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Abstract— This paper considers the flocking problem of a
group of autonomous agents moving in the space with a virtual
leader. We investigate the dynamic properties of the group for
the case where the state of the virtual leader may be time-
varying and the topology of the neighboring relations between
agents is dynamic. To track such a leader, we introduce a set of
switching control laws that enable the entire group to generate
the desired stable flocking motion. The control law acting on
each agent relies on the state information of its neighboring
agents and the external reference signal (or “virtual leader”).
Then we prove that, if the acceleration input of the virtual
leader is known, then each agent can follow the virtual leader,
and moreover, the convergence rate of the center of mass (CoM)
can be estimated; if the acceleration input is unknown, then the
velocities of all agents asymptotically approach the velocity of
the CoM, and thus the flocking motion can be obtained, however
in this case, the final velocity of the group may not be equal to
the desired velocity. Numerical simulations are worked out to
further illustrate our theoretical results.

I. INTRODUCTION

Flocking is ubiquitous in nature, e.g., flocking of birds,

schooling of fish, and swarming of bacteria, and it is a form

of collective behavior of multiple interacting agents. In recent

years, there has been an increasing research interest in the

distributed control/coordination of the motion of multiple

dynamic agents/robots and the control design of multi-agent

systems. There has been considerable effort in modeling and

exploring the collective dynamics, and trying to understand

how a group of autonomous creatures or man-made mobile

autonomous agents/robots can cluster in formations without

centralized coordination and control [1]–[16]. Many results

have been obtained with local rules applied to each agent in

a considered multi-agent system.

Stimulated by the simulation results in [8], Tanner et al.

[4] considered a group of mobile agents moving in the plane

with double-integrator dynamics. They introduced a set of

control laws that enable the group to generate stable flocking

motion, but these control laws cannot regulate the final speed

and heading of the group. Due to the fact that in some

cases, the regulation of agents has certain purposes such as

achieving desired common speed and heading, or arriving at a

desired destination, the cooperation/coordination of multiple

mobile agents with some virtual leaders is an interesting and
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973 Program (2002CB312200), and 11-5 project (A2120061303). Corre-
sponding author: Professor Long Wang, longwang@pku.edu.cn,
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important topic. There have been some papers dealing with

this issue in the literature. For example, Leonard and Fiorelli

[7] viewed reference points as virtual leaders for manipulating

the geometry of an autonomous vehicle group and directing

the motion of the group; Olfati-Saber [1] used virtual leaders

to accomplish obstacle avoidance.

In this paper, we consider the flocking problem of multi-

ple mobile autonomous agents moving in an n-dimensional

Euclidean space with point mass dynamics. By viewing the

external reference signal as a virtual leader, we show that

all agents eventually move ahead at a common velocity and

maintain constant distances between them. We propose a set

of control laws and develop a Lyapunov-based approach to

analyze the problem. With the proposed control laws and

the selected Lyapunov functions, the tracking problem can

be solved if the acceleration input of the virtual leader is

known by all agents; and the problem may not be solved if

the acceleration input is unknown, but in this case all agents

still eventually move at a common velocity, i.e., the flocking

motion can be achieved.

This paper is organized as follows. In Section II, we

formulate the problem to be investigated. We analyze the

system stability and the motion of the center of mass (CoM)

by using some control laws in Section III. Some numerical

simulations are presented in Section IV. Finally, we briefly

summarize our results in Section V.

II. PROBLEM FORMULATION

In this paper, we consider a group of N (N ≥ 2) agents

moving in an n-dimensional Euclidean space; each has point

mass dynamics described by

ẋi = vi,
miv̇

i = ui, i = 1, . . . , N,
(1)

where xi ∈ R
n is the position vector of agent i, vi ∈ R

n is

its velocity vector, mi > 0 is its mass, and ui ∈ R
n is the

control input acting on agent i.
Our objective is to make the entire group move at a

desired velocity and maintain constant distances between the

agents. The desired velocity is supposed to be a time-varying

and smooth function, which means that the state of the

virtual leader keeps changing. In order to achieve our control

objective, we try to regulate agent velocities to the desired

velocity, reduce the velocity differences between neighboring

agents, and at the same time, regulate their distances such
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that their potentials become minima. Hence, we choose the

control law ui for agent i to be

ui = αi + βi + γi, (2)

where αi is used to regulate the potentials among agents, βi

is used to regulate the velocity of agent i to the weighted

average of the velocities of its neighbors, and γi is used to

regulate the velocity of agent i to the desired velocity (all to

be designed later). αi is derived from the social potential field

which is described by an artificial social potential function,

V i, a function of the relative distances between agent i
and its flockmates. Freedom from collisions and cohesion

in the group can be guaranteed by this term. βi reflects the

alignment or velocity matching with neighbors among agents.

γi is designed to regulate the velocity of agent i based on the

external signal (the desired velocity).

Definition 1: [4] (Neighboring Graph) The neighboring

graph, G = (V, E), is an undirected graph consisting of a set

of vertices, V = {n1, . . . , nN}, indexed by the agents in the

group, and a set of edges, E = {(ni, nj) ∈ V × V | nj ∼ ni},

containing unordered pairs of vertices that represent the

neighboring relations.

The neighboring graph is used to describe the sensor

information flow in the group. In G, an edge (ni, nj) means

that agent i can sense agent j, and it will regulate its state

based on the position and velocity of agent j. In this paper,

we mainly consider the dynamic and symmetric neighboring

relations between agents. Let I = {1, . . . , N}. We write

Ni � {j | ‖xij‖ ≤ R} ⊆ I\{i} for the set which contains

all neighbors of agent i, where xij = xi − xj denotes the

relative position vector between agents i and j; R > 0
is a constant and can be viewed as the sensing radius of

the sensors. Here we assume that the sensors of all agents

have the same sensing range. During the course of motion,

the relative distances between agents vary with time, so the

neighbors of each agent are not fixed, which generates the

switching neighboring graph. In the discussion to follow,

we assume that the neighboring graph G remains connected,

which ensures that the group will not be divided into several

isolated subgroups. In order to depict the potential between

the agents, we present the following definition.

Definition 2: [4] (Potential Function) Potential V ij is a

continuous, nonnegative function of the distance ‖xij‖ be-

tween agents i and j, such that V ij(‖xij‖) → ∞ as ‖xij‖ →
0, V ij attains its unique minimum when agents i and j
are located at a desired distance, V ij is differentiable on

(0, R)∪(R,∞), and V ij is a constant V ij(R) for ‖xij‖ > R.

Function V ij can be nonsmooth at ‖xij‖ = R. By the

definition of V ij , the total potential of agent i can be

expressed as

V i =
∑

j /∈Ni,j �=i

V ij(R) +
∑
j∈Ni

V ij(‖xij‖).

Certainly, in reality, according to different cases, we can

define different interaction potential functions such as the

functions considered in [1], [7], and [14]–[16].

III. MAIN RESULTS

In this section, we investigate the stability properties of the

system described in (1). We will present explicit control input

in (2) for the terms αi, βi, and γi. We will employ matrix

analysis, algebraic graph theory and nonsmooth analysis as

basic tools for our discussion, and some concepts and results

are available in [17]–[21].

During the course of motion, each agent regulates its

position and velocity based on the external signal and the

state information of its neighbors. However, it is known that,

in reality, because of the influence of some external factors,

the reference signal is not always detected by all agents in

the group. In this paper, we will consider the case where the

signal is sent continuously and at any time, there exists at

least one agent in the group who can detect it.

We take the control law ui for agent i to be

ui = −
∑
j∈Ni

∇xiV ij −
∑
j∈Ni

wij

(
vi − vj

)
−hi

smi

(
vi − v0(t)

)
+ gimia0(t), (3)

where v0(t) ∈ R
n is the desired velocity and v̇0(t) = a0(t);

hi
s ≥ 0 represents the intensity of influence of the reference

signal on the motion of agent i; gi = 1 if agent i knows

the acceleration input a0(t) and is 0 otherwise; wij ≥ 0,

wij = wji, and wii = 0, i, j = 1, . . . , N , represent the

interaction coefficients. Assume that hi
s = hi if agent i can

detect the reference signal, where hi > 0 is a constant, and

is 0 otherwise. wij = cij is fixed if agent j is a neighbor

of agent i, where cij > 0 (∀i = j) is a constant, and is

0 otherwise. Here we always assume that cij = cji, which

means that the interaction between agents is reciprocal. We

write Wσ = [wij ]σ ∈ R
N×N for the interaction coefficient

matrix (or coupling matrix), where σ is a switching signal

and is a piecewise constant function σ(t) : [0,∞) → P , P
is a finite index set where the number of the indices is equal

to the number of the connected graph Gσ in the group. The

switching signal σ relies on the distances between agents.

Thus, Wσ is always symmetric, and by the assumption of

the connectivity of the neighboring graph Gσ , Wσ is always

irreducible.

A. Not all agents can obtain the desired velocity v0(t), but
they all know the acceleration input a0(t), i.e., gi = 1 for all
i ∈ I.

Lemma 1: [4] Function V ij is regular everywhere in its

domain. Moreover, the generalized gradient of V ij at R and

the (partial) generalized gradient of V ij with respect to xi at

R are empty sets.

Theorem 1: Taking the control law in (3), all agent veloci-

ties in the group described in (1) asymptotically approach the

desired velocity, avoidance of collisions between the agents

is ensured, and the group final configuration minimizes all

agent potentials.

This theorem becomes clearly true after Theorem 2 is

proved, so we proceed to present Theorem 2.
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We define the following error vectors:

ei
p = xi −

∫ t

t0

v0(τ)dτ and ei
v = vi − v0(t),

where t is the time variable and t0 is the initial time. Then ei
v

represents the velocity difference vector between the actual

velocity and the desired velocity of agent i. It is easy to see

that ėi
p = ei

v and ėi
v = v̇i − a0(t). Hence, the error dynamics

is given by

ėi
p = ei

v,

miė
i
v = ui − mia0(t), i = 1, . . . , N.

(4)

Note that, in fact, we choose a moving reference frame and

take the position of the virtual leader as the origin. By the

definition of V ij , it follows that V ij(‖xij‖) = V ij(‖eij
p ‖) �

Ṽ ij , where eij
p = ei

p−ej
p, and hence Ṽ i = V i and ∇ei

p
Ṽ ij =

∇xiV ij . Thus the control input for agent i in the error system

(4) has the following form:

ui = −
∑
j∈Ni

∇ei
p
Ṽ ij−

∑
j∈Ni

wij

(
ei
v − ej

v

)
−hi

smie
i
v+mia0(t).

(5)

Theorem 2: Taking the control law in (5), all agent veloc-

ities in the system described in (4) asymptotically approach

zero, avoidance of collisions between the agents is ensured,

and the group final configuration minimizes all agent poten-

tials.

Proof: Consider the following positive semi-definite

function:

J =
1

2

N∑
i=1

(
Ṽ i + mie

iT
v ei

v

)
.

Function J is continuous but may be nonsmooth whenever

‖eij
p ‖ = R for some (i, j) ∈ I × I. Define the level set of J

in the space of agent velocities and relative distances in the

error system: Ω =
{(

ei
v, eij

p

)
| J ≤ c, c > 0

}
. Though the

neighboring relations vary with time, under the assumption

of the connectivity of Gσ , the set Ω is compact. This is

because the set {ei
v, eij

p } with J ≤ c is closed by continuity.

Moreover, boundedness can be proved by the connectivity of

Gσ . More specifically, because Gσ is always connected, there

must be a path connecting any two agents i and j in the

group and its length does not exceed N −1, and on the other

hand, the distance between two interconnected agents is not

more than R, hence, we have ‖eij
p ‖ ≤ (N − 1)R. By similar

analysis, eiT
v ei

v ≤ 2c/mi; thus ‖ei
v‖ ≤

√
2c/mi. Note that

the restriction of J in Ω ensures collision avoidance and the

differentiability of ‖eij
p ‖, ∀ i, j ∈ I.

By the definition of Ṽ ij , Ṽ ij is continuous and locally

Lipschitz. From Lemma 1, Ṽ ij is regular everywhere in its

domain and then Ṽ i is regular everywhere, hence, J is regular
as a sum of regular functions [21]. Then, we have

∂J⊂

⎡
⎣ N∑

j=2

(
∂e1

p
Ṽ 1j

)T
, . . . ,

N−1∑
j=1

(
∂eN

p
Ṽ Nj

)T
, m1e1T

v , . . . , mNeNT
v

⎤
⎦

T

.

Hence, the generalized time derivative of J is

˙̃
J ⊂

N∑
i=1

⎛
⎝⋂

ξi

ξT
i ei

v

⎞
⎠

− eT
v K

⎡
⎢⎢⎢⎢⎣(Lσ ⊗ In) ev +

⎛
⎜⎜⎜⎜⎝

.

.

.

∇ei
p
Ṽ i

.

.

.

⎞
⎟⎟⎟⎟⎠ + (Hs ⊗ In)ev

⎤
⎥⎥⎥⎥⎦ ,

where ξi ∈
∑N

j=1,j �=i ∂ei
p
Ṽ ij ; ev =

(
e1T
v , . . . , eNT

v

)T
is the

stack vector of all agent velocity vectors in the error system;

Lσ = [lij ]σ ∈ R
N×N with

lij =

{
−wij ,∑N

k=1,k �=i wik,
i = j,
i = j;

⊗ stands for the Kronecker product; In is the identity

matrix of order n; ∇ei
p
Ṽ i =

∑
j∈Ni

∇ei
p
Ṽ ij ; and Hs =

diag
(
h1

sm1, . . . , h
N
s mN

)
. Due to the switching topology of

the neighboring relations, Lσ and ∇ei
p
Ṽ i will correspond-

ingly change. By Lemma 1, we get

˙̃
J ⊂ −co

{
eT
v [(Lσ + Hs) ⊗ In] ev

}
.

It is easy to see that Lσ is symmetric and has the proper-

ties that each row sum is equal to 0, the diagonal entries

are positive, and all the other entries are nonpositive. On

the other hand, Hs is a diagonal matrix with nonnegative

entries and there exists at least one diagonal entry which

is positive. Furthermore, since the neighboring graph Gσ is

connected, Lσ + Hs is irreducible. Hence, matrix Lσ + Hs

is irreducibly diagonally dominant. By Corollary 6.2.27 in

[18], it follows that matrix Lσ + Hs is positive definite.

Thus −co
{
eT
v [(Lσ + Hs) ⊗ In] ev

}
is an interval of the

form [l, 0] with l < 0, and 0 is contained in it only when

e1
v = · · · = eN

v = 0. The rest of the analysis is similar to

Theorem 2 in [6], and thus is omitted.

Remark 1: Note that, if all agents know the desired veloc-

ity, i.e., hi
s = hi > 0 for all i ∈ I, then they still eventually

move at the desired velocity even when the neighboring graph

is not connected.

Remark 2: If the coupling matrix Wσ is asymmetric, we

can regulate the control law acting on each agent to generate

the desired flocking motion. The main analysis is as follows:

Define the position neighboring graph Gσ and the velocity

neighboring graph Dσ as in [5] and assume that Gσ and Dσ

are always strongly connected. From [16], we obtain that,

if Dσ is strongly connected, then its Laplacian matrix Lσ is

irreducible and for each Lσ , there is only one left eigenvector

ξσ = [ξ1, . . . , ξN ]Tσ ∈ R
N such that 0 < ξi < 1 for all i ∈ I,

ξT
σ Lσ = 0, and

∑N
i=1 ξi = 1. Then, we modify the control

law ui to

ui = −
∑
j∈Ni

∇xiV ij −
∑

j∈N∗

i

ξiwij

(
vi − vj

)
−hi

smi

(
vi − v0(t)

)
+ gimia0(t),
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where N ∗
i � {j | wij > 0}. By a similar analysis, we get

˙̃
J ⊂ −

1

2
co

{
eT
v

[(
ΛσLσ + LT

σ Λσ + 2Hs

)
⊗ In

]
ev

}
,

where Λσ = diag(ξ1, . . . , ξN )σ ∈ R
N×N . It is easy to see

that ΛσLσ + LT
σ Λσ is symmetric and has the properties that

each row sum is equal to 0, the diagonal entries are positive,

and all the other entries are nonpositive. The rest analysis is

similar to Theorem 2, and thus is omitted.

In what follows, we will analyze the motion of system (1)

in the case where hi
s = h0 for all i ∈ I, where h0 > 0 is a

constant. This means that the intensities of influence of the

external signal on all agents are equal. Hence, the control law

in (3) has the following form:

ui = −
∑
j∈Ni

∇xiV ij −
∑
j∈Ni

wij

(
vi − vj

)
−h0mi

(
vi − v0(t)

)
+ mia0(t). (6)

Certainly, in this case, we also have the conclusions in

Theorems 1 and 2. Here we will choose another moving

reference frame to study the flocking problem.

The position vector of the CoM in system (1) is defined as

x∗ =

∑N
i=1 mix

i∑N
i=1 mi

.

Thus, the velocity vector of the CoM is

v∗ =

∑N
i=1 miv

i∑N
i=1 mi

.

On using control law (6) and by the symmetry of Wσ and

the symmetry of function V ij with respect to xij , we get

v̇∗ = −h0v
∗ + h0v

0(t) + a0(t). (7)

By solving (7), we get

v∗(t) = v0(t) +
(
v∗(t0) − v0(t0)

)
e−h0(t−t0).

Thus, it follows that, if v∗(t0) = v0(t0), then the velocity
of the CoM equals v0(t) for all time; if v∗(t0) = v0(t0),
then the velocity of the CoM exponentially converges to the
desired velocity v0(t) with a time constant of h0 s. Moreover,
since ẋ∗ = v∗, we have

x
∗(t) = x

∗(t0)+

∫ t

t0

v
0(τ)dτ+

v
∗(t0) − v

0(t0)

h0

[
1 − e

−h0(t−t0)
]
.

We define the error vectors:

e∗p = x∗ −

∫ t

t0

v0(τ)dτ and e∗v = v∗ − v0(t).

Then e∗p represents the position difference vector between the

CoM and the virtual leader, whereas e∗v represents the velocity

difference vector between them. By the calculation above, it

is easy to see that

lim
t→∞

e∗p = x∗(t0) +
v∗(t0) − v0(t0)

h0
.

Thus, it follows that, if v∗(t0) = v0(t0), then the dif-

ference of the positions between the CoM and the virtual

leader equals x∗(t0) for all time; if v∗(t0) = v0(t0), then

the difference exponentially approaches the constant vector

x∗(t0) + v∗(t0)−v0(t0)
h0

with a time constant of h0 s.

Therefore, from the analysis above, we have the following

theorem.

Theorem 3: Taking the control law in (6), if the initial

velocity of the CoM is equal to the desired initial velocity,

then the velocity of the CoM equals the desired velocity for

all time and the position difference between the CoM and the

virtual leader always equals x∗(t0); otherwise the velocity of

the CoM will exponentially converge to the desired velocity

with a time constant of h0 s and the position difference

between the CoM and the virtual leader will exponentially

approach the constant vector x∗(t0) + v∗(t0)−v0(t0)
h0

.

In this case, we can also choose the moving reference frame

proposed in [1] to analyze the stability of system (1), and take

the position of the CoM of the group as the origin. We define

the error vectors:

εi
p = xi − x∗ and εi

v = vi − v∗.

Then εi
v represents the velocity difference vector between

agent i and the CoM. It is easy to see that ε̇i
p = εi

v and

ε̇i
v = v̇i − v̇∗. Hence, the error dynamics is given by

ε̇i
p = εi

v,

miε̇
i
v = ui − miv̇

∗, i = 1, . . . , N.
(8)

By the definition of V ij , it follows that V ij(‖xij‖) =

V ij(‖εij
p ‖) � V

ij
, where εij

p = εi
p − εj

p, and hence V
i
= V i

and ∇εi
p
V

ij
= ∇xiV ij . Thus the control input ui for agent

i in the error system (8) has the following form:

ui = −
∑
j∈Ni

∇εi
p
V

ij
−

∑
j∈Ni

wij

(
εi

v − εj
v

)
−h0miε

i
v − h0mie

∗
v + mia0(t).

We consider the error system (8) and choose the following

Lyapunov function:

J =
1

2

N∑
i=1

(
V

i
+ miε

iT
v εi

v

)
. (9)

By a similar calculation, we get

˙̃
J ⊂ −co

{
εT
v [(Lσ + H0) ⊗ In] εv

}
,

where H0 = diag(h0m1, . . . , h0mN ) ∈ R
N×N and εv =(

ε1T
v , . . . , εNT

v

)T
. Using the analysis method in Theorem 2,

we obtain that the velocities of all agents asymptotically

approach the velocity of the CoM, avoidance of collisions be-

tween the agents is ensured, and the group final configuration

minimizes all agent potentials. Furthermore, from Theorem

3, we conclude that the velocities of all agents in group (1)

asymptotically approach the desired velocity.

Remark 3: One issue to be mentioned here is that, when

the intensities of influence of the external signal on the
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motions of all agents are not equal, it is difficult to estimate

the motion of the CoM and analyze the stability properties of

system (1) by using the second moving reference frame.

Remark 4: By the analysis above, it is easy to see that,

when all agents know the desired velocity v0(t), the desired

flocking motion can still be obtained though all agents do not

regulate their velocities according to their neighboring agents,

i.e., we can omit the term βi in (2).

B. All agents can obtain the desired velocity, but they all do
not know the acceleration input a0(t), i.e., gi = 0 for all
i ∈ I. Here we still assume that the coefficients hi

s = h0 > 0
for all i ∈ I.

In this case, the control law acting on agent i is

ui = −
∑
j∈Ni

∇xiV ij −
∑
j∈Ni

wij

(
vi − vj

)
−h0mi

(
vi − v0(t)

)
, (10)

where v0(t), h0, and wij are defined as before.

Theorem 4: Taking the control law in (10), all agent ve-

locities in the group described in (1) become asymptotically

the same, avoidance of collisions between the agents is

ensured, and the group final configuration minimizes all agent

potentials.

This theorem becomes true after Theorem 5 is proved. First,

on using control law (10), we get

v̇∗ = −h0v
∗ + h0v

0(t). (11)

We consider the error dynamics (8). The control input ui for

agent i in the error system has the following form:

ui = −
∑
j∈Ni

∇εi
p
V

ij
−

∑
j∈Ni

wij

(
εi

v − εj
v

)
−h0miε

i
v − h0mie

∗
v. (12)

Theorem 5: Taking the control law in (12), all agent ve-

locities in the error system (8) asymptotically approach zero,

avoidance of collisions between the agents is ensured, and the

group final configuration minimizes all agent potentials.

Choosing the Lyapunov function J defined as in (9)

and calculating the generalized time derivative of J
along the solution of the error system (8), we have
˙̃
J ⊂ −co

{
εT

v [(Lσ + H0) ⊗ In] εv

}
. Following the analysis

method in Theorem 2, we can obtain the proof of Theorem

5. Due to space limitation, we omit the detailed proof.

Theorem 5 implies that all agent velocities in group (1)

asymptotically approach the velocity of the CoM by using

control law (10). But in what follows, we will show that in this

case the final velocity of the group may not asymptotically

approach the desired velocity. In fact, for some cases, all

agents can track the external signal, but for others, they

cannot. We will present two simple examples, which is

enough to illustrate the problem. By solving (11), we have

v∗(t) = v∗(t0)e
−h0(t−t0) + h0

∫ t

t0

e−h0(t−τ)v0(τ)dτ,

and moreover, we obtain that

x∗(t) = x∗(t0) +
v∗(t0)

h0

[
1 − e−h0(t−t0)

]
+h0

∫ t

t0

∫ s

t0

e−h0(s−τ)v0(τ)dτds.

Example 1: Suppose the desired velocity v0(t) be a con-

stant vector v0, then we get

v∗(t) = v0 + (v∗(t0) − v0) e−h0(t−t0).

It is obvious that the velocity of the CoM equals the desired

velocity for all time or it will exponentially converge to it

with a time constant of h0 s. Furthermore, by Theorem 5, we

obtain that the velocities of all agents asymptotically approach

the desired velocity. Moreover, we have

x∗(t)=x∗(t0)+ v0(t − t0)+
v∗(t0) − v0

h0

[
1 − e−h0(t−t0)

]
,

hence,

lim
t→∞

e∗p = x∗(t0) +
v∗(t0) − v0

h0
.

This implies that the position difference between the CoM

and the virtual leader will asymptotically approach a constant

vector. By the analysis above, we know that, when the desired

velocity is a constant vector, the desired stable flocking

motion can be obtained by using control law (10). More

information can be found in [5]–[6].

Example 2: Suppose n = 1 and v0(t) = αt, where α is a

positive constant, then we get

v∗(t)=αt+(v∗(t0)−αt0)e
−h0(t−t0)−

α

h0

[
1 − e−h0(t−t0)

]
.

It is easy to see that limt→∞ e∗v = − α
h0

. Moreover, we have

x∗(t) = x∗(t0) +
α

2

(
t2 − t20

)
−

α

h0
(t − t0)

+

(
v∗(t0) − αt0

h0
+

α

h2
0

)[
1 − e−h0(t−t0)

]
,

thus limt→∞ e∗p = −∞. This implies that the velocity of the

CoM cannot asymptotically approach the desired velocity, i.e.,

the CoM cannot track the external signal. Hence, in this case,

the desired stable flocking motion cannot be obtained by using

the control law in (10).

In what follows, we will demonstrate that in this case the

desired flocking motion still may not be achieved even when

the position information of the virtual leader is considered

in the design of the control law. The initial position of the

virtual leader is still chosen as the origin, then its position

vector is x0(t) =
∫ t

t0
v0(τ)dτ . We modify the control law ui

in (10) to

ui = −
∑
j∈Ni

∇xiV ij −
∑
j∈Ni

wij

(
vi − vj

)
−h0mi

(
vi − v0(t)

)
− r0mi

(
xi − x0(t)

)
, (13)

where r0 > 0 is a constant. By a similar calculation, we get

v̇∗ = −h0v
∗ + h0v

0(t) − r0x
∗ + r0x

0(t).
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We consider the error system (8) and choose the following

Lyapunov function:

J =
1

2

N∑
i=1

(
V

i
+ miε

iT
v εi

v + r0miε
iT
p εi

p

)
.

Then we have
˙̃
J ⊂ −co

{
εT
v [(Lσ + H0) ⊗ In] εv

}
. The rest

of the analysis is similar, and thus is omitted. Hence, on using

the control law in (13), the velocities of all agents in group

(1) still asymptotically approach the velocity of the CoM.

Next, we analyze the motion of the CoM. By the calculation

above, we have[
ẋ∗

v̇∗

]
=

[
0 In

−r0In −h0In

] [
x∗

v∗

]
+

[
0

h0v
0 + r0x

0

]
,

(14)

where v0 � v0(t) and x0 � x0(t). Let

A =

[
0 In

−r0In −h0In

]
=

[
0 1

−r0 −h0

]
⊗ In.

In the following, we will present an example to illustrate

the fact that the velocity of the CoM may not asymptotically

approach the desired value v0(t) by using control law (13).

Example 3: Suppose t0 = 0, n = 1, and v0(t) = eαh0t,

then x0(t) = 1
αh0

(eαh0t − 1), where α is a positive constant.

Thus the eigenvalues of matrix A is

λ1 =
−h0 +

√
h2

0 − 4r0

2
and λ2 =

−h0 −
√

h2
0 − 4r0

2
,

and they all are negative or have the negative real parts.

(i) If h2
0 − 4r0 = 0, then λ1 = λ2 and the eigenvectors

associated with them are (1, λ1)
T and (1, λ2)

T , respectively.

Let

P =

[
1 1
λ1 λ2

]
,

then,

P−1 =
1

λ2 − λ1

[
λ2 −1
−λ1 1

]
.

Thus A = Pdiag(λ1, λ2)P
−1. By solving (14), we obtain[

x∗

v∗

]
=

⎡⎣ αh2

0
+r0

αh0[(α2+α)h2

0
+r0]

eαh0t − 1
αh0

+ (∗)1
αh2

0
+r0

(α2+α)h2

0
+r0

eαh0t + (∗)2

⎤⎦ ,

where limt→∞(∗)1 = 0 and limt→∞(∗)2 = 0. Hence, we get

lim
t→∞

e∗v = lim
t→∞

[
−α2h2

0

(α2 + α)h2
0 + r0

eαh0t + (∗)2

]
= −∞,

and

lim
t→∞

e∗p = lim
t→∞

[
−αh0

(α2 + α)h2
0 + r0

eαh0t + (∗)1

]
= −∞.

(ii) If h2
0 − 4r0 = 0, then λ1 = λ2 = −h0

2 and the

eigenvectors associated with them are (1, λ1)
T and (1, 1 +

λ1)
T . Let

P =

[
1 1
λ1 1 + λ1

]
and J =

[
λ1 1
0 λ1

]
,

then P−1 =

[
1 + λ1 −1
−λ1 1

]
and A = PJP−1. By solving

(14), we have[
x∗

v∗

]
=

[
4α+1

αh0(2α+1)2 eαh0t − 1
αh0

+ (∗)3
4α+1

(2α+1)2 eαh0t + (∗)4

]
,

where limt→∞(∗)3 = 0 and limt→∞(∗)4 = 0. Hence, we get

lim
t→∞

e∗v = lim
t→∞

[
−4α2

(2α + 1)2
eαh0t + (∗)4

]
= −∞,

and

lim
t→∞

e∗p = lim
t→∞

[
−4α

h0(2α + 1)2
eαh0t + (∗)3

]
= −∞.

From the analysis above, we conclude that the CoM cannot

track the virtual leader and thus the desired flocking motion

cannot be achieved by using the control law in (13).

Remark 5: All the results in this paper can be analogously

extended to the case where there is velocity damping in the

environment. We can use the analysis method in [5]–[6] to

modify the corresponding control laws.

IV. NUMERICAL SIMULATIONS

In this section, we will present some numerical simulations

for system (1) in order to illustrate the theoretical results

obtained in the previous sections.

These simulations are performed with ten agents, labelled

with circles, moving in the plane, whose initial positions,

velocities and neighboring relations are set randomly, but

which satisfy: (1) all initial positions are set within a circle

of radius of R∗ = 10 m centered at the origin; (2) all initial

velocities are set with arbitrary directions and magnitudes

within the range of [0, 4] m/s; and (3) the initial neighboring

graph is connected. All agents have different masses and

they are set randomly in the range of (0,1] kg. Suppose the

desired velocity v0(t) = [sin(t), cos(t)]T and the initial time

t0 = 0 s. We run all simulations for 100 s and choose suitable

coordinate axes to show our simulation results.

Fig. 1 depicts the curves of the desired velocity along x-

axis and y-axis. Figs. 3–7 show the simulation results for the

same group, and the group has the same initial state shown in

Fig. 2 where the solid lines represent the neighboring relations

between agents and the dotted arrows represent the initial

velocities of all agents. However, different control laws are

taken in the form of (3) (in Fig. 3), (6) (in Fig. 4), (10) (in

Fig. 5), or (13) (in Fig. 6) with the explicit potential function

V ij(‖xij‖)=

{
0.05 ln ‖xij‖2 + 0.05

‖xij‖2 ,

0.05 ln R2 + 0.05
R2 ,

0<‖xij‖ ≤ R,
‖xij‖ > R.

The agent’s sensing range is chosen as R = 4 m. In Figs.

3–7, hi is generated randomly such that 0 ≤ hi ≤ 1 such that

there exists at least one nonzero constant. Take r0 = 1 in Fig.

6. The interaction coefficient wij equals cij if agent j is a

neighbor of agent i and is 0 otherwise, where the coefficient

cij is generated randomly such that 0 < cij = cji < 1 and

cii = 0 for all i, j = 1, . . . , 10. Fig. 3 presents the simulation
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results for the case where not all agents know the desired

velocity v0(t) but they all know the acceleration input a0(t),
and it explicitly demonstrates that the desired stable flocking

motion can be obtained though the neighboring graph varies

with time. When all agents know the desired velocity and

its acceleration input, they can still eventually move at the

desired velocity though the neighboring graph is not always

connected in the course of motion, as shown in Fig. 4. Figs.

5 and 6 show the simulation results in the case where all

agents do not know the acceleration input. It is easy to see

from them that the desired stable flocking motion cannot be

achieved by using the control laws in (10) and (13). Hence, it

is difficult for all agents to track a variable velocity v0(t) in

the case where they do not know its acceleration input a0(t).
Fig. 7 depicts the curves of the velocity errors between the

agents and the CoM along x-axis and y-axis in the simulations

shown in Figs. 5 and 6, respectively, and from it, it is easy to

see that the flocking motion can be obtained and the velocities

of all agents converge to the velocity of the CoM.
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Fig. 1. The desired velocity curves
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Fig. 3. (a) and (b) depict the curves of the velocity errors of all agents along
x-axis and y-axis, respectively, and (c) plots the velocity error between the
CoM and the desired velocity. (d) presents the final group configuration and
all agents’ velocities at t = 100s.
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Fig. 4. (a) and (b) depict the curves of the velocity errors of all agents along
x-axis and y-axis, respectively, and (c) plots the velocity error between the
CoM and the desired velocity. (d) presents the final group configuration and
all agents’ velocities at t = 100s.
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Fig. 5. (a) and (b) depict the curves of the velocity errors of all agents along
x-axis and y-axis, respectively, and (c) plots the velocity error between the
CoM and the desired velocity. (d) presents the final group configuration and
all agents’ velocities at t = 100s.
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Fig. 6. (a) and (b) depict the curves of the velocity errors of all agents along
x-axis and y-axis, respectively, and (c) plots the velocity error between the
CoM and the desired velocity. (d) presents the final group configuration and
all agents’ velocities at t = 100s.
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Fig. 7. (a)–(b) and (c)–(d) depict the curves of the velocity errors between
the agents and the CoM along x-axis and y-axis by using control laws (10)
and (13), respectively.

V. CONCLUSIONS

This paper studied the flocking problem of a group of

agents moving in an n-dimensional Euclidean space with a

dynamic virtual leader. To solve the problem, we proposed

a set of switching control laws, and the control law acting

on each agent relies on the state information of its neighbors

and the external signal. We proved that, in the case where the

acceleration input of the virtual leader is known, all agents

can follow the virtual leader, freedom from collisions between

the agents is ensured, the final tight formation minimizes

all agents potentials, and moreover, the velocity of the CoM

equals the desired velocity for all time or it will exponentially

converge to the desired velocity; in the case where the

acceleration input is unknown, the velocities of all agents

asymptotically approach the velocity of the CoM, however in

this case, the final velocity of the group may not be equal

to the desired value. Numerical simulation agrees very well

with the theoretical analysis.
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