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Abstract— We propose an evolving ecosystem approach to
evolving complex agent behaviour based on the principle of natu-
ral selection. The agents start with very limited functional design
and morphology and neural controllers are concurrently evolved
as functional wholes. The agents are ‘grounded’ in an increasingly
complex environment by a complex model metabolism and inter-
action dynamics. Furthermore, we introduce a novel criterion for
evaluating differential reproductive success aimed at maximising
evolutionary freedom. We also present first experimental results
suggesting that this approach may be conducive to widening the
scope of artificial evolution for the generation of agents exhibiting
non-trivial behaviours in a complex ecosystem.

I. INTRODUCTION

Attempts to apply methods of evolutionary computation to
create artificial agents with non-trivial behavioural complexity
often run into several problems. One major problem when
using classical genetic algorithms arises from the fact that they
require a fitness function to guide them to the desired results.
However, as has frequently been pointed out [3], in many
contexts it is notoriously difficult to design such a function.
Especially if a solution is hard to evolve, it is crucial that
the fitness function contains not only measures that assess
the desired evolutionary outcome, but to permit successful
evolution, it must also provide a meaningful gradient along the
way. This usually requires a lot of experience and tweaking
on the part of the experimenter and may in some cases well
be as complex as solving the task itself. Several ideas [5],
[4] have been brought forward, to address this bootstrapping
problem of evolving complex agent behaviour. An obvious
way is to relocate the starting point of evolution by inserting
certain knowledge into the system. For instance, this can be
done by ’hard-wiring’ some basic behaviours [1], or otherwise
structurally or functionally predisposing the agents in some
advantageous way.

Another proposed method of sidestepping the problem is to aid
the evolutionary process by incrementally raising the difficulty
by partitioning the evolutionary task into manageable sub-
tasks. Once these sub-tasks have been isolated, evolution is
either iterated with a hierarchy of fitness functions or the
complexity of the environment is incrementally increased. This
method called incremental evolution was shown by [5] to
perform well if a successful partition can be found. However,
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[6] suggest that this may not generally be the case.

To tackle the bootstrapping problem, the aforementioned meth-
ods share the policy that if a problem is 'too big’ for evolu-
tionary computational methods to solve, it is made smaller by
adding knowledge to the system. While this may certainly lead
to the evolution of more complex agent behaviour and thereby
better solve a given problem, it does not necessarily render the
evolutionary process itself more powerful.

In artificial life, the focus of study can be shifted from the
desire to reach a predefined goal to the question of how natural
evolution actually avoids these problems. One step in this
direction is to get rid of the fitness function. Several models
have been proposed (e.g. see [1], [2], [4], [7]) that stress the
need to model organisms and environment as one ecosystem
and move from explicit fitness functions to implicit ways to
assess reproductive success. However, for varying reasons,
most of the conducted experiments have remained intention-
ally simplistic with respect to overall system dynamics.

We believe that an additional way to smooth the evolutionary
gradient is to concurrently evolve all constituents of the agents
as a functional whole. The asymmetry in complexity that may
result from introducing knowledge in only part of the system
may well be another cause for difficulties. Therefore, what
may help the evolutionary process if the goal as well as the
route to the goal are known, may hinder evolution if this is
not the case. Our aim is to test the feasibility of an evolving
ecosystem approach if very little ‘innate intelligence’ [1] is
pre-specified and the system dynamics allow for highly non-
trivial adaptations. We here propose a model for an artificial
evolution of complete virtual organisms which may be more
conducive for generating non-trivial results.

II. A MODEL FOR AN EVOLVING ECOSYSTEM

Our model implements a classic foraging scenario, where
an agent’s success is, to some extent, dependent on its ability
to acquire and efficiently manage a certain resource which we
call energy. Energy is an exhaustible but renewable resource
and all system properties and their dynamics are in some way
connected to it. The flux of energy through the system is the
driving force of evolution. The dependencies between energy
and the elements of the system have been modelled to allow
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for complex interactions and diverse adaptations that can
hopefully allow the generation of diverse survival strategies.
Our model of an evolving ecosystem works akin to the
principle of natural selection. Selection pressures arise from
the interaction of the agents with the environment and the
direct competition between the agents themselves. Once
a sustained population occurs, the level of free energy in
the environment decreases drastically while competition
for these resources increases. This gradually increases
selection pressure for more efficient survival strategies and
environmental complexity without requiring the experimenter
to define the right time or nature of these transitions. We
think that this gradual increase, combined with the concurrent
evolution of all agent constituents can to some extent alleviate
the bootstrapping problem and widen the scope of artificial
evolution.

However, our model does not fulfill the criteria for an open-
ended evolutionary process in the sense of [8]. Especially,
our agents are separate from the environment by external
definition and they are not self-replicating. Therefore the
need for a criterion which regulates differential reproductive
success remains. We think that to optimally exploit the
creative potential of evolution the choice of this criterion is
crucial. Otherwise it is still possible to end up with dynamics
that simply optimise one aspect.

We have tried to devise a simple fitness criterion which
will introduce little unintended bias while still providing a
gradient for successful evolution. Every agent possesses a
dedicated node (depot node) in the output layer of its neural
controller network. At each time step, an amount of energy
proportional to the activation of the node is transferred from
the agent’s ‘life’ energy to a reproduction depot. If this
reproduction depot reaches a certain threshold (proportional
to its capacity) the agent reproduces. Note that while this
might appear similar to [1] there are fundamental differences.
Using this dedicated depot which has to be actively filled
with surplus energy the agent gains full control over when
and how much energy it invests in offspring. Therefore, not
only is there a direct cost (transferring the energy) involved
in creating offspring, but also, doing so will create a direct
competitor for available resources. Hence, reproduction in
our model is ‘optional’ and the selective pressure does not
arise from a global fitness function but from local and direct
competition in a shared environment.

Reproduction in our model is asexual. If an agent reproduces,
an imperfect copy is placed near the parent. Mutation
operators exist for modifying each of an agent’s parameters
along with operators for deleting existing, or adding new parts
(sensors, actuators, neurons, synapses). We do not use any
‘genetic encoding’ and all mutation operators work directly
on the agent’s object structure.

The major challenge in creating such a model lies in
modelling the generic agent components and their interaction
dynamics with the environment. Once that is done, the
‘evolutionary algorithm’ itself or, respectively, the main

do forever
all objects « update()
for all agents do randomly
if energy >0
agent <« update ()
if depot > Rr
agent <« reproduce ()
else add corpse « agent
while #agents < Anin
createAgent ()

Fig. 1. Pseudocode showing the main program loop of the evolutionary
system. At every timestep all non-agent objects are updated. Next, agents
are either updated and reproduce if their reproductive depot exceeds their
reproductive threshold R, or replaced with a corpse object if their energy
is less or equal to zero. Finally, if the total number of agents is lower than a
set minimum A, ;,, an appropriate number of random agents is created.

program loop (see fig. 1) is extremely simple; solely updating
the environment and agents. The only mechanism that
interferes with the system is what we call the minimum
enforced agents mechanism (MEAM). The MEAM ensures
that a specified minimal number of agents is always present in
the environment. Once the size of the agent population grows
larger through reproduction and remains so, this mechanism
has no more effect unless the population size falls below that
threshold again.

III. ENVIRONMENT

The experimental environment is a continuous two-
dimensional toroidal world that contains a number of different
objects. All objects are circular and carry information in the
form of a currently three dimensional property vector. These
three information channels represent energy content, solidness,
and size of an object. Even though these three channels are
provided by every object, the way in which those values
are calculated differs slightly between the different types of
objects. In total, we distinguish between four types:

Energy sources are objects without solidness but non-zero en-
ergy content. They are initialised to a random energy capacity
¢ € (0, Craz), where Chq, is @ maximum capacity globally
set by the experimenter. If consumed by an agent, an energy
source re-grows at a constant rate. The energy content of an
energy source corresponds to its energy level at time ¢. The
size of an energy source equals its energy content. Because
it has no solidness, agents can pass through an energy source
unhindered. In the present setup energy sources are relocated
to a new random position with a certain probability.
Obstacles are objects without energy content but a non-zero
solidness. The size of an obstacle equals its solidness value.
Each obstacle is initialised with a random solidness value
€ (0,1]. If an agent collides with an obstacle the agent is
stopped and receives a certain damage (loss of energy, see
section V-B). In the current setup obstacles are static and do
not change their position throughout an evolutionary run.
Agents are just other elements of the environment that can
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Fig. 2. Exemplary body of a first generation agent with two sensors (round)
and one actuator (arrow indicates impulse direction).

be sensed through the same channels as can every other
object. However, unlike with other object types, both size
and solidness are genetically specified non-zero parameters.
Additionally, the energy content channel in the case of an
agent does not refer to its current energy level, but to the
value of its reproductive depot (see section IV-A.2).

Corpses are ‘dead’ agents. A corpse is a food source with the
energy capacity of the agent’s reproductive depot at its time of
‘death’. However, its energy content decreases over time and
it is deleted when the energy reaches zero to prevent cluttering
of the environment over the course of the simulation.

IV. AGENTS

The agents evolved in our system consist of a body and
a controller. This traditional distinction is upheld mainly
for explanatory purposes, since in our simulation both parts
overlap and concurrently evolve as a functional whole. The
initial agents have only very little ‘innate intelligence’ [1] or
functionality. Instead, all aspects of the agents were designed
to provide comparatively high levels of evolutionary freedom
while at the same time reducing bias introduced by predefined
structure or functionality.

A. Morphology

The morphology of an agent is defined by the properties
of its virtual body and the number and position of its sensors
and actuators. We use a simple circular shape for the agent’s
body but both the arrangement of sensors and actuators as well
as the configuration of other body properties are completely
open to evolution. Thus, at least theoretically, a vast number
of different morphologies is possible.

1) Body Properties: A circular shape was chosen for the

basic body plan because it is generally considered the most
neutral form with respect to symmetry; with a circular body
the agents have no predefined direction and are rotationally
symmetric. Preferred direction of movement and possible sym-
metry properties are evolutionary emergent and determined
by the placement of external sensors and actuators. Both
external sensors and actuators can be situated anywhere along
the circumference of the agent’s body.
To avoid confusion we emphatically call attention to the fact
that it was not our aim to implement our model in a realistic or
transferable fashion. Wherever it was easily possible, the dy-
namics resemble our real world intuitions, but in principle our
system implements an arbitrary and independent virtual world.
However, each of these properties have different metabolic
consequences for an agent, discussed in section IV-C.

The free parameters are initially set to random values within
their defined range.

e Size: The size s € [0,00) defines the radius of the body.

o Solidness: The solidness p € (0,1] is a free parameter.

e Mass: The *mass’ m of an agent is a function of its size
and solidness with m = p - w52

o Energy Capacity: The energy capacity C = /m is the
maximum amount of energy an agent can accommodate.

e Maximum Absorption: The maximum amount of energy
Ae(t) an agent can absorb from an energy source per
timestep is given by:

Ae(t) = min(c (1 + 7s%), C — E(t)) (nH

where ¢, is a proportionality constant and FE(t) is the
energy level of the agent at time t.

2) Sensors: We provide two predefined groups of sensors
which can help the agents make use of different sources of
information. Generally, sensors act as input nodes to the neural
controller network of the agent. The first kind are internal
sensors which provide information about the agent’s own
internal variables. There is one internal sensor for the current
energy level and one for the current level of the reproductive
depot. Internal sensors are fixed parts of the input layer of
the initial controller networks. Even though they cannot be
removed by evolution, they are not necessarily connected to
the rest of the network, thereby it is not predetermined whether
or how they are used.

The second basic kind of sensors are external sensors. As
the name suggests these sensors allow an agent to perceive
information present in the environment. The environment pro-
vides sensory information on three different channels (energy
content, solidness, and size). In order to make use of these
signals an agent must evolve the appropriate sensors. An
external sensor of type ¢ responds to the i-th channel of an
object. The information provided by a single channel is one
dimensional and can roughly be though of as a chemical
gradient. The response r of the ¢-th channel of an object o
depends on its value v;, and the distance d, between the
sensor and the object. It is given by
Vi.o
"= T .. Pz )
Hence, the total activation of a sensor S of type ¢ follows
from the accumulation of the responses of all objects within
a maximum range.

Vi,o
S=liiem ®
0€0

where O is the set of all objects within said maximum range
and c is a proportionality constant.
The relationship shown in (3) leads to a sensory response
landscape which is further illustrated for a single channel
in fig. 3. Additionally, as has been noted in section III, in
the case of another agent, the energy channel corresponds to
the agent’s energy depot instead of its current energy level.
The intuition behind this choice is that the energy channel
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response

Fig. 3. Sensory response landscape for a given channel in an environment
with four objects. The peaks represent the centres of objects where the
response is highest.

contains information about ‘potentially consumable energy’.
The energy of the corpse of an agent relates to its energy
depot level at the time of death.

3) Actuators: Actuators are a predefined structure to enable
the evolution of locomotion in the agents. They are very
simple in order to allow basic forms of locomotion but can be
arbitrarily combined to implement more complex movement
strategies. As with sensors, actuators are nodes in the neural
controller network, however, they differ by being located in
the output layer. Additionally, actuators are defined by their
position on the agent’s body and the angle formed by the
tangent of the body at that point (see fig. 2). Hence, the
influence of an actuator is fully described by its position, its
direction, and the strength of its activation. This results in a
movement vector ¢’ for each actuator:

7o < —sin(® +a+ ) )
o cos(® + a+ )

where @ is the rotation of the agent, o is the position of the
actuator on the agent’s body (0 < a < 27), and (3 is the angle
of the actuator (0 < < m) with respect to the tangent of
the agent’s body at its position. This movement vector ¥ is
normalised and scaled with the activation of the actuator to
yield the final movement.

This allows us to calculate a translation and rotation com-
ponent for every actuator corresponding to its activation.
Thus, the overall movement of an agent can be obtained by
integrating over all actuators. The effects of multiple actuators
on the position P and the rotation ® of the agent at time step
t are as follows:

“

Pt+1) = ]3(t)+z|%|-c~o7; (5)

|4

O(t)+ Y c-0;-cos(f) (6)

D(t+1)

where A is the set of actuators, o; is the activation of the ¢-th
actuator, and c a proportionality constant.

In case of collision the translation component is reset and
only the rotation component is applied. One aim in designing
the actuators for this experiment was to avoid the usual
Braitenberg-type, two-wheeled design which in our view re-
stricts the freedom of evolution and introduces unnecessary

Possible Initial Network

Gr» T80~ ’
fitness
depot node

Fixed Network

""" @ internal
----- o

sensor
nodes

external
Sensors

actuator

Fig. 4. Controller networks have two fixed internal sensor nodes (energy
level e, depot level f) and the depot node Af in the output layer (left).
Additionally, every first generation agent is initialised with a (small) random
number of sensors, actuators, and connections (right); All parameters are
randomly initialised.

design bias by pre-specifying a bilaterally symmetrical body
plan. Our actuators can be thought to act like small jets or
flagella. An agent can possess any number and configuration
of actuators and is therefore less restricted in the locomotion
strategies it applies.

B. Neural Controller Networks

The agents are controlled by a neural network. The structure
and properties of these controller networks are evolved. We
use nodes with piecewise linear transfer functions where two
parameters define the operating range of the neuron. Both
of these parameters are initially random and evolved for
each node individually. A link (synapse) is defined by a real
valued weight w € (—o00,00) and the two nodes it connects.
Weights are at present heritable, no lifetime learning takes
place. During reproduction not only parameters of existing
structure can be modified, but also all components can be
added or removed by mutation operators to form completely
arbitrary (also recurrent) network structures.

First generation agents start out with a minimal network that

consists of three fixed nodes and a small random number of
sensors, actuators, and connections (see fig. 4), all initially
set to random values.

C. Metabolism

As discussed in section II energy is the limiting resource

that drives the evolution. Because energy is the only resource
every aspect of an agent is somehow connected to its energy
budget. Every property and every structural component has
an effect on an agent’s metabolism. This is necessary in this
model to create an evolutionary gradient.
The metabolism of an agent has a constant and a variable com-
ponent. The constant part M,,,s; depends on the properties
of the agent’s body (i.e. its mass m) and the number of nodes
|N| and links |L| in the neural network while the variable
part consists of the actuator activation and the activation of
the controller network. The relationships are given by:

Meonst = Cl|N‘ + ‘L| cCot+Mm-c3 (@)
|A]
Mot = m-cy Z 0; (8)
IN|
Mnct =

Cs Z 0; (9)
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Mtotal = Mconst + Mact + ]V[net (10)

where (8) sums over the activation o; of all actuators |A| and
(9) sums over the outputs o; of all network nodes |N|. The ¢;
are metabolic proportionality constants.

D. Sensor-Motor Loop

The sensory-motor loop of the agents includes the following
major steps at every iteration of the main program loop. After
all the sensors have been updated with the current values the
signals are propagated through the controller network. This
results in the current action of the agent being executed after
taking any collision management into account. Finally, the
energy balance is drawn for the agent and the environment
(see section V-C).

V. ECOSYSTEM DYNAMICS

Considerable effort has been put into providing potentially
rich agent-environment interactions along with a complex
agent metabolism to allow for the evolution of diverse and
non-trivial survival strategies. Bearing this in mind, computa-
tional cost must always be another important consideration in
simulation. Since we were primarily interested in observable
agent behaviours we chose a foraging scenario with mobile
artificial agents because it is a well-studied scenario where
some likely behaviours can be partly anticipated and often
intuitively interpreted by an observer.

A. Resource Consumption and Renewal

If an agent collides with an energy source, a certain amount
of energy is transferred from source to agent. The amount of
energy ASE transferred from a source is determined by the
maximum absorption Ae(t) of an agent a as defined in (1) but
cannot exceed the current energy content Sg of the source at
the time.

ASE :min(SE,Aea(t)) (11)

Energy sources are therefore exhaustible but they ‘re-grow’ at
a slow constant rate .

Sp(t+1)=Sp(t)+p— > ASg,

acA

12)

The size of an energy source equals its energy content. An
energy source has a solidness of zero and allows an agent to
pass through unhindered.

B. Collision

In addition to stopping the agent, an energetic cost (damage)
is assigned to a collision. This cost depends on numerous
properties of the agent’s body as well as its speed and
angle to the object and thereby ‘grounds’ its morphology
and behaviour in the virtual world. Even though the damage
calculation is very simple compared to a physically realistic
model, it is differentiated well enough to allow the evolution
of very different coping strategies, both on the morphological
as well as the behavioural level. Especially in the case of
agent-agent collisions, a damage model that is connected
to the agent’s morphology opens the possibility of different

Environment

1
<ené rgy intake { constant growth
/[ \[

damage

reproduction

Agent

actuator cost

network activation

Fig. 5. Total energy balance of agents and environment.

interaction strategies. In theory even the emergent evolution of
a predator-prey scenario is conceivable, if agents ‘deliberately’
collide with other agents in order to get their stored energy.
The damage calculation is based on the length of the difference
vector between the movement vector U4 of an agent A and
the movement vector of the object it collides with (which, in
the case of an immobile object, is the zero vector). Because
the collision management resets the translation component in
case of collision, we calculate two damage factors dfr and
dfr. The former corresponds to the effective movement U4 g
of the agent and the latter to the intended movement U4 ;.
The effective movement only has an effect at the time of the
actual ‘crash’. The intended movement continuously affects
the damage while the agent ‘pushes’ against an object. The
two costs are balanced by proportionality constants cg g and
cq,1, where cq g > cq 1.

There is no global physics engine that calculates these costs.
Instead, agents calculate their portion of a collision for both
objects involved during their update cycle. The costs are given
by ':

dfe ca, e - min(|Ta1,e|, |Ua1,5 — Va2, e]) (13)
dfy = cqr -min(|Uay 1], [Tar,r — Tazg]) (14
Daia1r = (dfar,e +dfarr) - min(mar, maz) (15)
Dai—az = (dfare +dfarr) -ma (16)

where in (15) the sum of the two damage factors is weighted
by the minimum mass m4; of the two objects to yield the
damage to the colliding agent and (16) describes the damage
received by the passive agent. If the second agent also actively
collides with the first agent (e.g. in a head on collision) it also
calculates a damage.

C. Energy Balance

The metabolism of the agents together with the described
dynamics determine the total energy budget of the ecosystem
which is updated every timestep. The ecosystem is not a
closed system with respect to energy. Energy is added from
outside the system through the renewable resources described
in (12) and dissipates through the metabolic consumption of
the agents according to (10). A schematic illustration of the
total energy balance is shown in fig. 5.

'For the sake of clarity, another factor to compensate for artifacts of
discretisation and the sequential update of agents is omitted here.
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TABLE I
PARAMETER SETTINGS FOR THE SIX ENVIRONMENTS INVESTIGATED.

Setup || Energy Sources | Obstacles
El 25 25
E2 25 0
E3 50 50
E4 50 0
E5 75 75
E6 75 0

VI. SIMULATION SETUP AND RESULTS
A. Simulation Setup

In this first set of experiments, six different environments
have been used to empirically explore conditions where evo-
lution reliably occurs. Evolution does not occur if the MEAM
is unable to create agents that successfully reproduce or fail to
establish a sustainable population. All of these environments
were relatively small square arenas (100x100 units) with
varying numbers of uniformly distributed obstacles and energy
sources (see table I). Energy sources were initialised with an
energy capacity of 1.0 and obstacles were initialised with a
solidness of 1.0. The minimum enforced number of agents
was 15 in all runs. In all runs, we sampled the environment
and the agent population every 1000 timesteps to get statistical
data. Some of these data will be discussed in the next section.

B. Results

Evolution reliably occurred in all tested environments.
To see whether or not evolution is actually happening, all
agents are assigned a value we call phylogenetic generation
(PG) which indicates the number of their direct ancestors.
An agent randomly created by the MEAM has a PG of
0, its offspring 1, and so on. An exemplary graph for the
development of the average PG of an agent population is
shown in fig. 6. If the MEAM is unable to create any viable
agents, the PG of all agents in the population is always zero
and no evolution occurs. Because the viability of an agent in
our model is greatly determined by its environment, continual
evolution can only occur if a particular agent manages to
spawn a sustained population of agents. We call such an
agent a founder. Once an agent achieves this and the MEAM
is inactive, the population quickly contains only agents which
descend from the founder. Especially early in an evolutionary
run, when the agent’s survival and reproductive success is
more governed by chance than any well-adapted strategy,
extinction can occur if the whole population dies out. In
this case, all ‘genetic’ material is lost and evolution has
to start over. However, in all of the conducted experiments
this happened only in very early in the evolution. Later
in evolution, total extinction did not usually occur and the
resulting graph for maximum PG in most runs was generally
monotonically increasing. A decrease in maximum PG would
signify the extinction of the ‘oldest’ lineage.

The notion of phylogenetic generation in our model, however,

4000
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Fig. 6. Development of the average phylogenetic generation of a popu-
lation over an exemplary run. The inset shows cases of extinction early in
evolutionary time, where all inheritable material is lost.
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Fig. 7. The average population size in a typical run undergoes an initial
phase of exponential growth once a founder agent occurs. After that it either
oscillates within a certain range, or nearly stabilises.

only contains information on whether heritable information
is conserved through a turnover of generations or not. It
does not, in itself, give any information about the course of
evolution, the level of adaptation of the agents with respect
to their environment, or the complexity of their survival
strategies. In a control experiment, where mutations are
switched off and agents can produce only perfect clones, the
PG will increase once a sustained population occurs, even
though there is no evolutionary ‘progress’.

Another aspect that can be observed on the population level
is the average age of the current population at the time the
ecosystem is sampled. As illustrated in fig. 8, before evolution
occurs (at roughly 5.5 - 107 timesteps) the average age of the
population is higher than later in the run. After the initial fast
growth of the population (see fig. 7) this may be explained
by the rapid decrease of free resources. However, average
population age keeps decreasing even when the population
size declines. Further analysis off these relationships are still
required, but even so, this might hint at the idea that agents
with an aggressive reproduction strategy and short average
lifespans have a selective advantage. Because change and
adaptation can only occur through turnover of generations, it
is interesting to note that long lifespans are not necessarily
selected for (as was also observed in [2]).

Due to space restrictions in this paper we will only analyse
the trends in phylogenetic development for the lineages of a
few exemplary individuals. A more thorough analysis of the
results is certainly necessary to understand the full interaction
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Fig. 8. The average age (in timesteps) of the agent population sampled over
evolutionary time.

dynamics on a mechanistic level. For now we will content
ourselves with looking mainly at macro-scale behaviour. Also,
we do not yet have enough experimental data on the different
environmental conditions described in table I to make strong
claims about how the these setups influence the prevalent
strategies adopted over time. However, some trends can be
identified even at this early stage, and will be discussed briefly.

1) Agent-Environment Interaction: In order to successfully
reproduce, agents need to develop strategies that allow them to
acquire surplus energy. We will first discuss three behaviours
which require locomotion and which reliably evolved in our
experiments. In all experiments described, agents followed
an active foraging strategy. Active foraging means that the
agents moved around their environment in order to find the
required energy. In contrast, a passive foraging strategy (which
is theoretically possible because the energy sources are not
stationary, and, indeed, occurs under certain environmental
conditions not discussed in this paper) does not necessarily
involve any movement on the part of the agent. In that case,
agents will minimise all metabolic activity and ‘wait’ for the
energy to come to them.

Exploration: when following an active foraging strategy, it
is necessary to move around the environment even in the
absence of external stimuli. We call this behaviour explo-
ration or base movement. Founder agents typically have an
actuator which is activated in the absence of external stimuli.
Depending on the tilt of the actuator, early agents will usually
exhibit a circular base movement of some sort. However, the
evolution of exploratory behaviour was strongly influenced
by the density of objects (mainly that of obstacles) in the
environment. In environments with a low object density a
strong trend toward faster base movement combined with a
tendency to ‘straighten’ the forward motion could be observed.
The transition from circular to straight movement was achieved
either by changing the angle of the main actuator, or by
adding additional actuators to counterbalance the rotational
component of the main actuator. On the other hand, agents
evolved in environments with a higher density of obstacles
evolved much slower base movement and often did not show
the tendency to straighten their base movement.

Foraging: by foraging behaviour we mean the change in agent

Fig. 9. Path of Agent approaching an energy source (left). The illustration on
the right gives an impression of how this behaviour is achieved. (1) only the
main actuator is active (the length of the line shows the activation intensity),
creating a straight movement, (2) the agent senses the energy source for the
first time and begins circling (3) the agent still circles but the main actuator is
now completely inactive (4) the agent managed to position itself in the centre
of the energy source and rotates on the spot.

™~

Fig. 10. Path of an agent avoiding two obstacles.

behaviour in the presence of energy. Early agents usually do
not exhibit any foraging behaviour but have to rely on chance
to pass through enough energy sources to collect enough sur-
plus energy for reproduction. A very simple foraging strategy
is to simply slow down if an energy source is sensed and
in extreme cases, agents come to a complete stop. The most
‘sophisticated’ foraging behaviour observed so far requires the
coordination of at least two (but usually three) actuators and
involves ‘circling in’ on the energy source, and, in the most
successful variants, rotating on the spot in the centre of the
source. A schematic illustration of this behaviour is shown in
fig. 9.

Obstacle Avoidance: the most effective obstacle avoidance
behaviour (fig. 10) does not necessarily evolve in environments
with the highest obstacle density. Under the conditions tested
so far, the best obstacle avoidance behaviour evolved in runs
with environment El. It seems that due to the calculation of
collision cost, the evolution of obstacle avoidance is closely
correlated with the speed of base movement and the mass of
the evolved agents. In ‘lightweight’ and slow-moving popu-
lations, obstacle avoidance often did not evolve at all (at the
end of the run).

2) Agent-Agent Interaction: In our present model there is
no direct way for an agent to discriminate another agent from
an energy source or an obstacle. The only difference is that
another agent provides information on all three channels. Even
though this would arguably make it difficult to ascribe any sort
of deliberateness to agent-agent interactions, it is still worth
looking at what happens if an agent encounters another agent.
However, there are at least two additional factors limiting
possible variety in the evolution of agent-agent interaction.
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Firstly, only actuators for locomotion are currently defined in
our model and this certainly restricts the number of meaningful
interactions. Secondly, in all experimental runs so far, all
agents of a population were quite similar to each other and
therefore, all acted similarly when encountering another agent
in a certain situation.

Basically, if an agent reacts to another agent at all, it will
either treat a fellow agent as an energy source, or as an
obstacle. If both obstacle avoidance and foraging behaviour
can be observed in an agent, it will usually also react to another
agent. The reaction in that case often depends on the current
level of the reproductive depot of the other agent. If this is
low, the agent is likely to avoid the other agent. However,
if the level of the reproductive depot of the other agent is
high, the agent might approach and even chase the agent.
Purely from the viewpoint of an external observer, this can
lead to curious situations where an agent is furiously chased
by another and, if the first agent reproduces (and therefore,
its ‘energy signature’ drops), the chasing agent suddenly loses
interest and wanders off. Note however, that since there is
no clear speciation (however this might be defined in this
context) there is no real predator-prey relationship, as the role
of aggressor is interchangeable and determined only by the
state of the two agents at the time of the encounter.

3) Reproduction Strategies: The principle behind the typi-
cal evolved strategies for reproduction is quite simple and can
in most cases be summarised as follows: Invest in reproduction
when energy is present, otherwise don’t. However, the mech-
anisms of how this is achieved differ. The most commonly
used is a positive correlation between the energy sensors
and the actuator for the reproductive depot. Alternatively, the
activation of the reproductive depot is positively correlated to
either the internal energy level or the activation of an actuator
used for foraging. Many agents use a combination of these
strategies. Additionally, often a negative correlation between
a solidness sensor and the reproductive activity exists.

4) Morphology: As with mechanisms, we have not yet
collected enough data under the various environmental con-
ditions, to justify any strong claims about the development
of different morphological aspects of the agents over the
course of evolution. However, current findings suggest that
the morphological development (which is of course strongly
coupled with the development of certain strategies) depends
on two factors.

The first factor is the initial environment. Some environments
cause a strong selection pressure for certain features. For
example, in environment E1 where energy and obstacles are
scarce, agents always evolve a relatively fast base movement
combined with small, ‘lightweight’ bodies. On the other hand,
the slower base movement that evolves in environments with
high obstacle density seems to advantage bigger and ‘heavier’
agents that have a higher energy capacity.

The second factor are the agents themselves. After a first
burst in population growth, a lot of the environment will
be other agents. Current results suggest that this can have a
lasting impact on the course of evolution. However, because

the simulation becomes slow as population size increases,
we currently cannot say for sure if this ‘founder-bias’ would
eventually abate.

In general it seems that more extreme environments create
larger selection pressures and cause strategies to evolve a lot
faster than in more moderate environments.

VII. CONCLUSION

We have proposed a model for an evolving ecosystems

approach to evolve complex agent behaviour. Evolution in our
model works close to the principle of natural selection without
the need for an explicit fitness function. We have introduced a
novel criterion for evaluating differential reproductive success
to evolve complete agents in the sense that all constituents of
an agent are subject to evolution.
Our first experimental results suggest that this setup allows the
evolution of complex agent behaviour even if little guidance
is given to the artificial evolution process. However, we have
only briefly sketched the results on an observational and
behavioural level. A more thorough analysis on the functional
and mechanistic level is necessary to understand the mecha-
nisms responsible for the generation of the observed behaviour.
Even though aspects of the implementation are still under
development, we believe that the results suggest that our
approach may be conducive for widening the scope of artificial
evolution to generate agents exhibiting non-trivial behaviours
in a complex ecosystem.
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