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Abstract— The performance of embodied multi-agent systems
depends, in addition to the agent architectures of the employed
agents, on their physical characteristics (e.g., sensory range,
speed, etc.) and group properties (e.g., number of agents, types
of agents, etc.). Consequently, it is difficult to evaluate the
performance of a multi-agent system based on the performance
of an agent architecture alone, even in homogeneous teams.

In this paper, we propose a method for analyzing the
performance of multi-agent systems based on the notion of
“performance-cost-tradeoff,” which attempts to determine the
relations among different cost-dimensions by performing a
performance sampling of these dimensions and comparing them
relative to their associated costs. Specifically, we investigate the
performance-cost tradeoffs of four candidate architectures for
a multi-agent territory exploration task in which a group of
agents is required to visit a set of checkpoints randomly placed
in an environment in the shortest time possible. Performance
tradeoffs between three dimensions (sensory range, group size,
and prediction) are then used to illustrate the cost-benefit
analyses performed to determine the best agent configurations
for different practical settings.

I. INTRODUCTION

The performance of an agent architecture critically de-
pends on the computational resources that an agent has
available for implementing an agent function [11], which
specifies the mapping from sequences of percepts to actions
of the agents. A solution that is optimal for a Turing machine
might not be implementable in a given architecture due to
memory constraints; only “sub-optimal” solutions can be
feasibly achieved. In embodied agents, additional limiting
factors come into play that could restrict the performance of
the agent such as the cost of obtaining a particular percept
(e.g., the cost of a having a particular sensor that can provide
the information necessary to produce a percept or the cost of
having a sufficiently long sensory range to be able to have
the percept at a particular time). Orthogonally, in multi-agent
systems the performance of the whole system might depend,
in addition to the computational resources of each individual
agent, on the number of participating agents. Most web-
based search agents, for example, can retrieve information
more quickly given that they can search multiple sites in
parallel. Most importantly, in embodied multi-agent systems
(i.e., multi-robot systems) the system performance will be a
function of the computational resources and physical char-

acteristics of each agent, as well as the properties pertaining
to the team as a whole. A team of robots for planetary
exploration, for example, will, among other things, be subject
to weight constraints (i.e., the sum of the weight of all
robots), given that it needs to be transported to the remote
planet via a rocket. Consequently, the question arises of how
to evaluate the performance of a multi-agent system in terms
of individual agent architectures when other factors might
crucially affect its performance?

In this paper, we present a method of analyzing the
performance of multi-agent systems based on the notion of
“performance-cost tradeoff,” which attempts to determine the
relations among different cost dimensions by conducting a
performance sampling of these dimensions and comparing
them relative to their associated costs. Specifically, we in-
vestigate the performance-cost tradeoffs of four candidate
architectures for a multi-agent territory exploration task in
which a group of agents is required to visit a set of check-
points randomly placed in an environment in the shortest
time possible. Reactive and deliberative architectures are
introduced and serve as bases for exploring performance
tradeoffs along three dimensions. The first dimension is
physical: extension of sensory range. Increasing the agent’s
ability to detect remote checkpoints is an effective way of
improving performance without incurring costly computation
and communication costs. However, as the sensory range
increases, the cost also increases, hence at some point
increasing the range will not be worth the additional cost.
The second dimension is social: group size. In many cases,
increasing the number of agents working on a problem will
increase performance (although there will be a point at
which increasing group size fails to increase, and may even
decrease, performance). Once again, however, increasing the
number of agents increases cost, and eventually will not
be beneficial. The third dimension is architectural: modi-
fications to the architecture to facilitate agent coordination.
The specific modification examined here employs a simple
predictive mechanism to allow agents to select actions that
are less likely to be in conflict with other agents’ actions.
This reduces the amount of redundant work performed by
individual agents, making their overall efficiency on the
group task better (i.e., reducing the time it takes the group to
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complete the task). We will show that the relationship among
these three dimensions in terms of the performance of the
agent system is not apriori obvious and that samplings of
the performance space given by the three dimensions via
extensive simulation studies is a useful method to obtain
criteria for deciding which configuration to use in a given
practical setting.

The remainder of the paper proceeds as follows: we
first define the task that forms the context in which the
architectures will be evaluated. We then describe the base
architectures as well as the architectural enhancements tested
in our experiments. The experimental design and setup are
given, and results are presented. This is followed by an
example of the evaluation of the architectures in light of the
experimental results using hypothetical values for component
costs. Finally, we conclude with some discussion of the
implications of this research.

II. METHODS

The multi-agent territory exploration (MATE) task re-
quires a group of A agents to visit C checkpoints in an
environment while avoiding B obstacles. Agents and check-
points are randomly placed, and the goal is to minimize the
total time required to visit all C checkpoints, rather than to
maximize the number of checkpoints visited by any single
agent. Many variants of MATE tasks have been investigated
in the literature [8], [5], [6], [15], [2]. E.g., the planetary
scenario mentioned above is an instance where a number
of robots is dropped onto another planet for the purpose
of visiting a set of geologically interesting rock samples.
The robots would need to visit their targets as quickly as
possible in order to complete their mission before running
out of fuel. Furthermore, landing robots on distant planets is
an inexact science, with locations specifiable only in the most
general terms, and catastrophic failures a distinct possibility.
It is, therefore, impossible to create a static plan ahead of
time, ready to execute upon landing. Requiring the rovers
to compute the optimal solution upon landing is impractical
(or impossible), and the conditions may change during the
course of the task (e.g., a rover may fail, leaving the others
to complete its mission).

While the optimal solution in a MATE task can be
determined by exhaustively searching all assignments of
checkpoints to agents and all visitation orders within each
assignment, it is typically computationally intractable (given
that the problem of finding a solution in MATE tasks is NP-
complete).1 Furthermore, such an approach is a static, offline
solution; if the environment is subject to change during the
course of the task, the expense of recomputing the optimal
solution must be incurred again.

1Note that MATE is similar in some ways to the multi-Traveling Salesman
Problems (MTSP), in which some member of a sales team is required to
visit each city. While good approximations exist for a particular instance
of MTSP, the Delivery Scheduling Problem [7], [4], [17], [1], [9], [16],
MTSP variants require agents to return to their initial positions, which is
not a requirement of MATE. Hence, none of the MTSP approximations is
an exact fit for the MATE task.

What is needed is a flexible, online solution that inex-
pensively produces good (even if not optimal) behavior at
a low cost. Simple reactive agents, for example, can be
quite successful in MATE tasks at a very low cost by
employing a straightforward greedy strategy: always visit the
closest perceivable checkpoint, otherwise perform a random
walk until a checkpoint is perceived. This strategy can be
improved upon by adding deliberative capacities that allow
the agent to plan efficient routes around obstacles and to
remember the locations of previously sensed checkpoints.
The added performance for deliberative agents may be worth
the additional cost in some environments.

A. Relative Performance

We begin the analysis of agent performance with a com-
parison of absolute performance in Section II-C. We start
with a base agent model, which is modified to include some
new feature F . The performance of agents with and with-
out F are then compared. However, absolute performance
provides only the starting point for any full performance
analysis. The costs of the compared systems are factored
in to acquire relative performance. When comparing results
(agents with F (AF+ ) vs. agents without F (AF− )), there
are three possible outcomes:

1) Perfabs(AF+) ≤ Perfabs(AF−). In this case, we
know that agents with F have worse relative per-
formance, because there will always be some cost
associated with any feature. If there is no absolute
performance benefit to offset the cost, there can be
no relative performance benefit.

2) Perfabs(AF+) > Perfabs(AF−). In this case, there
is the possibility of a relative performance benefit to
F . If such a result were found, it would be necessary
to undertake a systematic analysis of the cost of the
new feature in order to determine whether there is a
relative performance advantage to F .

3) Perfabs(AF+) � Perfabs(AF−). In this case, it is
very likely that F does provide a relative performance
benefit, because it is very likely that the large benefits
will outweigh the costs.

Of these three cases, the first and the third allow one to
make a judgement about relative performance based only
on absolute performance. The second case is the interesting
one, because it is here that cost must be examined. At one
extreme of this interval, there is only a small performance
advantage, making a relative performance advantage very
unlikely. At the other extreme, it is becoming more likely
that a relative performance advantage exists, as the benefits
begin to dominate the costs. In the middle, there are likely
to be some cases in which there is no clear answer (e.g., it
may be beneficial for one set of inputs but not for another).

In multi-agent exploration tasks, costs can vary along
multiple dimensions. The physical cost of the multi-agent
system as a whole is one. This cost will be affected largely
by the number of agents in the system, and may manifest
itself in many ways. If, for example, agents are expected
to return to a “home base” for recharging, the capacity of
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the charging station component of the system will need to
increase as group size increases. In the case of extraplanetary
landers, a prominent concern will be the weight of the multi-
agent system as a whole, because the transport vehicle will
need to scale its capacity with any increase in group size. We
examine the impact of group size in the experiments below.

The physical costs of individual agent systems will also
be a factor. Individual weight is a factor, with heavier agents
requiring greater energy for maneuvering. Similarly for agent
speed: faster agents require not only more energy to move,
but also potentially more costly components to allow the
higher speed, all else being equal. Long sensory range can
help to achieve high absolute performance but can be very
costly, as signals tend to drop in intensity at a quadratic rate,
requiring quadratic cost to maintain a constant signal level.
We examine the effect of changing sensory range below.

Finally, there is the cost associated with the architecture
(i.e., control costs). Complexity in the control system can be
traded for better absolute performance. In some situations,
simple reactive architectures will perform well, while in
others the ability to remember and plan are a virtual neces-
sity. Increases in control system complexity are accompanied
by increases in energy use, heat production, and in many
cases weight, as more processing capacity may be needed.
We examine two architectural enhancements of different
complexity below.

The technique of comparing relative performance (i.e.,
performance with cost factored in) applies not only to MATE
and MATE-like tasks, but to virtually any analysis of agent
performance where a decision must be made among several
parameters or components that will affect performance. For
example, the designer of a software agent may need to
decide between multiple search methods. An exhaustive
search will provide the optimal solution, but at a high cost
in terms of complexity. There are some cases in which some
heuristic search method can provide sufficiently good results
at significantly reduced cost.

B. Reactive and Deliberative Agent Architectures

We employ two basic architectures in this study. The first
is a reactive architecture that maps perceptions onto actions
directly. All reactive agents process sensory information and
produce behavioral responses using a motor schema-based
approach [3]. Let Ent = {c, b, a} be an index set of the three
types of objects: checkpoints, obstacles and agents. For each
object type Ent, a force vector Ft is computed, which is the
sum, scaled by 1/|v|2, of all vectors v from the agent to the
objects of type t within the respective sensory range, where
|v| is the length of vector v. These perceptual schemas are
mapped into motor space by the transformation function

T (x) =
∑

t∈Ent

gt · Ft(x) (1)

where the gt are the respective gain values of the perceptual
schemes. The gain values simply scale the effect of sensory
input, providing a means by which to prioritize certain inputs

(e.g., if visiting checkpoints is especially important, the
checkpoint gain value could be higher than the agent gain
value, so that sensing a checkpoint has a greater impact on
the direction chosen than sensing other agents). These gains
are initialized to values determined to be reasonable via a
series of experiments, and are kept constant throughout the
life of a reactive agent.

A collision detection mechanism invokes an agent’s retreat
reflex whenever it detects an impending collision with an
obstacle or another agent (all collisions are fatal). The reflex
works by inserting a very strong vector leading away from
the site of the near collision. This vector is included for a
random number of cycles between 5 and 15, and has the
effect of moving the agent directly away from the object or
agent. The reflex works well in most cases, although it is
possible to fail in some situations (e.g., it may be possible
to retreat into another obstacle in some circumstances).

Finally, to prevent agents from missing the checkpoints
altogether and diverging indefinitely, two additional behav-
iors are included. The first is a random walk mechanism that
changes an agent’s heading when it has not recently sensed
any checkpoints. The second has agents “bounce off” the
edge of the environment as if it were a wall. These simple
mechanisms greatly reduce the number of task failures.

Reactive agents always behave in the same way, given
that their gain values are constants: their positive gc makes
them employ a greedy visitation strategy (most of the time a
“visit nearest” strategy [14]), whereas their negative gb and
ga values make them avoid obstacles and other agents. The
effect of ga on the reactive agents’ behavior is to establish
implicitly a “ranking” of who gets to visit a checkpoint
first if multiple agents attempt to visit the same checkpoint:
whoever is closest will be more strongly attracted to the
checkpoint than repelled by the other agents, and hence be
able to get to visit the checkpoint, whereas the other agents
will be repelled more by the presence of agents than they
are attracted to the checkpoint, and hence will move away.
In a sense, ga implements a simple “coordination” strategy,
if only one that is “negatively” determined.

The second basic architecture employed in this study is de-
liberative. Deliberative agents have several components that
allow them to manipulate representations of checkpoints in
the environment. Most importantly they have a route planner
that can determine which checkpoint is closest to them and
how they can best get to it. It is first and foremost this ability
of being able to represent entities in the environment that
opens up further possibilities such as storing and retrieving
representations, using them in planning and plan execution,
etc. None of these possibilities is available to reactive agents,
which have access to sensed objects only in a holistic manner
(via agglomerated force vectors).

The planner of the deliberative agents (based on a sim-
plified version of the A∗

ε algorithm [10]) is given a list of
checkpoints known to the agent (i.e., stored in the agent’s
memory), and returns a plan—a sequence of headings and
distances representing a clear path to the nearest reachable
checkpoint. The plan is then passed to a plan execution
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mechanism, which ensures that plan steps are executed.
When other agents cross a deliberative agent’s route and
the reflex is triggered, “re-planning” is initiated, and the
agent will continue by executing the new plan. Re-planning
is also performed if the checkpoint chosen by the agent has
been visited by another agent in the meantime. A further
difference between deliberative and reactive agents is that,
while the schema-based mechanism of the reactive agents
will not pick out the most direct route to a checkpoint
(because of the influence of other checkpoints and agents),
and may even move away from the nearest goal checkpoint
(because of a cluster of objects further away in the opposite
direction, or a cluster of agents in the direction of the
nearest checkpoint), deliberative agents will find the nearest
checkpoint and plan a route directly to it (while avoiding
other agents and obstacles), thus saving time and energy.
In the event that there are no checkpoints to be visited in
a deliberative agent’s sensory range or in its memory, it
reverts to reactive behavior, foraging for checkpoints using
the random walk mechanism described above.

C. Architectural Enhancements

We enhanced the basic architectures in three ways, one
a physical modification, one a social modification, and the
other a control-system modification. The first enhancement
is simply to extend the sensory range R. All agents share
the same sensor configuration, including smell, vision, and
sonar. Reactive agents employ smell to create the vector for
checkpoints to be visited and sonar to create the agent and
obstacle vectors. Note that smell and sonar do not provide the
location of any individual agent, but rather contribute to the
summed influence of all checkpoints (in the case of smell).
Normal reactive agents do not use vision, but the prediction
extension described below uses it to locate individual agents
and checkpoints. Deliberative agents use smell and sonar in
the same way reactive agents do, although in most cases the
deliberative layer suppresses their effects in order to execute
a plan; only when there is no checkpoint in sensory range
do the reactive mechanisms take effect. Vision is used by
deliberative agents to locate individual checkpoints, agents,
and obstacles in order to store them in memory and generate
plans for visiting checkpoints.

Extending the sensory range of the agents is an intuitive
way to improve their performance. For one thing, the more
information an agent has about its surroundings, the better
its decisions can be. Furthermore, with very small sensory
range, it will often be the case that agents simply do not
perceive any checkpoints, making it impossible for them to
target any checkpoint for visitation and requiring them to re-
vert to the random walk behavior described above. However,
sensory range increases with diminishing returns, especially
as the range approaches the size of the environment, as later
discussion will demonstrate.

The second enhancement is an increase in group size. This
is another intuitive way to increase performance. Additional
agents will increase the likelihood that some agent is near any
individual checkpoint, reducing on average the time it takes

for the checkpoint to be located. This increase in parallelism
comes at a cost, however, and also will provide diminishing
returns when group size is high.

The third enhancement we explore here is a primitive
prediction mechanism. The goal of the mechanism is to
prevent duplication of effort by trying to avoid more than
one agent attempting to visit a single checkpoint. The
prediction mechanism functions as a perceptual filter that
makes “educated guesses” as to which checkpoints it would
be fruitless to pursue and excluding those from influencing
the agent’s behavior. For each agent in the current agent’s
visual range, the closest checkpoint to that agent is located.
If that checkpoint is closer to the other agent than to the
current agent, it is excluded on the assumption that the other
agent will attempt to visit it.

What is interesting about this prediction mechanism is that
it directly benefits the individual agent to use it, however, to
the extent that it works, it also contributes to the group’s
goal of visiting all checkpoints in the shortest possible time.
The benefit to the individual is clear: if another agent is
guaranteed to visit a checkpoint before current agent arrives,
selecting that checkpoint as a target will lead to expense
without the possibility of reward. Thus, it is in the best
interest of the agent to ignore that checkpoint anyway.
The emergent behavior produced is an implicit form of
cooperation (i.e., the effect of the prediction mechanism is
as though the agents are cooperating, even though from their
perspective, they are operating in their own self-interest).

Adding the prediction mechanism to the base agent
types results in four agent types: normal reactive, reactive-
predictive, normal deliberative, and deliberative-predictive.
Reactive-predictive agents prevent checkpoints identified as
potentially targeted by other agents from being added to
their perceptual schemas. Deliberative-predictive agents do
not add those checkpoints to memory, preventing them from
being identified as goals for the planner.

Note that this simple prediction is far from perfect. It will
not always filter the checkpoints targeted by other agents.
For example, if two other agents share the same closest
checkpoint, one of them will (using the same prediction
mechanism) filter out that checkpoint and pursue another
checkpoint. Also, the mechanism may correctly filter out
the closest checkpoint to another agent, but will not notice
that the checkpoint the other agent will pursue after that
should also be filtered because it, too, is closer to the other
agent than to the current agent. Situations such as these will
lead to duplication of effort even in predictive agents, but as
we show below, even this imperfect prediction can improve
performance substantially. More sophisticated prediction is,
of course, possible, but would be significantly more costly
in terms of computational resources.

III. EXPERIMENTS AND RESULTS

In order to gauge whether increased sensory range or
the prediction mechanism would improve performance (i.e.,
decrease the time to completion) for the MATE task, we
conducted a series of experiments in simulation. The artificial
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Fig. 1. Average performance of two- to five-agent experiments in five-obstacle environments for sensory ranges from 100 to 800.

life simulator SWAGES under development in our lab2 was
used as a platform in which implementations of the four
architecture types (Reactive, Reactive-Predictive, Delibera-
tive, and Deliberative-Predictive) were tested. The world in
which the agents operate is 800 by 800, and is bounded.
The number of agents (A) was varied from 2 to 53. The
MATE task was defined for ten checkpoints (C = 10),
and was conducted in environments containing five obstacles
(B = 5). Finally, the agents’ sensory range (R) was varied
from 100 to 800, with a step of 50.

Each experiment consists of 38 experimental runs using
different randomly generated initial conditions. Each set of
38 initial placements of agents and checkpoints is used for all
experiments with identical A, and all obstacle environments
share the same positions for obstacles. This allows us to
compare directly between agent types and sensory ranges.
The results reported here are the average cycles to completion
of each experiment set for each architectural configuration.
In addition to these results, the graphs in Figure 1 depict the
performance of the optimal solution for that group size to
serve as an upper bound on performance. The performance
of the optimal solution was calculated separately for each set

2SWAGES is an agent-based simulation environment built with the
SIMAGENT toolkit, freely available at http://www.nd.edu/˜airolab/swages
and http://www.cs.bham.ac.uk/research/poplog/newkit.tar.gz, respec-
tively. It consists of a continuous, potentially unlimited two-dimensional
surface populated with various kinds of spatially extended objects, in
particular, different kinds of agents and resources they need as well as
various kinds of static and moving obstacles.

3While we could have examined larger groups, group performance already
begins to converge at A = 5 for MATE in these environments, making larger
groups uninformative. For other tasks or environmental conditions, larger
groups may be more appropriate.

of initial conditions via an exhaustive search of all possible
assignments of checkpoints to agents and all permutations
of order for each assignment. Unlimited sensory range is
assumed in the optimal solution, making it the best possible
performance on the task [13].

Figure 1 represents performance for 2 to 5 agents. Increas-
ing sensory range increases performance quickly at first, then
tapers off between 300 and 450, at which point increased
sensory ranges do not contribute to better performance.
All agent types see their performance rise and then level
off, but at different sensory ranges. Performance of non-
predictive types tends to level off at lower sensory range
than performance of predictive types. This is an indication
that predictive agents are better able to take advantage of
extended sensory ranges. Alternatively, it could be argued
that the other agent types utilize additional sensory range
more efficiently, reaching their leveling-off point earlier than
predictive agents. For non-predictive agent types, deliberative
agents perform consistently better than reactive agents. This
is a result of deliberative agents having the ability to plan
efficient routes around obstacles, rather than having to take
indirect routes around them as the reactive agents are forced
to do by their schema-based approach. However, with the
addition of the prediction mechanism, this difference is
dependent on other factors. In two-agent groups (Figure 1,
upper left), reactive-predictive agents approach, but never
achieve, deliberative-predictive agent performance. For group
sizes of 3, 4, and 5, however (remainder of Figure 1),
reactive-predictive agents do achieve performance similar
to deliberative-predictive agents, at higher sensory ranges.
Moreover, as group size increases, the sensory range at which
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the two kinds converge decreases.
To confirm the results depicted in Figure 1, a four-

way 2x2x15x4 ANOVA was conducted on the dataset
(not the averages), with agent kind (reactive and deliber-
ative), prediction (without and with), sensory range (100
to 800), and group size (2 to 5) as dependent vari-
ables, and cycles to completion as the independent vari-
able. Agent kind (F (1, 8880) = 132.5605, p < 0.001),
prediction (F (1, 8880) = 149.0721, p < 0.001), sensory
range (F (14, 8880) = 69.0042, p < 0.001), and group size
(F (3, 8880) = 532.6412, p < 0.001) were all found to
be highly significant main effects for cycles to completion.
This indicates that each of the four independent variables
has a significant effect on performance; each of these is
to be expected. There were also highly significant two-
way interactions between agent kind and sensory range
(F (14, 8880) = 4.5786, p < 0.001), confirming that the
significant performance differences between agent kinds are
found at higher sensory ranges, between prediction and
sensory range (F (14, 8880) = 4.0314, p < 0.001), con-
firming that performance differences between non-predictive
and predictive agents are not significant at lower sensory
ranges (i.e., when agents are less able to perceive other
agents), between agent kind and group size (F (3, 8880) =
9.9915, p < 0.001), confirming that performance differ-
ences between reactive and deliberative agents are most pro-
nounced in smaller groups, and between sensory range and
group size (F (42, 8880) = 20.0382, p < 0.001), confirming
that smaller groups benefit more from increased sensory
range, at least when sensory range is low. There were no
significant three-way or four-way interactions.

It is interesting that reactive-predictive agents outperform
non-predictive deliberative agents, performing virtually iden-
tically to deliberative-predictive agents with sufficiently high
sensory ranges. Also of note is the fact that performance
of normal reactive agents can actually decrease at higher
sensory ranges. This is attributable to the reactive agents’
schema-based system: when they detect a remote checkpoint,
they are attracted to it even if the vector is dominated by a
closer checkpoint. This leads to an indirect trajectory to the
near checkpoint. Reactive-predictive agents are less (but still
somewhat) susceptible to this effect, as they will often ignore
remote checkpoints due their proximity to other agents.

IV. DETERMINING THE OPTIMAL CONFIGURATION

Finding the best configuration for the multi-agent sys-
tem is essentially a multi-dimensional optimization problem,
possibly with constraints (e.g., minimum absolute perfor-
mance). We use the absolute performance results and cost
assessments of each dimension to demonstrate the method
of determining the best performance tradeoff between the
control (architecture), physical (sensory range), and social
(group size) dimensions. Note that the cost assessments
used here are for expository purposes only; they are not
intended to be accurate reflections of cost in any real system.
Furthermore, the results of the following analysis are not
intended to be taken as showing that one configuration is

conclusively superior to all others; accurate cost assessments
would be necessary to support such an empirical claim,
unless the cost or performance differences were so large
that the tradeoffs were obvious (e.g., when one agent con-
figuration fails to achieve a minimum performance require-
ment). Even with accurate cost estimates, these analyses
may be applicable only to the specific implementations
under investigation (as such accurate cost figures are not
possible for generic implementations of an architecture). The
analysis here serves two purposes. First, it demonstrates the
importance of including cost in performance analysis. When
competing agents are evaluated based only on their absolute
performance, important considerations are ignored. Second,
it demonstrates a method of taking cost into account given
(previously determined) cost parameters.

Before beginning the performance-cost analysis, it is
sometimes useful to determine whether a high-level view of
the cost and performance values for the candidate architec-
tures can eliminate one or more options. In terms of compu-
tational (control) complexity, an ordering between the four
agent types examined here looks like this: normal reactive
agents have the lowest complexity (O(|A| + |B| + |C|), the
complexity of summing the vectors of all entities), followed
by reactive-predictive agents (O(|A| · |C|), the complexity
of the predictive mechanism, which must examine each
checkpoint for each agent in the worst case). Deliberative
agents have by far the highest complexity as a result of the
exponential cost of the A∗

ε planner.
More complex computations will require more complex

computational architectures, in turn leading to higher struc-
tural costs (i.e., costs associated with possessing and main-
taining an architectural component). Given the significant
difference in structural cost between deliberative and re-
active architectures and the relatively similar performance
on the MATE task (i.e., there is no significant difference
in performance between predictive deliberative and reactive
agent kinds for this task, and only a small, albeit significant,
performance advantage for non-predictive deliberative vs.
non-predictive reactive relative to the exponential cost of
the deliberative planner), it will be reasonable in most cases
to select a reactive agent architecture for the MATE task
instead of a deliberative architecture.4 Furthermore, reactive
and reactive-predictive architectures are easy to implement
on robots in the laboratory. The following discussion will,
therefore, focus on the tradeoffs between reactive agents of
both kinds with varying sensory ranges.

Determining the best architecture for a task will involve
multiple considerations, including examining the perfor-
mance to cost ratio for each architecture under consideration.
For reactive and reactive-predictive architectures, given that
they share the same base architecture, the structural cost will
include some base cost b that is common to all configurations
and includes the cost of some minimum sensory range. The

4However, the MATE task as defined here is very simple; there could
be ecological niches in which more complex (e.g., deliberative) architec-
tures will outperform their simpler opponents sufficiently to warrant their
increased cost.
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Fig. 2. Upper left: Absolute performance space (no cost). Upper right: Relative performance space when prediction cost is 1.5. Lower left: Relative
performance space when prediction cost is 7.5. Lower right: Relative performance space when prediction cost is 7.5, constrained to 1000 cycles or less.
Blue (darker) are normal reactive, green (lighter) are reactive-predictive.

cost of additional architectural components or enhancements
can be expressed in terms of the base cost.

For example, the cost of increasing sensory range by some
distance rangeinc could be expressed as some fraction of the
base cost (e.g., b

r , where r is some constant representing the
relationship between the base cost and sensor cost). Signal
intensity drops quadratically with distance ( 1

dist2 ), requiring
a quadratic increase in cost to maintain a constant signal
level, so the overall cost of increasing sensory range could
be expressed as

Csensors(rangeinc) =
(

b
r · rangeinc

)2
,

where rangeinc = rangetotal−rangebase (i.e., the increase
over the base sensory range). Thus, increasing the sensory
range of an agent beyond its base range will increase its
structural cost as a function of the amount of increase. The
cost of the class of reactive architectures with various sensory
ranges is then

Creactive(rangeinc) = b +
(

b
r · rangeinc

)2
,

Adding the predictive mechanism to an architecture will
also increase the structural cost. However, in this case, the
additional cost is a constant amount, say, b · p (where p is
some constant). That makes the cost of reactive-predictive
agents b+b ·p. Coupling that with the potential for extended
sensory ranges yields a structural cost function of

Creactive−predictive(rangeinc) =
b + b · p +

(
b
r · rangeinc

)2
,

Consider, for example, the case in which b = 15, r = 7.5,
and p = 1

10 . Furthermore, assume that sensory range in-
creases by increments of 50, as in the experiments described
above, and that the cost of the initial range of 100 is included

in b. This makes the cost function for normal reactive agents
Creactive(rangetotal) = 15 +

(
15
7.5 · (rangetotal − 100)

)2
.

Similarly, reactive-predictive agents will incur structural
costs of Creactive−predictive(rangetotal) = 15 + 15

10 +(
15
7.5 · (rangetotal − 100)

)2
.

Figure 2 (upper right) plots the performance-cost ratios
for reactive and reactive-predictive agents in the experiments
described above using these assumed costs. In each case, the
cost is multiplied by the number of agents working on the
task. The scaled performance space can be used to determine
the best sensory range for a given group size of a particular
agent type (e.g., for normal reactive agents, the peak is at
sensory range 150 for group size 2), or the best combination
of group size and sensory range for that kind (4 and 150
for normal reactive agents). Determining the best overall
configuration, including sensory range, group size, and agent
type (reactive or reactive-predictive) is often a matter simply
of finding the overall peak of the performance space. For
these cost values, the best performance-cost ratio is found
in reactive-predictive agents with groups of size 5 and
sensory range 150. Compare this with the minimum cycles
to completion in the unscaled performance space, which is
found in reactive-predictive agents with group size of 5 and
sensory range of 500. Absolute performance at A = 5,
R = 500 is 401.026, while at A = 5, R = 150 it is 1254.76.
This is a substantial performance difference, but the added
cost of increasing the sensory range by 350 is sufficient to
give shorter range a relative performance advantage. Normal
reactive agents have an absolute performance of 1733.71 at
A = 5, R = 150; the absolute performance advantage of
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reactive-predictive agents is sufficient to overcome the added
cost of the prediction mechanism.

As noted, the cost values used in the above example are
fairly arbitrary, and not meant as an accurate indication of
the relative costs of the respective components, but rather
to illustrate the importance of including cost in performance
analysis. Different cost assumptions will change the subse-
quent analysis. If, for example, the cost of the prediction
mechanism is changed to p = 1

2 (while the rest of the
constants remain the same), the picture changes substantially
(Figure 2, lower left). The additional cost of prediction is
now sufficient to decrease the best predictive configuration’s
relative performance, which is still found at A = 5, R = 150,
such that there are eleven non-predictive configurations with
higher relative performance, the best of which is found at
A = 4, R = 150.

In some cases, selecting the best performance-cost ratio
will be too simplistic; there may be considerations other
than cost that must be taken into account. So, while in the
previous example non-predictive agents in groups of size
4 with sensory range of 150 had the best overall ratio, if
we add the constraint that the task must complete in 1000
cycles or fewer, the outcome changes again. Figure 2 (lower
right) depicts the remaining performance space, with non-
qualifying points removed.

This type of analysis allows designers to choose the best
combination of architectural features for a given task, making
explicit the fact that raw performance does not tell the whole
story, but cost must also be a consideration when selecting
architectures and architectural components. Removing the
prediction component, to use the example explored here,
will lead to reduced cost, but the accompanying performance
decrease may reduce the performance-cost ratio too much,
making non-predictive agents worse than agents maintaining
the component. Similarly, increasing or decreasing sensory
range or group size will lead to changed performance-cost
ratios, again potentially shifting the peak in the scaled perfor-
mance space. Constraints (such as a minimum performance
requirement) can be applied first, and then a performance
space can be computed and the best configuration chosen.

V. CONCLUSION

In this paper we demonstrate the importance of includ-
ing cost in agent evaluations and describe a method for
comparing architectures using performance-cost analysis.
To begin, we introduce two agent architectures for MATE
tasks, reactive and deliberative, and two simple extensions
to them. Predictably, increasing the sensory range yields
increased performance in MATE, up to a point. Implicit
cooperation emerges via the use of the primitive prediction
mechanism tested here, and while its performance is not opti-
mal, it increases performance significantly, allowing reactive-
predictive agents to outperform nonpredictive deliberative
agents and to perform on a par with deliberative-predictive
agents. This is true even in environments containing obsta-
cles, which previous research indicated favored deliberative
agents in terms of raw performance [12].

To account for architectural costs, we also conducted
multiple performance-cost analyses of reactive and reactive-
predictive agents using hypothetical values for architectural
parameter costs. The simulation results reported in this paper
demonstrate that there is no “black and white” answer
to whether having prediction is better than not having it,
or whether greater sensory range is more beneficial. For
some sensory ranges, nonpredictive control is better than
predictive control and vice versa (Figure 2. This illustration
demonstrates the utility of such analyses, and points to a
need for a more systematic formal treatment of cost that will
allow designers to compare divergent architectures. Without
the inclusion of cost assumptions, it is impossible to evaluate
multi-agent architectures based on absolute performance
alone.
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