at level λ is calculated as 
follows:  
(i) gene i is compared with gene 2λ-1 + i of a module for i = 0, 
…, 2λ-1 -1,  
(ii) one point is awarded if the two genes have the same allelic 
value, i.e. the bits are equal, and  
(iii) the number of points is divided by half the module size, 
2λ-1.   
  

 
Fig. 1 Illustration of which genes in a genotype are compared to compute per-

level fitness values 
 

TABLE 2 
AN EXAMPLE OF HIFF-II EVALUATION. LEFTMOST BIT OF A MODULE IS THE ZEROTH 

BIT. 

Genotype 187 
Level Bit Comparisons Per Module 1 0 1 1 1 0 1 1 Per level fitness 

3  (0, 4), (1, 5), (2, 6), (3, 7)  1 1 1 1 4/4 = 1 
2 (0, 2), (1, 3)   1 0  1 0 1/2 + 1/2 = 1 
1  (0, 1)  0  1  0  1 0/1 + 1/1 + 0/1 + 1/1 = 2

Phenotype 〈1, 1, 2〉 
Aggregate fitness 4 

 
 Like HIFF, HIFF-II has two global optima: the all zeroes 
and the all ones genotypes, the optimal aggregate fitness for a 
problem of size N = 2n is N-1 and the optimal phenotype is 〈20, 
21, …, 2i, 2i+1, … 2n-1〉. Like HIFF, HIFF-II has a consistent 
hierarchical structure with interdependencies within and 
between modules as indicated in Fig. 1. However, unlike 
HIFF, HIFF-II has inter-level interdependencies so solutions 

optimal for one level need not be optimal for another higher or 
lower level. Section III explains. 
 

III. COMPARISON OF HIFF-II WITH HIFF 
 

A. Structure of interdependencies 
 One of the main features of the HIFF problem is its 
modular interdependency [4]. In a problem with modular 
interdependency, the variables of a problem are related in such 
a way that intra-module dependencies are stronger than inter-
module dependencies but the inter-module dependencies are 
important enough that they must be resolved in order to find 
an optimal solution to the whole problem. In other words, a 
problem with modular interdependency is decomposable into 
modules but the modules are non-separable. If modules of a 
problem are separable, an optimal solution for each module 
can be found independently of the other modules in the 
problem and these partial optimal solutions can be aggregated 
linearly to obtain an optimal solution to the whole problem.  
 The two components of modular interdependency: 
structure of dependencies and strength of dependencies are 
reflected compactly in a dependency matrix. Fig. 2A shows 
the dependency matrix for HIFF-II with 8 variables. The 
dependency matrix for HIFF with 8 variables is produced in 
Fig. 2B for comparison (This matrix is a reproduction of the 
dependency matrix in [1, p.14] but each element of the matrix 
is divided by 32.).  
 

 0 1 2 3 4 5 6 7 
0 - 1/2 1/4 0 1/8 0 0 0 
1 1/2 - 0 1/4 0 1/8 0 0 
2 1/4 0 - 1/2 0 0 1/8 0 
3 0 1/4 1/2 - 0 0 0 1/8 
4 1/8 0 0 0 - 1/2 1/4 0 
5 0 1/8 0 0 1/2 - 0 1/4 
6 0 0 1/8 0 1/4 0 - 1/2 
7 0 0 0 1/8 0 1/4 1/2 - 
Fig. 2A Dependency matrix for HIFF-II with 8 variables 

 
 0 1 2 3 4 5 6 7 
0 - 1/2 1/8 1/8 1/32 1/32 1/32 1/32 
1 1/2 - 1/8 1/8 1/32 1/32 1/32 1/32 
2 1/8 1/8 - 1/2 1/32 1/32 1/32 1/32 
3 1/8 1/8 1/2 - 1/32 1/32 1/32 1/32 
4 1/32 1/32 1/32 1/32 - 1/2 1/8 1/8 
5 1/32 1/32 1/32 1/32 1/2 - 1/8 1/8 
6 1/32 1/32 1/32 1/32 1/8 1/8 - 1/2 
7 1/32 1/32 1/32 1/32 1/8 1/8 1/2 - 

Fig. 2B Dependency matrix for HIFF with 8 variables 
 
 The dependency matrices can be used to compute the 
HIFF-II and HIFF fitness values for a genotype. Fig. 3 
illustrates how on genotype number 187 (1011 1011) which 
has a HIFF-II fitness value of 4 and a HIFF fitness value of 
3.625. First, a work dependency matrix is prepared for the 
genotype in question. All non-diagonal entries in the work 
dependency matrix are set to zero. Then, where two distinct 
bits i and j of the genotype agree, the value of element (i, j) in 
the corresponding dependency matrix is copied into the work 

A B C D

Comparisons at 
level 2

Genotype, N=4

Comparisons at 
level 1
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dependency matrix. For example, bits 0 and 2 agree in 
genotype number 187, so the entry in the HIFF-II work 
dependency matrix at (0, 2) is 1/4. The sum of the entries in a 
completed work dependency matrix gives the fitness of the 
genotype. 
 

 1 0 1 1 1 0 1 1 
1 - 0 1/4 0 1/8 0 0 0 
0 0 - 0 0 0 1/8 0 0 
1 1/4 0 - 1/2 0 0 1/8 0 
1 0 0 1/2 - 0 0 0 1/8 
1 1/8 0 0 0 - 0 1/4 0 
0 0 1/8 0 0 0 - 0 0 
1 0 0 1/8 0 1/4 0 - 1/2 
1 0 0 0 1/8 0 0 1/2 - 

Fig. 3A Completed work dependency matrix to calculate HIFF-II fitness for 
genotype 1011 1011 

 
 1 0 1 1 1 0 1 1 
1 - 0 1/8 1/8 1/32 0 1/32 1/32 
0 0 - 0 0 0 1/32 0 0 
1 1/8 0 - 1/2 1/32 0 1/32 1/32 
1 1/8 0 1/2 - 1/32 0 1/32 1/32 
1 1/32 0 1/32 1/32 - 0 1/8 1/8 
0 0 1/32 0 0 0 - 0 0 
1 1/32 0 1/32 1/32 1/8 0 - 1/2 
1 1/32 0 1/32 1/32 1/8 0 1/2 - 

Fig. 3B Completed work dependency matrix to calculate HIFF fitness for 
genotype 1011 1011 

 
 However, what is relevant for our purpose here is the 
relative densities of the two dependency matrices in Fig. 2. 
The most striking difference is the prevalence of zeroes in the 
dependency matrix for HIFF-II and the absence of zeroes in 
the dependency matrix for HIFF. But this does not mean that 
there are independent variables in HIFF-II. Fig. 4 illustrates 
the structure and strength of the interdependencies present in a 
HIFF-II problem with 4 variables with a dependency graph.  
 

 
 
 
 
 

 
Fig. 4 Interdependencies between the 4 genes in HIFF-II.  Solid lines show 
direct interdependencies and dashed lines show indirect interdependencies. 
Thickness of the solid lines indicates strength of the interdependency. Thicker 
solid lines indicate stronger interdependency. An equality between A and B is 
worth half a point but equality between A and C is only worth quarter of a 
point.  
 
 While variables B and C are not directly dependent on 
each other (there is no edge between B and C in Fig. 1), B and 
C are indirectly interdependent through their direct 
interdependence on variables A and D. Similarly, variables A 
and D are indirectly interdependent through their direct 
interdependencies on variables B and C. Interestingly, by 
relaxing the structure of direct interdependencies in HIFF-II 

we create inter-level interdependencies (explained later in 
subsection D).  
 
B. Number of distinct fitness values  
 Table 3 displays enumerations of the HIFF, HIFF-II and 
HXOR-II fitness functions for N=4 with differences between 
HIFF-II and HIFF fitness values highlighted. The HXOR-II 
function is the same as HIFF-II except points are rewarded for 
inequality. A comparison of the plots for HIFF and HIFF-II in 
Fig.5 shows HIFF-II has more points with different aggregate 
fitness values than HIFF. HIFF has 4 distinct aggregate fitness 
values while HIFF-II has 5.  

TABLE 3 
  HXOR-II HIFF-II HIFF  

gnum genotype f hd L2 L1 f L2 L1 f hd 
0 0000 0.0 2 1.0 2.0 3.0 1.0 2.0 3.0 0 
1 0001 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1 
2 0010 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1 
3 0011 1.0 2 0.0 2.0 2.0 0.0 2.0 2.0 2 
4 0100 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1 
5 0101 2.0 2 1.0 0.0 1.0 0.5 0.0 0.5 2 
6 0110 3.0 0 0.0 0.0 0.0 0.5 0.0 0.5 2 
7 0111 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1 
8 1000 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1 
9 1001 3.0 0 0.0 0.0 0.0 0.5 0.0 0.5 2 
10 1010 2.0 2 1.0 0.0 1.0 0.5 0.0 0.5 2 
11 1011 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1 
12 1100 1.0 2 0.0 2.0 2.0 0.0 2.0 2.0 2 
13 1101 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1 
14 1110 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1 
15 1111 0.0 2 1.0 2.0 3.0 1.0 2.0 3.0 0 

gnum is genotype number, the integer equivalent of the binary string; Lλ is the 
fitness for level λ;  f is aggregate fitness; hd is Hamming distance to a nearest 
global optimum.  Optimal fitness values are bolded; discrepancies between the 

HIFF function and our HIFF-II function are highlighted. 
 

N=4
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Fig. 5 HIFF, HIFF-II and HXOR-II fitness functions for N=4. 

 
C. Number of competing optimal solutions per level 
 Table 3 reveals that the number of genotypes which can 
produce an optimal solution for a level is the same for all 
levels in HIFF-II. But this is not the case with HIFF. For 
HIFF-II, real 1.0, the optimal fitness value for level 2, occurs 4 
times in column L2 and real 2.0, the optimal fitness value for 
level 1, also occurs 4 times in column L1. In contrast, 1.0 
appears twice in column L2 and 2.0 appears 4 times in column 
L1, for HIFF. The optimal solutions per level for HIFF and 
HIFF-II are juxtaposed in Tables 4 and 5. 

 A B C D 
A - 1/2 1/4 0 
B 1/2 - 0 1/4 
C 1/4 0 - 1/2 
D 0 1/4 1/2 - 

A 

B 

C 

D 
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TABLE 4 
SETS OF PER-LEVEL OPTIMAL GENOTYPES FOR N=4 

HIFF HIFF-II 
Level Optimal level fitness Cardinality Optimal genotypes Cardinality Optimal genotypes 

2 1 2 {0000, 1111} 4 {0000, 0101, 1010, 1111} 
1 2 4 {0000, 0011, 1100, 1111} 4 {0000, 0011, 1100, 1111} 

 
TABLE 5 

SETS OF PER-LEVEL OPTIMAL GENOTYPES FOR N=8 
HIFF HIFF-II 

Level (λ) 
Optimal  

level fitness Size (2N / 2λ ) Optimal genotypes Size (2N / 2) Optimal genotypes 

3 1 2 {0000 0000, 1111 1111} 16 

{0000 0000, 0001 0001, 0010 0010, 0011 0011, 
0100 0100, 0101 0101, 0110 0110, 0111 0111, 
1000 1000, 1001 1001, 1010 1010, 1011 1011, 
 1100 1100, 1101 1101, 1110 1110, 1111 1111} 

2 2 4 {0000 0000, 0000 1111, 
1111, 0000, 1111 1111} 16 

{0000 0000, 0000 0101, 0000 1010, 0000 1111, 
0101 0000, 0101 0101, 0101 1010, 0101 1111, 
1010 0000, 1010 0101, 1010 1010, 1010 1111, 
 1111 0000, 1111 0101, 1111 1010, 1111 1111} 

1 4 16 

{0000 0000, 0000 0011, 0000 1100, 0000 1111, 
0011 0000, 0011 0011, 0011 1100, 0011 1111, 
1100 0000, 1100 0011, 1100 1100, 1100 1111,  
 1111 0000, 1111 0011, 1111 1100, 1111 1111} 

16 

{0000 0000, 0000 0011, 0000 1100, 0000 1111, 
0011 0000, 0011 0011, 0011 1100, 0011 1111, 
1100 0000, 1100 0011, 1100 1100, 1100 1111,  
 1111 0000, 1111 0011, 1111 1100, 1111 1111} 

 
D. Inter-level interdependencies 
 Having a larger number of optimal solutions at every level 
of the hierarchy does not make HIFF-II an easier problem than 
HIFF because the sets of per-level optimal solutions are 
distinct from each other. This creates more competing schema 
per level and thwarts attempts to evolve a globally optimal 
solution that focus adaptation efforts on any one level. Unlike 
HIFF, an optimal solution for level λ+1 in a HIFF-II problem 
need not be an optimal solution for level λ, and vice versa. In 
this sense, the levels in HIFF-II are inter-dependent. There is 
dependency between levels in HIFF, but this dependency is 
one way. An optimal solution at a lower level need not 
translate to an optimal solution at a higher level in HIFF, but 
an optimal solution at a higher level does translate to an 
optimal solution at a lower level. 
 Table 5 lists the sets of optimal genotypes for each level in 
a problem with 8 variables. In HIFF, the set of optimal 
solutions for level λ+1 is a proper subset of the set of optimal 
solutions for level λ. In HIFF-II, the relationship is one of 
intersection and not subset. The two globally optimal 
genotypes are found in the intersection of the sets of per-level 
optimal genotypes. At every level, the HIFF set of optimal 
genotypes is a proper subset of the HIFF-II set of optimal 
genotypes. Therefore the intuition of the Building-Block 
Hypothesis [5, 9] is also preserved in HIFF-II. 
 
E. Fitness Correlation  
 Fitness Distance Correlation (FDC) [10] is negative for 
straightforward problems and positive on deceptive problems. 
As a rule of thumb, search problems with FDC between -1.5 
and 1.5 are difficult. In this section, FDC measures the 
correlation between per-level fitness values and Hamming 
distance to a closest global optimum. In Table 6 we see FDC 
values for HIFF increase at lower levels indicating that search 
is more difficult at lower levels than at higher levels. 
Previously, we exploited this feature of HIFF to accrete 
optimal HIFF solutions with a RMHC algorithm [2]. The 

RMHC algorithm was successful when it focused on 
optimizing higher level fitness values. However, the FDC 
values for HIFF-II are uniform across levels and this 
intuitively is in agreement with statements made in the 
previous subsection about the presence of inter-level 
interdependencies in HIFF-II. These summary statistics also 
apply to HXOR-II. 

TABLE 6 
FITNESS DISTANCE CORRELATION, N=8. 

Level HIFF HIFF-II 
3 -0.6972 -0.3486 
2 -0.4930 -0.3486 
1 -0.3486 -0.3486 

Aggregate -0.5711 -0.5325 
 

IV. ALTRUISTIC AND NON-ALTRUISTIC SELECTION SCHEMES 
 

 A selection scheme is used in an evolutionary algorithm to 
decide whether to keep a genotype or to replace it with its 
variant. To make this decision, the selection scheme in the 
original RMHC algorithm compares the (aggregate) fitness of 
two genotypes. In our enhanced version of the RMHC 
algorithm, the selection scheme does a pair-wise comparison 
of the elements of two phenotypes in some order specified by 
the sieve component of the selection scheme.  
 Suppose the two competing phenotypes are p1 = 〈a, b, c〉 
and its variant p2 = 〈x, y, z〉, and the selection scheme uses the 
following sieve: 〈1, 3, 2〉. Then the pair (c, z) is compared first 
because they are the fitness values for level 1, followed by (a, 
x), the fitness values for level 3 and lastly (b, y).  
 In a non-altruistic selection scheme, the first genotype 
which confers an advantage is selected. So in a maximizing 
problem, the genotype of p2 is selected if one of (z > c) or (z = 
c and x > a) or (z = c and x = a and y ≥ b) is true. If p1 and p2 
are identical, the genotype of p2 gets selected. 
 Under an altruistic selection scheme, a genotype is selected 
over its competitor only if it confers advantage on all levels. In 
other words, no level acts selfishly to further its progress at the 
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TABLE 7 
THE ALTRUISTIC AND NON-ALTRUISTIC SELECTION SCHEMES USE SIEVE:  〈3, 2, 1〉. 

HIFF-II Phenotype 
gnum Genotype λ=3 λ=2 λ=1 f 

Selection 
(aggregate) 

Selection 
(non-altruistic) 

Selection 
(altruistic) 

2 (parent) 0000 0010 0.75 1.5 3 5.25 
3 (offspring) 0000 0011 0.5 1 4 5.5 

3 2 2 

56 (parent) 0011 1000 0.25 0.5 3 3.75 
57 (offspring) 0011 1001 0.5 0 2 2.5 

56 57 56 

185 (parent) 1011 1001 0.75 0.5 1 2.25 
186 (offspring) 1011 1010 0.75 1.5 1 3.25 

186 186 186 

 
expense of other levels. In a maximizing problem, the 
genotype of p2 is selected if (z ≥ c and x ≥ a and y ≥ b) is true. 
If p1 and p2 are identical, the genotype of p2 gets selected. 
   The order in which elements of a phenotype is 
compared does not matter under an altruistic selection scheme. 
This is not the case under a non-altruistic selection scheme. 
The altruistic selection scheme is distinct from comparing 
aggregate fitness values because in both HIFF and HIFF-II, 
aggregate fitness can improve at the cost of some per-level 
fitness value. Examples in Table 7 illustrate the differences 
among the three selection schemes mentioned in this section.  
 

V. EXPERIMENTS 
 

The hypotheses to be tested are: 
1. HIFF-II is difficult for a traditional RMHC algorithm 

(RMHC1) but is not difficult for an enhanced RMHC 
algorithm that uses phenotypes and an altruistic selection 
scheme (RMHC3).  

 
2. HIFF-II is difficult for an enhanced RMHC algorithm that 

uses phenotype but does not use an altruistic selection 
scheme (RMHC2). This holds even when macro-mutation 
is used, when sieves are varied over time (Multi-
population) or when sieves are not varied over time but are 
randomly generated (Parallel-model). In other words, HIFF-
II is difficult to solve with a RMHC algorithm that does not 
use an altruistic selection scheme. 

  
3. HIFF-II is easier to solve with a genetic algorithm than a 

RMHC. We compare the performance of a genetic 
algorithm (GA-DC) with the performances of other RMHC 
algorithms including multi-population and parallel-model, 
but excluding RMHC3. We consider RMHC3 an ideal 
algorithm for HIFF-II. As such we compare RMHC3 with 
an “ideal” genetic algorithm (GIGA). We regard GIGA as 
ideal because population size can be small and yet 
population diversity is maintained throughout a run. 

 
Performance of algorithms is measured in terms of the number 
of times a globally optimal solution is found in a set of runs 
and the number of evaluations used to evolve a globally 
optimal solution. 
 
A. Algorithms  
1. RMHC1.  
(i) Generate a random bit string of length N.  
(ii) Generate a random integer from [1, Pm × N] for k.  

(iii) Make a copy* of the current (parent) bit string. Select k 
bits at random from the copy bit string to mutate. 
Mutation is by random assignment of a 1 or a 0. 

(iv) Replace the current bit string with the variant bit string if 
aggregate fitness of the variant (offspring) bit string is 
greater than or equal to aggregate fitness of the current bit 
string. 

(v) If optimal string has not been found and maximum 
evaluations not reached, go to step (ii). 

 
2. RMHC2  
This is the method we proposed previously for HIFF [2]. It is 
the same as RMHC1 except that, in step (iv) phenotypes are 
compared and a non-altruistic selection scheme is used.  
 In this paper, we ran RMHC2 with two types of sieves, 
two kinds of mutation operator and two mutation rates. With a 
high-low sieve, comparisons of phenotype elements are made 
in descending order starting with the highest level. The high-
low sieve for N=128 is 〈7, 6, 5, 4, 3, 2, 1〉. A low-high sieve is 
the exact opposite of a high-low sieve; phenotype elements are 
compared in ascending order starting with the lowest level. If 
macro-mutation is used in step (iii), the k consecutive bits are 
mutated starting from a random locus wrapping around to the 
start of the genotype if necessary. 
 
3. RMHC3 
The same as RMHC2 except that, in step (iv) phenotypes are 
compared with an altruistic selection scheme, as explained in 
section IV. 
 
4. Multi-population  
Reference [2] describes this algorithm in detail. Briefly, 
subpopulations of genotypes are placed in a two-dimensional 
grid with periodic boundaries. Genotypes of a subpopulation 
do not interact with each other and subpopulations have 
minimal interaction with each other. There is no exchange of 
genes between genotypes in this model.  
 Genotypes in a cell are evolved using RMHC2 and the 
current sieve in the cell. Sieves are generated at random 
initially. The number of changes made to genotypes of a 
subpopulation is monitored. After a specified number of 
generations, subpopulations compare their activity level 
(number of changes) with that of their neighbours. The most 

                                                
* When Pm is low and N is large, it is more efficient implementation wise to 
remember the state of the k bits before mutation and restore the bits 
accordingly than to copy entire bit strings. 
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active subpopulation replaces the least active subpopulation in 
a Moore neighbourhood. During this extinction-recolonization 
event, the sieve in the recolonized cell is replaced by a variant 
of the sieve in the colonizer cell.  
 
5. Parallel-model  
The same as multi-population except there is no colonization 
or extinction of subpopulations and no mutation of sieves. A 
subpopulation adapts to the conditions imposed by a single 
fixed sieve, randomly generated at the start, for the entire run. 
 
6. GA-DC 
We use the steady-state GA-DC algorithm given in [1, p.168]. 
(i) Create population of random bit strings and evaluate 
population. 
(ii) Select two random genotypes, p1 and p2. 
(iii) With probability Pc, recombine p1 and p2. Evaluate pair of 
offspring genotypes c1 and c2. 
(iv) Calculate Hamming distance H, between the following 
pairs of genotypes (p1, c1), (p1, c2), (p2, c2) and (p2, c1).  
If H(p1, c1) + H(p2, c2) < H(p1, c2) + H(p2, c1), then pair p1 
with c1 and p2 with c2 else pair p1 with c2 and p2 with c1. 
(v) For each pair, if the offspring genotype is fitter than the 
parent genotype, replace the parent genotype with the 
offspring genotype, else keep the parent genotype and discard 
the offspring genotype. 
(vi) If optimal solution has not been found and maximum 
evaluations is not reached, go to step (ii). 
 
7. GIGA 
(i) Create population of random bit strings. Evaluate 
population and sort population by aggregate fitness. 
(ii) Starting from the fittest end of the sorted population, pair 
up consecutive genotypes so parent genotypes are close in 
aggregate fitness value. We cycle back to the fittest end when 
the least fit end is reached. 
(iii) Produce offspring genotypes from parent genotypes with 
two-point crossover. 
(iv) Replace the pair of parent genotypes with the pair of 
offspring genotypes if the fitter offspring is fitter than the fitter 
parent (elitism). The population is kept sorted and freshly 
minted offspring may participate in mating events 
immediately. 
 
B. Parameters 
 Unless stated otherwise, the parameter values in Table 8 
were used in the experiments. Runs were performed with a 
different random number seed each time. 
 
C. Results 
 Table 9 reports the performance of the seven algorithms 
described in subsection A on the HIFF-II problem. From these 
results, we draw the following conclusions: 
 
(i) Hypothesis 1 is confirmed. RMHC3 significantly performs 
better than RMHC1 on HIFF-II. On the 128 variable HIFF-II 
problem 76% of RMHC3 runs found an optimum. None of the 

30 RMHC1 runs found an optimum within 3 million 
evaluations. 
 
(ii) Hypothesis 2 is confirmed. RMHC3 was not outperformed 
by RMHC2, multi-population or the parallel-model. None of 
the RMHC2 runs found a solution to HIFF-II. None of the 
parallel-model runs were successful. One third of the multi-
population runs were successful but they took over a million 
evaluations on average to find a solution while RMHC3 took 
considerably fewer evaluations on average. 
 The RMHC2 algorithm, which prioritizes progress at 
higher levels over lower levels, has the lowest average best 
final fitness. In marked contrast, RMHC2 was very successful 
on the HIFF problem: all runs succeeded and the average 
evaluation was 2245 with a standard error of 660 [2]. This 
difference in RMHC2 performance highlights the fact that 
HIFF-II has a different kind of inter-level dependency from 
HIFF, as explained in section III.  
 Table 10 shows the average per-level fitness at the end of a 
sample of unsuccessful runs. The biases of each algorithm are 
revealed. RMHC1, RMHC2-A and RMHC2-B are biased 
towards optimization of the lower level modules while 
RMHC2 is biased towards the higher level modules. On the 
other hand, RMHC3 is even handed in its dealings with each 
level. These findings are not unexpected. 
 

TABLE 8 
Application Parameter Default Value 

Maximum evaluations per run 1,000,000 All 
Problem size, N 128 

All RMHC-s Mutation rate, Pm 0.0625 
Lattice dimensions 4 × 4 
Population size per deme 5 
Number of generations  
(for multi-population only) 100 

Multi-population  
Parallel-model 

Mutation rate, Pm 0.0625 
Population size for GA-DC 2000 
Population size for GIGA 50 
Recombination type 2 point 
Recombination rate, Pc 1.0 

GA-DC 
GIGA 

Mutation rate, Pm 0.0 
  
(iii) Hypothesis 3 is confirmed. The GA-DC runs were 
significantly more successful than the RMHC2 runs. The GA-
DC runs found an optimum at least 90% of the time. None of 
the RMHC2 runs found an optimum. Further, the successful 
GA-DC runs used significantly fewer evaluations than the 
successful multi-population runs. 
 The GIGA runs were more successful than the RMHC3 
runs. On the 128-variable problem, the success rate is 100% 
for the GIGA algorithm, and 76% for the RMHC3 algorithm. 
However, there is no significant difference in the average 
number of evaluations used in successful runs.  
  On the 256-variable problem, the disparity is more evident 
not only in the number of times an optimal solution was found 
but also in the efficiency of successful runs. The t test was 
used to test significance. The 1-tailed probability that there is  
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TABLE 9 
SUMMARY OF RESULTS FOR EXPERIMENTS WITH N=128. AVERAGE BEST FINAL FITNESS IS RREPORTED FOR UNSUCCESSFUL RUNS.  

AVERAGE NUMBER OF EVALUATION USED IS REPORTEDFOR SUCCESSFUL RUNS. 
HIFF-II 

Method Character Times found 
Avg. Best Final Fitness 

(std. dev.) 
Avg. Evaluations 

(std. dev.) 

RMHC1 compare aggregate fitness, maximum evaluations = 3,000,000 0/30 (0 %) 115.92 
(2.34) - 

RMHC2 compare phenotypes, selfish selection scheme, high-low sieve 0/10 (0 %) 66.55  
(7.50) - 

RMHC2-A compare phenotypes, selfish selection scheme, low-high sieve  0/10 (0 %) 114.14 
(2.52) - 

RMHC2-B compare phenotypes, selfish selection scheme, low-high sieve,  
macro-mutation (Pm = 0.5) 0/10 (0 %) 123.65 

(0.62) - 

Multi-population compare phenotypes, selfish selection scheme, variable sieve, 
maximum evaluations = 3,000,000. 5/15 (33 %) 104.18 

(9.41) 
1,659,579 
(983,627) 

Parallel-model compare phenotypes, selfish selection scheme, fixed random sieve, 
maximum evaluations = 3,000,000. 0/10 (0 %) 109.42  

(4.22) - 

GA-DC1 compare aggregate fitness, one-point crossover, no mutation, Pc = 0.7 
This parameter configuration is used in [1]. 27/30 (90 %) 126.00  

(0.00) 
252,167 

(171,326) 

GA-DC2 compare aggregate fitness, two-point crossover, no mutation 
This parameter configuration is used to compare with GIGA. 30/30 (100 %) - 166,370 

(50,909) 

RMHC3 compare phenotypes, altruistic selection scheme 23/30 (76 %) 118.45  
(5.10) 

60,415 
(38,689) 

GIGA compare aggregate fitness, two-point crossover, no mutation, gene-invariant 30/30 (100 %) - 63,084 
(20,183) 

RMHC3 compare phenotypes, altruistic selection scheme, N=256 22/30 (73 %) 233.97  
(25.58) 

399,281 
(208,316) 

GIGA compare aggregate fitness, two-point crossover, no mutation,  
gene-invariant, N=256 30/30 (100 %) - 245,076 

(82,916) 
Notes: 
(i) We did not test more GA variations because our objective is not to identify the “best” GA for HIFF-II, but to show that a GA can solve HIFF-II more 
effectively than a RMHC that is “ideal” for HIFF-II (RMHC3) while still keeping mutations random.  
(ii) In keeping with [1] and our preliminary tests which favoured random bit assignment, we did not use bit-flip mutation. However, in response to a reviewer’s 
comment, we ran RMHC3 with the suggested configuration (Pm = 1.0 and mutation by bit-flip) and obtained the following result for N=128: only 10 out of 30 
runs were successful after 1million evaluations. The successful runs took on average 643,200 number of evaluations with a standard deviation of 229,130. Clearly, 
this performance is worse than that reported in Table 9. One reason for the poor performance is the high mutation rate. In our configuration, the effective mutation 
rate is lower than reported because our mutation method is random bit assignment which does not necessarily change a bit selected for mutation.  
(iii) Doing 30 runs each for the RMHC2 experiments did not alter the rate of finding a global optimum. No RMHC2 run, of any flavour, succeeded. 
(iv) In response to a reviewer’s comment about the difference in signal (min - max), we reply: (a) The GAs we use in our experiments do not make use of fitness 
proportionate selection where scaling can be an issue; (b) RMHC2 does not work on discrete HIFF because the fitness landscape of the highest level is 2 needles 
in a haystack. We are working to address this. 
 
 

TABLE 10 
AVERAGE LEVEL FITNESS AT END OF UNSUCCESSFUL RUNS, N = 128. 

Level (λ) 7 6 5 4 3 2 1 
Method Optimal fitness 1 2 4 8 16 32 64 

RMHC1 (15 runs) 0.49  
(49 %) 

1.07 
(53 %) 

2.35 
(58 %) 

4.83 
(60 %) 

11.8 
(73 %) 

32.0 
(100 %) 

64 
(100 %) 

RMHC2 (10 runs) 1.00 
(100 %) 

2.00 
(100 %) 

2.25 
(56 %) 

4.30 
(53 %) 

8.6 
(53 %) 

16.4 
(51 %) 

32 
(50 %) 

RMHC2-A (10 runs) 0.58 
(58 %) 

1.15 
(57 %) 

1.80 
(45 %) 

4.60 
(57 %) 

10.0 
(62 %) 

32.0 
(100 %) 

64 
(100 %) 

RMHC2-B (10 runs) 0.45 
(45 %) 

1.10 
(55 %) 

2.30 
(57 %) 

7.80 
(97 %) 

16.0 
(100 %) 

32.0 
(100 %) 

64 
(100 %) 

RMHC3 (7 runs) 0.93 
(93 %) 

1.87  
(93 %) 

3.64 
(91 %) 

7.57 
(94 %) 

14.8 
(92 %) 

29.5 
(92 %) 

60 
(93 %) 
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no significant difference between the two averages (399,281 – 
245,076) is 10% with 50 degrees of freedom.  
 

VI. CONCLUSION 
 

 We introduced a new test problem, HIFF-II. The 
experiments we conducted confirm that (i) HIFF-II is difficult 
to solve with a traditional RMHC algorithm but can be solved 
with an enhanced RMHC if an altruistic selection scheme is 
used, and that (ii) genetic algorithms which maintain 
population diversity have an easier time evolving a solution to 
HIFF-II than RMHC algorithms of any flavour. Point (i) gives 
empirical evidence that HIFF-II is a different problem from 
HIFF. This difference lies in the type of inter-level 
dependency. In HIFF, inter-level dependency is one-way from 
the bottom-up, that is lower level modules are dependent on 
higher level modules to find their “true” optimal solution. But 
in HIFF-II, the inter-level dependency is bi-directional, 
bottom-up and top-down. Higher level modules depend on 
lower level modules for their “true” optimum and vice versa. 
Thus in HIFF-II levels are interdependent. It is this inter-level 
interdependency, coupled with modular interdependency at 
each level that defeats the RMHC algorithms.  
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