

HIFF-II: A Hierarchically Decomposable Problem
with Inter-level Interdependency

Susan Khor
Concordia University, Montreal, CANADA

slc_khor@cse.concordia.ca

 Abstract – A new test problem called HIFF-II is presented.
We propose that HIFF-II discriminates evolutionary algorithms
that use recombination from those that do not. HIFF-II is a
variant of the Hierarchical-If-And-Only-If (HIFF) problem
proposed by Watson [1]. HIFF-II differs from HIFF in one
significant way. The dependency matrix for HIFF-II is sparser
than that for HIFF. Two important consequences from this are
HIFF-II has inter-level interdependencies and there are distinct
sets of optimal solutions of the same cardinality at every level.
 We tested the performance of a random mutation hill
climbing algorithm and a genetic algorithm on HIFF-II. This
experiment was conducted under “ideal” circumstances for each
algorithm on the HIFF-II problem. For the random mutation hill
climbing algorithm, this involved using an altruistic selection
scheme to induce progress at all levels simultaneously and using a
reasonably low mutation rate. For the genetic algorithm, this
meant using the gene-invariant genetic algorithm (GIGA) which
preserves population diversity throughout a run and selecting
pairs of parents that are close in aggregate fitness value.
 This experiment confirmed that random mutation hill
climbers experienced more difficulty evolving an optimal solution
for HIFF-II than a genetic algorithm. The disparity between the
performances of the two algorithms became more apparent as
the problem size increases.

I. INTRODUCTION

 In a previous paper [2], we proposed a method to enhance
the adaptive capability of a random mutation hill climbing
(RMHC) algorithm [3] on the continuous Hierarchical-If-And-
Only-If (HIFF) problem [4]. Our method involved the use of a
phenotype and a non-altruistic selection scheme. The elements
of a phenotype are made up of per-level fitness values of the
genotype. The selection scheme does a pair-wise comparison
of the elements of two phenotypes in some order, and selects
the first genotype which confers an advantage. This selection
scheme is non-altruistic because progress at one level can
come at the cost of regress at another level in one phenotype.
Section IV elaborates on the selection scheme.
 While the results in [2] enhanced the argument that the
blind process of evolution can produce complex forms, albeit
abstractly, it once again blurred the distinction between the
adaptive capabilities of evolutionary algorithms which use
recombination, typified by genetic algorithms [5] and those
which do not, typified by hill climbers. This debate about the
utility of recombination in evolutionary algorithms is a long
standing one [6].
 In this paper, we present HIFF-II, a variant of the HIFF
problem. Section II gives details on HIFF-II. HIFF-II differs
from HIFF structurally – the dependency matrix capturing the
interdependency between variables in HIFF-II is less dense

than that for HIFF. This seemingly small structural difference
has some interesting consequences for search difficulty as
section III explains.
 HIFF-II is difficult to solve by our previous method [2],
but can be solved if an altruistic selection scheme is used in
our previous method. Under an altruistic selection scheme, a
variant is selected only when progress is achieved at all levels
simultaneously. Setting aside the question whether an
altruistic selection scheme is evolutionary, there remains the
question of the scalability of this solution because constraints
on all levels must be satisfied before any progress can be
made.
 As with HIFF, HIFF-II is solvable by a genetic algorithm
which maintains population diversity. However, we found the
Gene-Invariant Genetic Algorithm (GIGA) [7] to be more
efficient on HIFF-II than a genetic algorithm with
deterministic-crowding (GA-DC) [8]. Section V reports our
experimental results on HIFF-II.
 Our main findings are:
(i) If one considers an altruistic scheme to be un-evolutionary
in the sense that natural selection favors short sighted gains,
then an optimal solution to HIFF-II is difficult to evolve with a
RMHC algorithm but is evolvable with a genetic algorithm.
This conclusion holds even when RMHC is enhanced with
phenotypes and a level directed (non-altruistic) selection
scheme, and when GA-DC is used instead of GIGA.
(ii) If one is not concerned with the “evolutionariness” of a
solution as is often the case in the engineering domain, then an
optimal solution to HIFF-II is still difficult to evolve with a
RMHC algorithm but is evolvable with a genetic algorithm.
This conclusion holds when both the RMHC algorithm and the
genetic algorithm are run under “ideal” conditions, and when
the problem size (N) is significantly large. Through our
experiments, we found N ≥ 256 to be significantly large.
“Ideal” conditions for a RMHC algorithm include using an
altruistic selection scheme and a suitably low mutation rate.
“Ideal” conditions for a genetic algorithm include gene-
invariance (GIGA) and selecting pairs of genotypes with close
fitness values to mate.
 In summary, a RMHC algorithm has more difficulty
evolving an optimal solution to HIFF-II than a genetic
algorithm. On the basis of these findings, we offer HIFF-II as
a test problem that highlights the utility of recombination in an
evolutionary algorithm.

II. THE HIFF-II FUNCTION

 This section defines the HIFF-II function and explains how
per-level fitness values are calculated to form phenotypes. A

274

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

1-4244-0701-X/07/$20.00 ©2007 IEEE

phenotype is a multi-dimensional representation of a
genotype’s (aggregate) fitness. The (aggregate) fitness of a
genotype is split into a sequence of per-level fitness values
and represented as a phenotype.
 As in our previous work [2], fitness of a genotype is
computed by levels. A genotype is a bit string of length N =
2n. There are log2 N levels and N/2λ modules of size 2λ at level
λ for a genotype and λ = 1…n. Table 1 illustrates for N = 8.

TABLE 1
Level (λ) Number of Modules Module size Bit positions by module
3 (highest) 1 8 0 1 2 3 4 5 6 7

2 2 4 0 1 2 3 0 1 2 3
1 (lowest) 4 2 0 1 0 1 0 1 0 1

 Per-level fitness of a genotype is the sum of the fitness of
every module at a level. Module fitness is obtained by
comparing bits in the first half of a module with bits in the
second half of a module. Fig.1 illustrates this process and
Table 2 gives an example of a HIFF-II calculation.
Specifically, fitness of a module at level λ is calculated as
follows:
(i) gene i is compared with gene 2λ-1 + i of a module for i = 0,
…, 2λ-1 -1,
(ii) one point is awarded if the two genes have the same allelic
value, i.e. the bits are equal, and
(iii) the number of points is divided by half the module size,
2λ-1.

Fig. 1 Illustration of which genes in a genotype are compared to compute per-

level fitness values

TABLE 2
AN EXAMPLE OF HIFF-II EVALUATION. LEFTMOST BIT OF A MODULE IS THE ZEROTH

BIT.

Genotype 187
Level Bit Comparisons Per Module 1 0 1 1 1 0 1 1 Per level fitness

3 (0, 4), (1, 5), (2, 6), (3, 7) 1 1 1 1 4/4 = 1
2 (0, 2), (1, 3) 1 0 1 0 1/2 + 1/2 = 1
1 (0, 1) 0 1 0 1 0/1 + 1/1 + 0/1 + 1/1 = 2

Phenotype 〈1, 1, 2〉
Aggregate fitness 4

 Like HIFF, HIFF-II has two global optima: the all zeroes
and the all ones genotypes, the optimal aggregate fitness for a
problem of size N = 2n is N-1 and the optimal phenotype is 〈20,
21, …, 2i, 2i+1, … 2n-1〉. Like HIFF, HIFF-II has a consistent
hierarchical structure with interdependencies within and
between modules as indicated in Fig. 1. However, unlike
HIFF, HIFF-II has inter-level interdependencies so solutions

optimal for one level need not be optimal for another higher or
lower level. Section III explains.

III. COMPARISON OF HIFF-II WITH HIFF

A. Structure of interdependencies
 One of the main features of the HIFF problem is its
modular interdependency [4]. In a problem with modular
interdependency, the variables of a problem are related in such
a way that intra-module dependencies are stronger than inter-
module dependencies but the inter-module dependencies are
important enough that they must be resolved in order to find
an optimal solution to the whole problem. In other words, a
problem with modular interdependency is decomposable into
modules but the modules are non-separable. If modules of a
problem are separable, an optimal solution for each module
can be found independently of the other modules in the
problem and these partial optimal solutions can be aggregated
linearly to obtain an optimal solution to the whole problem.
 The two components of modular interdependency:
structure of dependencies and strength of dependencies are
reflected compactly in a dependency matrix. Fig. 2A shows
the dependency matrix for HIFF-II with 8 variables. The
dependency matrix for HIFF with 8 variables is produced in
Fig. 2B for comparison (This matrix is a reproduction of the
dependency matrix in [1, p.14] but each element of the matrix
is divided by 32.).

 0 1 2 3 4 5 6 7
0 - 1/2 1/4 0 1/8 0 0 0
1 1/2 - 0 1/4 0 1/8 0 0
2 1/4 0 - 1/2 0 0 1/8 0
3 0 1/4 1/2 - 0 0 0 1/8
4 1/8 0 0 0 - 1/2 1/4 0
5 0 1/8 0 0 1/2 - 0 1/4
6 0 0 1/8 0 1/4 0 - 1/2
7 0 0 0 1/8 0 1/4 1/2 -
Fig. 2A Dependency matrix for HIFF-II with 8 variables

 0 1 2 3 4 5 6 7
0 - 1/2 1/8 1/8 1/32 1/32 1/32 1/32
1 1/2 - 1/8 1/8 1/32 1/32 1/32 1/32
2 1/8 1/8 - 1/2 1/32 1/32 1/32 1/32
3 1/8 1/8 1/2 - 1/32 1/32 1/32 1/32
4 1/32 1/32 1/32 1/32 - 1/2 1/8 1/8
5 1/32 1/32 1/32 1/32 1/2 - 1/8 1/8
6 1/32 1/32 1/32 1/32 1/8 1/8 - 1/2
7 1/32 1/32 1/32 1/32 1/8 1/8 1/2 -

Fig. 2B Dependency matrix for HIFF with 8 variables

 The dependency matrices can be used to compute the
HIFF-II and HIFF fitness values for a genotype. Fig. 3
illustrates how on genotype number 187 (1011 1011) which
has a HIFF-II fitness value of 4 and a HIFF fitness value of
3.625. First, a work dependency matrix is prepared for the
genotype in question. All non-diagonal entries in the work
dependency matrix are set to zero. Then, where two distinct
bits i and j of the genotype agree, the value of element (i, j) in
the corresponding dependency matrix is copied into the work

A B C D

Comparisons at
level 2

Genotype, N=4

Comparisons at
level 1

275

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

dependency matrix. For example, bits 0 and 2 agree in
genotype number 187, so the entry in the HIFF-II work
dependency matrix at (0, 2) is 1/4. The sum of the entries in a
completed work dependency matrix gives the fitness of the
genotype.

 1 0 1 1 1 0 1 1
1 - 0 1/4 0 1/8 0 0 0
0 0 - 0 0 0 1/8 0 0
1 1/4 0 - 1/2 0 0 1/8 0
1 0 0 1/2 - 0 0 0 1/8
1 1/8 0 0 0 - 0 1/4 0
0 0 1/8 0 0 0 - 0 0
1 0 0 1/8 0 1/4 0 - 1/2
1 0 0 0 1/8 0 0 1/2 -

Fig. 3A Completed work dependency matrix to calculate HIFF-II fitness for
genotype 1011 1011

 1 0 1 1 1 0 1 1
1 - 0 1/8 1/8 1/32 0 1/32 1/32
0 0 - 0 0 0 1/32 0 0
1 1/8 0 - 1/2 1/32 0 1/32 1/32
1 1/8 0 1/2 - 1/32 0 1/32 1/32
1 1/32 0 1/32 1/32 - 0 1/8 1/8
0 0 1/32 0 0 0 - 0 0
1 1/32 0 1/32 1/32 1/8 0 - 1/2
1 1/32 0 1/32 1/32 1/8 0 1/2 -

Fig. 3B Completed work dependency matrix to calculate HIFF fitness for
genotype 1011 1011

 However, what is relevant for our purpose here is the
relative densities of the two dependency matrices in Fig. 2.
The most striking difference is the prevalence of zeroes in the
dependency matrix for HIFF-II and the absence of zeroes in
the dependency matrix for HIFF. But this does not mean that
there are independent variables in HIFF-II. Fig. 4 illustrates
the structure and strength of the interdependencies present in a
HIFF-II problem with 4 variables with a dependency graph.

Fig. 4 Interdependencies between the 4 genes in HIFF-II. Solid lines show
direct interdependencies and dashed lines show indirect interdependencies.
Thickness of the solid lines indicates strength of the interdependency. Thicker
solid lines indicate stronger interdependency. An equality between A and B is
worth half a point but equality between A and C is only worth quarter of a
point.

 While variables B and C are not directly dependent on
each other (there is no edge between B and C in Fig. 1), B and
C are indirectly interdependent through their direct
interdependence on variables A and D. Similarly, variables A
and D are indirectly interdependent through their direct
interdependencies on variables B and C. Interestingly, by
relaxing the structure of direct interdependencies in HIFF-II

we create inter-level interdependencies (explained later in
subsection D).

B. Number of distinct fitness values
 Table 3 displays enumerations of the HIFF, HIFF-II and
HXOR-II fitness functions for N=4 with differences between
HIFF-II and HIFF fitness values highlighted. The HXOR-II
function is the same as HIFF-II except points are rewarded for
inequality. A comparison of the plots for HIFF and HIFF-II in
Fig.5 shows HIFF-II has more points with different aggregate
fitness values than HIFF. HIFF has 4 distinct aggregate fitness
values while HIFF-II has 5.

TABLE 3
 HXOR-II HIFF-II HIFF

gnum genotype f hd L2 L1 f L2 L1 f hd
0 0000 0.0 2 1.0 2.0 3.0 1.0 2.0 3.0 0
1 0001 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1
2 0010 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1
3 0011 1.0 2 0.0 2.0 2.0 0.0 2.0 2.0 2
4 0100 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1
5 0101 2.0 2 1.0 0.0 1.0 0.5 0.0 0.5 2
6 0110 3.0 0 0.0 0.0 0.0 0.5 0.0 0.5 2
7 0111 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1
8 1000 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1
9 1001 3.0 0 0.0 0.0 0.0 0.5 0.0 0.5 2
10 1010 2.0 2 1.0 0.0 1.0 0.5 0.0 0.5 2
11 1011 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1
12 1100 1.0 2 0.0 2.0 2.0 0.0 2.0 2.0 2
13 1101 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1
14 1110 1.5 1 0.5 1.0 1.5 0.5 1.0 1.5 1
15 1111 0.0 2 1.0 2.0 3.0 1.0 2.0 3.0 0

gnum is genotype number, the integer equivalent of the binary string; Lλ is the
fitness for level λ; f is aggregate fitness; hd is Hamming distance to a nearest
global optimum. Optimal fitness values are bolded; discrepancies between the

HIFF function and our HIFF-II function are highlighted.

N=4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

gnum

fit
ne
ss

HIFF HIFF-II HXOR-II

Fig. 5 HIFF, HIFF-II and HXOR-II fitness functions for N=4.

C. Number of competing optimal solutions per level
 Table 3 reveals that the number of genotypes which can
produce an optimal solution for a level is the same for all
levels in HIFF-II. But this is not the case with HIFF. For
HIFF-II, real 1.0, the optimal fitness value for level 2, occurs 4
times in column L2 and real 2.0, the optimal fitness value for
level 1, also occurs 4 times in column L1. In contrast, 1.0
appears twice in column L2 and 2.0 appears 4 times in column
L1, for HIFF. The optimal solutions per level for HIFF and
HIFF-II are juxtaposed in Tables 4 and 5.

 A B C D
A - 1/2 1/4 0
B 1/2 - 0 1/4
C 1/4 0 - 1/2
D 0 1/4 1/2 -

A

B

C

D

276

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

TABLE 4
SETS OF PER-LEVEL OPTIMAL GENOTYPES FOR N=4

HIFF HIFF-II
Level Optimal level fitness Cardinality Optimal genotypes Cardinality Optimal genotypes

2 1 2 {0000, 1111} 4 {0000, 0101, 1010, 1111}
1 2 4 {0000, 0011, 1100, 1111} 4 {0000, 0011, 1100, 1111}

TABLE 5

SETS OF PER-LEVEL OPTIMAL GENOTYPES FOR N=8
HIFF HIFF-II

Level (λ)
Optimal

level fitness Size (2N / 2λ) Optimal genotypes Size (2N / 2) Optimal genotypes

3 1 2 {0000 0000, 1111 1111} 16

{0000 0000, 0001 0001, 0010 0010, 0011 0011,
0100 0100, 0101 0101, 0110 0110, 0111 0111,
1000 1000, 1001 1001, 1010 1010, 1011 1011,
 1100 1100, 1101 1101, 1110 1110, 1111 1111}

2 2 4 {0000 0000, 0000 1111,
1111, 0000, 1111 1111} 16

{0000 0000, 0000 0101, 0000 1010, 0000 1111,
0101 0000, 0101 0101, 0101 1010, 0101 1111,
1010 0000, 1010 0101, 1010 1010, 1010 1111,
 1111 0000, 1111 0101, 1111 1010, 1111 1111}

1 4 16

{0000 0000, 0000 0011, 0000 1100, 0000 1111,
0011 0000, 0011 0011, 0011 1100, 0011 1111,
1100 0000, 1100 0011, 1100 1100, 1100 1111,
 1111 0000, 1111 0011, 1111 1100, 1111 1111}

16

{0000 0000, 0000 0011, 0000 1100, 0000 1111,
0011 0000, 0011 0011, 0011 1100, 0011 1111,
1100 0000, 1100 0011, 1100 1100, 1100 1111,
 1111 0000, 1111 0011, 1111 1100, 1111 1111}

D. Inter-level interdependencies
 Having a larger number of optimal solutions at every level
of the hierarchy does not make HIFF-II an easier problem than
HIFF because the sets of per-level optimal solutions are
distinct from each other. This creates more competing schema
per level and thwarts attempts to evolve a globally optimal
solution that focus adaptation efforts on any one level. Unlike
HIFF, an optimal solution for level λ+1 in a HIFF-II problem
need not be an optimal solution for level λ, and vice versa. In
this sense, the levels in HIFF-II are inter-dependent. There is
dependency between levels in HIFF, but this dependency is
one way. An optimal solution at a lower level need not
translate to an optimal solution at a higher level in HIFF, but
an optimal solution at a higher level does translate to an
optimal solution at a lower level.
 Table 5 lists the sets of optimal genotypes for each level in
a problem with 8 variables. In HIFF, the set of optimal
solutions for level λ+1 is a proper subset of the set of optimal
solutions for level λ. In HIFF-II, the relationship is one of
intersection and not subset. The two globally optimal
genotypes are found in the intersection of the sets of per-level
optimal genotypes. At every level, the HIFF set of optimal
genotypes is a proper subset of the HIFF-II set of optimal
genotypes. Therefore the intuition of the Building-Block
Hypothesis [5, 9] is also preserved in HIFF-II.

E. Fitness Correlation
 Fitness Distance Correlation (FDC) [10] is negative for
straightforward problems and positive on deceptive problems.
As a rule of thumb, search problems with FDC between -1.5
and 1.5 are difficult. In this section, FDC measures the
correlation between per-level fitness values and Hamming
distance to a closest global optimum. In Table 6 we see FDC
values for HIFF increase at lower levels indicating that search
is more difficult at lower levels than at higher levels.
Previously, we exploited this feature of HIFF to accrete
optimal HIFF solutions with a RMHC algorithm [2]. The

RMHC algorithm was successful when it focused on
optimizing higher level fitness values. However, the FDC
values for HIFF-II are uniform across levels and this
intuitively is in agreement with statements made in the
previous subsection about the presence of inter-level
interdependencies in HIFF-II. These summary statistics also
apply to HXOR-II.

TABLE 6
FITNESS DISTANCE CORRELATION, N=8.

Level HIFF HIFF-II
3 -0.6972 -0.3486
2 -0.4930 -0.3486
1 -0.3486 -0.3486

Aggregate -0.5711 -0.5325

IV. ALTRUISTIC AND NON-ALTRUISTIC SELECTION SCHEMES

 A selection scheme is used in an evolutionary algorithm to
decide whether to keep a genotype or to replace it with its
variant. To make this decision, the selection scheme in the
original RMHC algorithm compares the (aggregate) fitness of
two genotypes. In our enhanced version of the RMHC
algorithm, the selection scheme does a pair-wise comparison
of the elements of two phenotypes in some order specified by
the sieve component of the selection scheme.
 Suppose the two competing phenotypes are p1 = 〈a, b, c〉
and its variant p2 = 〈x, y, z〉, and the selection scheme uses the
following sieve: 〈1, 3, 2〉. Then the pair (c, z) is compared first
because they are the fitness values for level 1, followed by (a,
x), the fitness values for level 3 and lastly (b, y).
 In a non-altruistic selection scheme, the first genotype
which confers an advantage is selected. So in a maximizing
problem, the genotype of p2 is selected if one of (z > c) or (z =
c and x > a) or (z = c and x = a and y ≥ b) is true. If p1 and p2
are identical, the genotype of p2 gets selected.
 Under an altruistic selection scheme, a genotype is selected
over its competitor only if it confers advantage on all levels. In
other words, no level acts selfishly to further its progress at the

277

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

TABLE 7
THE ALTRUISTIC AND NON-ALTRUISTIC SELECTION SCHEMES USE SIEVE: 〈3, 2, 1〉.

HIFF-II Phenotype
gnum Genotype λ=3 λ=2 λ=1 f

Selection
(aggregate)

Selection
(non-altruistic)

Selection
(altruistic)

2 (parent) 0000 0010 0.75 1.5 3 5.25
3 (offspring) 0000 0011 0.5 1 4 5.5

3 2 2

56 (parent) 0011 1000 0.25 0.5 3 3.75
57 (offspring) 0011 1001 0.5 0 2 2.5

56 57 56

185 (parent) 1011 1001 0.75 0.5 1 2.25
186 (offspring) 1011 1010 0.75 1.5 1 3.25

186 186 186

expense of other levels. In a maximizing problem, the
genotype of p2 is selected if (z ≥ c and x ≥ a and y ≥ b) is true.
If p1 and p2 are identical, the genotype of p2 gets selected.
 The order in which elements of a phenotype is
compared does not matter under an altruistic selection scheme.
This is not the case under a non-altruistic selection scheme.
The altruistic selection scheme is distinct from comparing
aggregate fitness values because in both HIFF and HIFF-II,
aggregate fitness can improve at the cost of some per-level
fitness value. Examples in Table 7 illustrate the differences
among the three selection schemes mentioned in this section.

V. EXPERIMENTS

The hypotheses to be tested are:
1. HIFF-II is difficult for a traditional RMHC algorithm

(RMHC1) but is not difficult for an enhanced RMHC
algorithm that uses phenotypes and an altruistic selection
scheme (RMHC3).

2. HIFF-II is difficult for an enhanced RMHC algorithm that

uses phenotype but does not use an altruistic selection
scheme (RMHC2). This holds even when macro-mutation
is used, when sieves are varied over time (Multi-
population) or when sieves are not varied over time but are
randomly generated (Parallel-model). In other words, HIFF-
II is difficult to solve with a RMHC algorithm that does not
use an altruistic selection scheme.

3. HIFF-II is easier to solve with a genetic algorithm than a

RMHC. We compare the performance of a genetic
algorithm (GA-DC) with the performances of other RMHC
algorithms including multi-population and parallel-model,
but excluding RMHC3. We consider RMHC3 an ideal
algorithm for HIFF-II. As such we compare RMHC3 with
an “ideal” genetic algorithm (GIGA). We regard GIGA as
ideal because population size can be small and yet
population diversity is maintained throughout a run.

Performance of algorithms is measured in terms of the number
of times a globally optimal solution is found in a set of runs
and the number of evaluations used to evolve a globally
optimal solution.

A. Algorithms
1. RMHC1.
(i) Generate a random bit string of length N.
(ii) Generate a random integer from [1, Pm × N] for k.

(iii) Make a copy* of the current (parent) bit string. Select k
bits at random from the copy bit string to mutate.
Mutation is by random assignment of a 1 or a 0.

(iv) Replace the current bit string with the variant bit string if
aggregate fitness of the variant (offspring) bit string is
greater than or equal to aggregate fitness of the current bit
string.

(v) If optimal string has not been found and maximum
evaluations not reached, go to step (ii).

2. RMHC2
This is the method we proposed previously for HIFF [2]. It is
the same as RMHC1 except that, in step (iv) phenotypes are
compared and a non-altruistic selection scheme is used.
 In this paper, we ran RMHC2 with two types of sieves,
two kinds of mutation operator and two mutation rates. With a
high-low sieve, comparisons of phenotype elements are made
in descending order starting with the highest level. The high-
low sieve for N=128 is 〈7, 6, 5, 4, 3, 2, 1〉. A low-high sieve is
the exact opposite of a high-low sieve; phenotype elements are
compared in ascending order starting with the lowest level. If
macro-mutation is used in step (iii), the k consecutive bits are
mutated starting from a random locus wrapping around to the
start of the genotype if necessary.

3. RMHC3
The same as RMHC2 except that, in step (iv) phenotypes are
compared with an altruistic selection scheme, as explained in
section IV.

4. Multi-population
Reference [2] describes this algorithm in detail. Briefly,
subpopulations of genotypes are placed in a two-dimensional
grid with periodic boundaries. Genotypes of a subpopulation
do not interact with each other and subpopulations have
minimal interaction with each other. There is no exchange of
genes between genotypes in this model.
 Genotypes in a cell are evolved using RMHC2 and the
current sieve in the cell. Sieves are generated at random
initially. The number of changes made to genotypes of a
subpopulation is monitored. After a specified number of
generations, subpopulations compare their activity level
(number of changes) with that of their neighbours. The most

* When Pm is low and N is large, it is more efficient implementation wise to
remember the state of the k bits before mutation and restore the bits
accordingly than to copy entire bit strings.

278

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

active subpopulation replaces the least active subpopulation in
a Moore neighbourhood. During this extinction-recolonization
event, the sieve in the recolonized cell is replaced by a variant
of the sieve in the colonizer cell.

5. Parallel-model
The same as multi-population except there is no colonization
or extinction of subpopulations and no mutation of sieves. A
subpopulation adapts to the conditions imposed by a single
fixed sieve, randomly generated at the start, for the entire run.

6. GA-DC
We use the steady-state GA-DC algorithm given in [1, p.168].
(i) Create population of random bit strings and evaluate
population.
(ii) Select two random genotypes, p1 and p2.
(iii) With probability Pc, recombine p1 and p2. Evaluate pair of
offspring genotypes c1 and c2.
(iv) Calculate Hamming distance H, between the following
pairs of genotypes (p1, c1), (p1, c2), (p2, c2) and (p2, c1).
If H(p1, c1) + H(p2, c2) < H(p1, c2) + H(p2, c1), then pair p1
with c1 and p2 with c2 else pair p1 with c2 and p2 with c1.
(v) For each pair, if the offspring genotype is fitter than the
parent genotype, replace the parent genotype with the
offspring genotype, else keep the parent genotype and discard
the offspring genotype.
(vi) If optimal solution has not been found and maximum
evaluations is not reached, go to step (ii).

7. GIGA
(i) Create population of random bit strings. Evaluate
population and sort population by aggregate fitness.
(ii) Starting from the fittest end of the sorted population, pair
up consecutive genotypes so parent genotypes are close in
aggregate fitness value. We cycle back to the fittest end when
the least fit end is reached.
(iii) Produce offspring genotypes from parent genotypes with
two-point crossover.
(iv) Replace the pair of parent genotypes with the pair of
offspring genotypes if the fitter offspring is fitter than the fitter
parent (elitism). The population is kept sorted and freshly
minted offspring may participate in mating events
immediately.

B. Parameters
 Unless stated otherwise, the parameter values in Table 8
were used in the experiments. Runs were performed with a
different random number seed each time.

C. Results
 Table 9 reports the performance of the seven algorithms
described in subsection A on the HIFF-II problem. From these
results, we draw the following conclusions:

(i) Hypothesis 1 is confirmed. RMHC3 significantly performs
better than RMHC1 on HIFF-II. On the 128 variable HIFF-II
problem 76% of RMHC3 runs found an optimum. None of the

30 RMHC1 runs found an optimum within 3 million
evaluations.

(ii) Hypothesis 2 is confirmed. RMHC3 was not outperformed
by RMHC2, multi-population or the parallel-model. None of
the RMHC2 runs found a solution to HIFF-II. None of the
parallel-model runs were successful. One third of the multi-
population runs were successful but they took over a million
evaluations on average to find a solution while RMHC3 took
considerably fewer evaluations on average.
 The RMHC2 algorithm, which prioritizes progress at
higher levels over lower levels, has the lowest average best
final fitness. In marked contrast, RMHC2 was very successful
on the HIFF problem: all runs succeeded and the average
evaluation was 2245 with a standard error of 660 [2]. This
difference in RMHC2 performance highlights the fact that
HIFF-II has a different kind of inter-level dependency from
HIFF, as explained in section III.
 Table 10 shows the average per-level fitness at the end of a
sample of unsuccessful runs. The biases of each algorithm are
revealed. RMHC1, RMHC2-A and RMHC2-B are biased
towards optimization of the lower level modules while
RMHC2 is biased towards the higher level modules. On the
other hand, RMHC3 is even handed in its dealings with each
level. These findings are not unexpected.

TABLE 8
Application Parameter Default Value

Maximum evaluations per run 1,000,000 All
Problem size, N 128

All RMHC-s Mutation rate, Pm 0.0625
Lattice dimensions 4 × 4
Population size per deme 5
Number of generations
(for multi-population only) 100

Multi-population
Parallel-model

Mutation rate, Pm 0.0625
Population size for GA-DC 2000
Population size for GIGA 50
Recombination type 2 point
Recombination rate, Pc 1.0

GA-DC
GIGA

Mutation rate, Pm 0.0

(iii) Hypothesis 3 is confirmed. The GA-DC runs were
significantly more successful than the RMHC2 runs. The GA-
DC runs found an optimum at least 90% of the time. None of
the RMHC2 runs found an optimum. Further, the successful
GA-DC runs used significantly fewer evaluations than the
successful multi-population runs.
 The GIGA runs were more successful than the RMHC3
runs. On the 128-variable problem, the success rate is 100%
for the GIGA algorithm, and 76% for the RMHC3 algorithm.
However, there is no significant difference in the average
number of evaluations used in successful runs.
 On the 256-variable problem, the disparity is more evident
not only in the number of times an optimal solution was found
but also in the efficiency of successful runs. The t test was
used to test significance. The 1-tailed probability that there is

279

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

TABLE 9
SUMMARY OF RESULTS FOR EXPERIMENTS WITH N=128. AVERAGE BEST FINAL FITNESS IS RREPORTED FOR UNSUCCESSFUL RUNS.

AVERAGE NUMBER OF EVALUATION USED IS REPORTEDFOR SUCCESSFUL RUNS.
HIFF-II

Method Character Times found
Avg. Best Final Fitness

(std. dev.)
Avg. Evaluations

(std. dev.)

RMHC1 compare aggregate fitness, maximum evaluations = 3,000,000 0/30 (0 %) 115.92
(2.34) -

RMHC2 compare phenotypes, selfish selection scheme, high-low sieve 0/10 (0 %) 66.55
(7.50) -

RMHC2-A compare phenotypes, selfish selection scheme, low-high sieve 0/10 (0 %) 114.14
(2.52) -

RMHC2-B compare phenotypes, selfish selection scheme, low-high sieve,
macro-mutation (Pm = 0.5) 0/10 (0 %) 123.65

(0.62) -

Multi-population compare phenotypes, selfish selection scheme, variable sieve,
maximum evaluations = 3,000,000. 5/15 (33 %) 104.18

(9.41)
1,659,579
(983,627)

Parallel-model compare phenotypes, selfish selection scheme, fixed random sieve,
maximum evaluations = 3,000,000. 0/10 (0 %) 109.42

(4.22) -

GA-DC1 compare aggregate fitness, one-point crossover, no mutation, Pc = 0.7
This parameter configuration is used in [1]. 27/30 (90 %) 126.00

(0.00)
252,167

(171,326)

GA-DC2 compare aggregate fitness, two-point crossover, no mutation
This parameter configuration is used to compare with GIGA. 30/30 (100 %) - 166,370

(50,909)

RMHC3 compare phenotypes, altruistic selection scheme 23/30 (76 %) 118.45
(5.10)

60,415
(38,689)

GIGA compare aggregate fitness, two-point crossover, no mutation, gene-invariant 30/30 (100 %) - 63,084
(20,183)

RMHC3 compare phenotypes, altruistic selection scheme, N=256 22/30 (73 %) 233.97
(25.58)

399,281
(208,316)

GIGA compare aggregate fitness, two-point crossover, no mutation,
gene-invariant, N=256 30/30 (100 %) - 245,076

(82,916)
Notes:
(i) We did not test more GA variations because our objective is not to identify the “best” GA for HIFF-II, but to show that a GA can solve HIFF-II more
effectively than a RMHC that is “ideal” for HIFF-II (RMHC3) while still keeping mutations random.
(ii) In keeping with [1] and our preliminary tests which favoured random bit assignment, we did not use bit-flip mutation. However, in response to a reviewer’s
comment, we ran RMHC3 with the suggested configuration (Pm = 1.0 and mutation by bit-flip) and obtained the following result for N=128: only 10 out of 30
runs were successful after 1million evaluations. The successful runs took on average 643,200 number of evaluations with a standard deviation of 229,130. Clearly,
this performance is worse than that reported in Table 9. One reason for the poor performance is the high mutation rate. In our configuration, the effective mutation
rate is lower than reported because our mutation method is random bit assignment which does not necessarily change a bit selected for mutation.
(iii) Doing 30 runs each for the RMHC2 experiments did not alter the rate of finding a global optimum. No RMHC2 run, of any flavour, succeeded.
(iv) In response to a reviewer’s comment about the difference in signal (min - max), we reply: (a) The GAs we use in our experiments do not make use of fitness
proportionate selection where scaling can be an issue; (b) RMHC2 does not work on discrete HIFF because the fitness landscape of the highest level is 2 needles
in a haystack. We are working to address this.

TABLE 10
AVERAGE LEVEL FITNESS AT END OF UNSUCCESSFUL RUNS, N = 128.

Level (λ) 7 6 5 4 3 2 1
Method Optimal fitness 1 2 4 8 16 32 64

RMHC1 (15 runs) 0.49
(49 %)

1.07
(53 %)

2.35
(58 %)

4.83
(60 %)

11.8
(73 %)

32.0
(100 %)

64
(100 %)

RMHC2 (10 runs) 1.00
(100 %)

2.00
(100 %)

2.25
(56 %)

4.30
(53 %)

8.6
(53 %)

16.4
(51 %)

32
(50 %)

RMHC2-A (10 runs) 0.58
(58 %)

1.15
(57 %)

1.80
(45 %)

4.60
(57 %)

10.0
(62 %)

32.0
(100 %)

64
(100 %)

RMHC2-B (10 runs) 0.45
(45 %)

1.10
(55 %)

2.30
(57 %)

7.80
(97 %)

16.0
(100 %)

32.0
(100 %)

64
(100 %)

RMHC3 (7 runs) 0.93
(93 %)

1.87
(93 %)

3.64
(91 %)

7.57
(94 %)

14.8
(92 %)

29.5
(92 %)

60
(93 %)

280

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

no significant difference between the two averages (399,281 –
245,076) is 10% with 50 degrees of freedom.

VI. CONCLUSION

 We introduced a new test problem, HIFF-II. The
experiments we conducted confirm that (i) HIFF-II is difficult
to solve with a traditional RMHC algorithm but can be solved
with an enhanced RMHC if an altruistic selection scheme is
used, and that (ii) genetic algorithms which maintain
population diversity have an easier time evolving a solution to
HIFF-II than RMHC algorithms of any flavour. Point (i) gives
empirical evidence that HIFF-II is a different problem from
HIFF. This difference lies in the type of inter-level
dependency. In HIFF, inter-level dependency is one-way from
the bottom-up, that is lower level modules are dependent on
higher level modules to find their “true” optimal solution. But
in HIFF-II, the inter-level dependency is bi-directional,
bottom-up and top-down. Higher level modules depend on
lower level modules for their “true” optimum and vice versa.
Thus in HIFF-II levels are interdependent. It is this inter-level
interdependency, coupled with modular interdependency at
each level that defeats the RMHC algorithms.

ACKNOWLEDGEMENT

 Thanks to Dr. P. Grogono and the anonymous reviewers
for their helpful comments. I am funded by NSERC and the
Faculty of Engineering and Computer Science, Concordia
University.

REFERENCES

1 R. A. Watson, “Compositional Evolution”, 2006, The MIT Press.
2 S. Khor, “Rethinking the adaptive capability of accretive evolution on

hierarchically consistent problems,” IEEE Artificial Life Symposium,
2007.

3 S. Forrest and M. Mitchell, “Relative building-block fitness and the
building-block hypothesis,” in D. Whitley (editor) Foundations of
Genetic Algorithms (FOGA) vol. 2, 1993, Morgan Kaufmann.

4 R. A. Watson, G. S. Hornby, and J. B. Pollack, “Modeling building-block
interdependency,” in A.E. Eiben, T. Bäck, M. Schoenauer and H.-P.
Schweffel (editors) Parallel Problem Solving from Nature (PPSN) vol. V,
1998, pp. 97 – 106, Springer, Berlin.

5 J. H. Holland, “Adaptation in natural and artificial systems,” 1992, The
MIT Press.

6 W. M. Spears, “Crossover or mutation?” in L. D. Whitley (editor),
Foundations of Genetic Algorithms (FOGA) vol. 2, 1992, Morgan
Kaufmann.

7 J. C. Culberson, “Mutation-crossover isomorphisms and the construction
of discriminating functions,” Evolutionary Computation vol. 2, 1994, pp.
279-311.

8 S. Mahfoud, “Niching methods for genetic algorithms,” Ph.D.
Dissertation, 1995, University of Illinois.

9 D. E. Goldberg, “Genetic algorithms in search, optimization and machine
learning,” 1989, Addison-Wesley Publishing Company.

10 T. Jones and S. Forrest, “Fitness distance correlation as a measure of
problem difficulty for genetic algorithms,” in L. Eshelman (editor), 6th
Interrnational Conference on Genetic Algorithms (ICGA), 1995, pp. 184
– 192, Morgan Kaufmann.

281

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

