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Abstract— Approaches to cognitive science have been socially
divided into dynamical and computational camps. We break
down the dynamical approach into finer components, suggesting
a new taxonomy of dynamical approaches to cognition and
questioning the logical unity of the dynamical school. We
dispel some confusions surrounding the concepts of dynamical
systems, computation, and the relation between the two. We
introduce and argue for the notion of “cognition as it could
be” and show its value in analysing the dynamicists’ account
of time.

I. INTRODUCTION

Many researchers in Artificial Life identify themselves as
being part of a “Dynamical Approach” to cognition, usually
contrasted with a “Computational Approach”. The dynam-
ical approach conceives of cognitive processes in terms of
dynamical systems; the computational approach in terms of
digital computers. Unfortunately not just one but both of
these terms (“dynamical system” and “digital computer”)
are used with multiple meanings by different authors, which
inevitably leads to confusion.

Our position is that the dynamical approach is a “cluster
concept” with overlapping semi-independent characteristics
none of which is necessary or sufficient to define the dynam-
ical approach. Depending on context, the phrase “dynamical
approach” can informally mean

• “I consider a process occurring over time”
• “I consider a process occurring in continuous time”
• “I use a model with floating-point parameters”
• “I evolved a Continuous-Time Recurrent Neural Net-

work (CTRNN)”
• “I don’t subscribe to the physical symbol system hy-

pothesis”
• “I use a situated and/or embodied approach”

The lack of a single defining feature of the dynami-
cal approach is most obvious when one tries to define it
positively rather than negatively - that is, to characterise
specific properties which are shared by studies described
as having a dynamical approach, rather than contrasting
them with computational ones. This paper attempts to clarify
the relationships between different aspects of the dynamical
approach, expose some common unwarranted assumptions
and clear up some confusion about the relationship between
the dynamical approach and the use of computer simulation.

We begin with a brief tongue-in-cheek overview of the
dynamicist and computationalist research traditions. Then we
catalogue current usages of the terms “dynamical system”
and “digital computer” and suggest a finer-grained vocabu-
lary. The important notion of situatedness is discussed next.
After that we consider what sort of environment cognitive
agents are assumed to operate in, and the notion of “cognition

as it could be” is contrasted with cognition in real physical
systems.

A longer section deals with the properties of the specific
class of dynamical system which dynamicists typically ad-
vocate. We examine different possible reasons for favouring
these systems and by introducing the concept of “continuous-
like” behaviour in discrete systems we hopefully clear up
some of the relationship between continuous systems, dis-
crete models of continuous systems and discrete systems.

Time has been advanced as playing a defining role in the
dynamical approach, but the dynamicist conception of time
turns out to be problematic. Our final section addresses the
difference between continuous time, discrete time, and “mere
sequence” in a way which highlights the central importance
of situatedness to time.

II. COMPUTATIONALISTS AND DYNAMICISTS

The following folk tale is a broad but not wholly in-
accurate caricature of how self-proclaimed dynamicists see
the difference between themselves and the people they call
computationalists.

Once upon a time, there were some scientists
who thought the mind was a computer. They tried
to build robots which would reason before they
moved around. They forgot what the brain was
made of and what sort of body it was in. They didn’t
notice that the world itself was helping people and
animals to be smart.

Then some of them had a clever idea. What if
agents were a part of the physical environments
they lived in, just like the planets, and chemical
reactions, and electrical circuits, and pendulums?
The scientists would be able to use ordinary sci-
ence to understand them.

So they tried building robots which just moved
around without planning anything. They tried mak-
ing models which used ordinary sensible numbers.
And guess what? It worked!

Like most folk tales, this narrative is more about culture
than it is about history. The computationalists and dynami-
cists presently occupy more or less socially distinct research
communities in cognitive science and artificial intelligence.
They use different research tools, have different research
ideologies and concentrate on broadly different problems.
So far, in respect to engineering intelligent systems, the
two approaches have both been successful but in rather
different domains. Computationalist systems can beat the
human world champion at chess [1]; dynamicist systems
provide the state of the art in robust robot control [2].
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A. The “Dynamical Hypothesis”

Although its author is no longer active within the dy-
namicist community, perhaps the most influential attempt
to define and argue for the dynamical approach is [3], in
which two separate claims are identified. One, the “Nature
Hypothesis,” is a metaphysical claim that relies on some
peculiar terminology to claim that cognitive agents in some
sense “are” the abstract dynamical systems that could be
used to model them. We will not discuss this here. The
other, the “Knowledge Hypothesis,” is the pragmatic claim
that dynamical systems models can and should be used in
cognitive science. This is not strictly a hypothesis but a sort
of scientific meta-theory: a theory about what general form
a successful scientific theory of cognition will take [4], [5].

Not all dynamicists would support the Dynamical Hypoth-
esis as stated in [3], and it has been widely criticised on a
number of grounds [6], [5] which we will not attempt to
summarise or address here. We are concerned with classify-
ing the different elements of the dynamical approach, rather
than offering any new criticisms or defences of its ideology.

III. DYNAMICAL SYSTEMS

A. “Pure” Dynamical Systems

The technical term dynamical system has several meanings
in current usage, and it is worth differentiating between them.
To a mathematician it has a precise definition which is much
broader than any normally found in cognitive science since
it is designed to capture the notion of anything that changes
over (discrete or continuous) time. In the branch of pure
mathematics known as dynamical systems theory a dynamical
system is simply a phase space or state space, which can be
any sort of set, a time space, which has to support an addition
operator – typically the real numbers or the integers – and
an evolution function which describes how the state of the
system varies with time. There are just two axioms, which
essentially say that the system doesn’t change over zero time
and the evolution function is uniformly applied at all points
in time.

The most characteristic feature of dynamical the-
ories, which distinguishes them from other areas
of mathematics dealing with groups of automor-
phisms of various mathematical structures, is the
emphasis on... properties related to the behaviour
as time goes to infinity. [7] (p2)

There is not all that much which can be said about
mathematical dynamical systems in their most general form.
[7] identify four main subdomains in dynamical systems
theory which make different assumptions about the structure
of the phase space and the evolution operator: ergodic
theory, topological dynamics, smooth dynamical systems, and
Hamiltonian dynamics.

In this article we use the term “dynamical systems theory”
in the broadest mathematical sense, including but not limited
to its various “pure” or “applied” subdisciplines.

B. “Applied” Dynamical Systems: Numerical Systems

Many of the notions of mathematical dynamical sys-
tems theory are still too abstract for most scientists and
engineers, whose objects of study can usually be defined
using real number variables and modelled using differential
(or difference) equations. Systems of this sort are typically
easier for scientists to visualise, model and analyse than
abstract topological or measurable spaces. They are also the
main focus of any introductory course in dynamical systems
theory. See [8] for a well-regarded text which deals mainly
with this class of dynamical system. When people refer to
dynamical systems in the context of the physical and life
sciences they very often mean these sorts of system, which
from a mathematical point of view constitute only a tiny
subset of all dynamical systems.

C. “Applied” Dynamical Systems: Non-Numerical Systems

The field of Artificial Life is somewhat unusual in that dy-
namical systems whose states aren’t interpreted numerically
are fairly common. We are likely to be interested in analysing
the dynamics of discrete systems such as cellular automata or
random Boolean networks as well as continuous systems. An
example of discrete-state research in the dynamical cognitive
science tradition is [9]. However, discrete dynamical systems
are also relevant to those studying continuous nonlinear
dynamical systems in the physical sciences: it is sometimes
useful to analyse the behaviour of such systems by discretis-
ing them, even when the trajectories of the system do not
resemble discrete jumps. This trick, invented by Poincare,
was the original motivation for the dynamical systems theory
subdiscipline of Symbolic Dynamics [10].

D. Dynamical Systems in the Dynamical Approach

Cognitive studies which might be broadly described as
dynamicist differ greatly in their use of the tools or language
of dynamical systems theory1. Although authors such as
Beer [12] and van Gelder [3] are generally careful to use
the term “dynamical” when talking about the conceptual
ideology, reserving the term “dynamical systems” for the
mathematical theory, this usage is not universally followed
and some authors blur the distinction. For instance, the
Dynamical Hypothesis is referred to as the “Dynamical
Systems Hypothesis” in [13] whilst the “Dynamical Systems
Approach” in [14] is defined primarily in terms of how
it differs from computationalism. We believe this usage to
be a misnomer and suggest the following finer distinctions
between types of study:

1) Work which emphasises the role of timing of inter-
actions with the environment. We suggest the term
dynamical or preferably time-critical for work of this
sort.

2) Work which simply uses a numerical differential-
equation, or difference-equation, model. Models of this

1Many of the mathematical notions underlying dynamical systems theory,
although not the modern terminology, were applied to cognition and
behaviour by the cybernetics movement. For example, see [11]. Cybernetics
is widely seen as a precursor to modern dynamicism.
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sort are ubiquitous in quantitative science and are never
described as dynamical systems models outside of
cognitive science. For instance, Newtonian mechanics
would never be referred to as a “dynamical systems
approach” to physics. We suggest the term numerical
or quantitative to describe such models.

3) Work which makes specific use of concepts or tools
from dynamical systems theory, such as attractors,
phase portraits, bifurcations, structural stability, metric
entropy or conjugacy. We suggest that the term dy-
namical systems be used only in work of this sort. In
fact, as observed in [15], dynamicist models tend to
operate far outside dynamic equilibrium, which makes
it difficult to apply the mathematics.

4) Work which makes use of a model which could for-
mally be described as a dyamical system (i.e. in terms
of a state space, time set and evolution function). This
category is far too broad to deserve any particular
name, covering all work in both computationalist and
dynamicist camps.

Note that in work done so far, these categories tend to
overlap in a hierarchical manner. Dynamical systems models
(in our sense) tend to be quantitative, and quantitative models
tend to be time-critical. But the conceptual categories are
all in fact logically independent. One could use dynamical
systems analysis of a model which was time-critical but not
quantitative. For instance, one might want to use dynamical
systems theory in understanding the behaviour of a robot
controlled by a finite state machine (FSM) in a fast-changing
grid world, or to consider convergence in offline neural
network learning (quantitative but not time-critical).

E. What Is Dynamical Systems Theory a Theory Of?

The occurrence of the word ‘theory’ in the phrase ‘dy-
namical systems theory’ suggests to some casual readers that
dynamical systems theory is, or could be, a scientific theory
of cognition. In fact, it is a theory only in the mathematical
sense of a set of axioms, proofs, methods and tools. (The
major exponents of the dynamical approach never make this
confusion.)

IV. THE COMPUTATIONAL HYPOTHESIS

Perhaps much of the confusion about the meaning of the
phrase “dynamical systems approach” can be attributed to a
lack of clarity in defining the computationalist approach that
it is formulated in opposition to. The dynamical approach
is pitted in [3] against the “Computational Hypothesis”
that “cognitive agents are basically digital computers.” ([3],
p615.), echoing the statement in [16] (p169) that “[t]he pop-
ular metaphor of calling the brain an ‘information-processing
device’ is... patently wrong.” The phrase “information-
processing device” or “digital computer” here is a somewhat
overloaded one. It appears to have slightly different meanings
to different people (within both the dynamical and compu-
tationalist traditions), and can more or less strongly imply
several distinct features. It is also worth noting that, perhaps
somewhat counterinuitively, “digital computer” is usually

meant to imply a more or less abstract entity rather than
an actual computational device such as a desktop computer.
Use of the term can imply at least the following four aspects:

1) Having distinct input and output phases, as in the
traditional sense-model-plan-act (SMPA) architecture
[17]. Van Gelder ascribes this meaning to the term
“computer,” so that anything which gives outputs that
are a function of its inputs can be considered a
computer. Note that this does not necessarily apply
to practical computers in the real world such as in
industrial control applications, or even to a laptop
interacting with its user.

2) Having discrete rather than continuous input, output
and internal state sets. That is, the possible inputs
to and outputs from a digital computer come from a
discrete set, such as the natural numbers or the set of
strings in a given character set. This does not apply to
physical analogue computers.

3) Being symbolically representational. That is, a digital
computer is considered to operate in a logical fash-
ion on discrete symbols which represent well-defined
things. It is not enough that the sets of possible inputs
and outputs be discrete: by “symbolically representa-
tional” we mean that some meaning has been ascribed
to the system’s input, output and internal states, as part
of their definition. The operation of a digital computer
is taken to consist of the manipulation of symbols in
such a way that the system’s mechanism respects the
pre-defined syntax and semantics of the symbols. (This
is the aspect of computation that Maturana and Varela
[16], [18] are referring to when they state that the
nervous system does not operate like a computer.)

4) Computability: the idea that a digital computer can
only calculate functions that could be calculated by
some Turing machine, regardless of any meaning that
may be ascribed to that machine’s internal states. It
is often not clear whether this is intended as part of
the definition of a digital computer when talking about
cognition but it is fundamental to the meaning of the
word “computer” in computer science.

Note that we are using a very strict definition of symbolic
representation in criterion 3. There are some approaches
to symbols and representation from within the dynamical
school, e.g. [19], [20], [21]. These differ from the symbolic
representation that we are describing here because the mean-
ing of the symbols is not pre-defined by the experimenter and
must instead be acquired by the agent.

It is important to note the logical independence of criteria 3
and 4. The phrase “digital computer” or even “computational
model” can imply either or both, and confusion over this dogs
explanations of the dynamical approach, particularly when
addressing the use of computers in dynamical research such
as in evolutionary robotics. A computer which is simulating
a dynamical system in an evolutionary robotics context is
operating on a symbolic representation of the dynamical
system — that is, it is generally operating on floating
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point numbers which act as symbols representing an agent’s
internal state and that of its environment — but this is not the
agent’s representation of anything, because in evolutionary
robotics tasks are not specified in such a way that the
agent’s behaviour has to respect any defined semantics.
These floating point numbers change over time according
to dynamical rules: the agent’s state is just changing over
time and it cannot necessarily be said to be doing logical
operations on symbols, even though the computer simulating
it is.

When the dynamical approach is contrasted with computa-
tional approaches, the word “computational” can take on var-
ious combinations of the above meanings. Most dynamical
models do not have distinct input and output phases, being
time-critical (see section III-D above), and sometimes this is
all that is meant. Sometimes symbolic representation is also
implied in the use of the word “computational.” Dynamicists’
models are not symbolically representational2, but they share
this quality with non-dynamical connectionist models such as
feed-forward neural networks [22].

It is often also felt that operating on continuous in-
put/output or state sets is important for the dynamical ap-
proach. This is certainly true given the flavour of the models
that tend to be used but it is important to note that it is
not necessary for a system to operate on continuous states in
order to be time-critical or non-symbolically representational.
A connectionist example of a system that operates on a
discrete state space but is not symbolically representational is
the Hopfield network [23], a recurrent neural network whose
nodes can be either on or off and which updates in discrete
time steps. Indeed [24] is an example of a self-described
“Dynamical Systems” approach which incorporates a Hop-
field network in its model.

The one aspect of the word “computational” which is
not generally implied when contrasting it with a dynamical
approach is the notion of computability. [5] observes that
some continuous systems can perform tasks that cannot
be emulated by a Turing-equivalent system but that no
researcher has this as a motivation for advocating the dy-
namical approach.3

V. SITUATED COGNITION

It has been shown that for a variety of interesting be-
haviours, both simulated and real-world agents take advan-
tage of ongoing interaction with their environment. The
traditional computationalist view, exemplified by the sense-
model-plan-act model, was that cognitive processes essen-
tially had distinct input, processing and output stages.

As rightly pointed out by dynamicists, this is an extremely
poor basis for explaining real-time real-world behaviours
such as obstacle avoidance or walking. In [26], which is

2This is not to say that they cannot use representations. The important
point is that explicit symbols with defined meaning are not included in the
model.

3Some researchers from the symbolic tradition (e.g. [25]) have suggested
for completely different reasons that humans are able to perform uncom-
putable tasks, but this view is not widely held.

claimed by the dynamicists as part of their tradition, the
anthropologist Lucy Suchman’s term situated [27] is used
to describe agents which are in ongoing interaction with a
relevant environment, and van Gelder identifies situatedness
as an important part of the dynamical approach. There is still
debate over to what extent situatedness is involved in “higher
level” cognition. Certainly human beings can cope in some
situations where they are artificially constrained to operate
in distinct input, processing and output stages; and plausibly,
some interesting natural situations are approximately sep-
arated into such stages. Authors such as Kirsh [28] have
argued for a range of natural human behaviours which are
not “situation determined”. On the other hand, humans in
the real world do make extensive use of their situatedness
even for very abstract tasks (e.g. using pen and paper to do
mathematics).

We are not convinced that situatedness and the mathe-
matics of dynamical systems theory logically have to go
together. Brooks’s mobots and his subsumption architecture
were not described using tools or language from dynamical
systems theory [2], and one could in principle model and
analyse non-situated (i.e. input-processing-output) systems
using differential equations and dynamical systems tools.
Indeed, the section on “short-term memory” Continuous-
Time Recurrent Neural Network (CTRNN) agents in [29]
represents what might be called a dynamical approach to
non-situated cognition. In this study a simulated robot con-
trolled by an evolved continuous-time neural network is
able to follow a moving stimulus even though the robot is
deprived of sensory information when the robot starts mov-
ing. This agent is specifically constrained to solve the task
without using a sensory-motor loop mediated by interaction
with its environment. In other words, it is forced to operate
in distinct input and output stages, like the paradigmatic
computationalist agent.

VI. ABSTRACT AND REAL COGNITION

When trying to formulate theories about cognition, we
should bear in mind that we do not know what we mean
by “cognition.” A frequently asserted but rarely defended
assumption in dynamicist literature is that cognition is syn-
onymous with cognition in the real world. That is to say,
cognition could not in principle occur in a non-physical entity
such as a simulated agent. When researchers who make this
assumption use computational or abstract mathematical mod-
els they are intended on some level as models of physical,
real-world phenomena in living systems. A typical example
is due to van Gelder and Port:

[C]ognitive processes are ultimately physical
processes taking place in real biological hardware.
[30] (p19)

This does not square with A-Life’s tradition of considering
“life as it could be” - that is, trying to identify and understand
properties of complex living systems which are not restricted
by the contingent physical history of our planet or even the
physical laws of our universe. General, abstract properties
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may or may not be of interest to field biologists depending on
to what extent the phenomena they study are particular to our
unique environment. Likewise, maximally abstract notions
of cognition are not necessarily useful to cognitive scientists
whose domain of study is biological wetware. But these are
not the only sort of cognitive scientist around. The study of
“cognition as it could be” cannot begin by assuming that
cognition is something that occurs in physical systems in
continuous time.

Consider researchers who are interested in intelligent
behaviour in machines, in contexts which do not closely re-
semble the natural physical environment of humans or other
animals. For example, machines to perform mathematical
reasoning, automatically classify written material, or handle
real-time resource allocation in computational networks, do
not obviously have to have robot bodies. Although non-robot
machines still have to be physically instantiated in the real
world, their intelligent behaviour would occur in a radically
different, virtual, world. If it is accepted that agents operating
in such domains can in principle be cognitive, we are justified
in wanting abstract, not real-world-specific cognitive science
principles which we can apply to them.

Even further removed from the physical world, some
researchers might be interested in totally abstract agents.
They would exist only on paper, in the form of equations,
thought experiments, or rational arguments. The abstract
worlds inhabited by these agents - if they inhabited any at
all - could be stripped of everything but the bare conceptual
necessities for cognitive-like processes; alternatively, they
might be explorations of exotic ideas like multiple time
dimensions.

Abstraction often provides useful insights into the work-
ings of the particular, but this is by no means its only purpose.
A theory of cognition in the abstract would be in part about
the question “What do we mean by ‘cognition’?”. We may
observe here that the lack of a generally agreed answer to
the question “What do we mean by ‘life’?” has not hindered
Artificial Life research; rather, it has stimulated it.

There is no obvious reason why the idea of situatedness
(or related ideas like embodiment) cannot usefully be applied
in the case of abstract agents. We might consider what
properties an abstract situated agent would need to have
depending on the abstract environment it was situated in.
In fact, we will see later on that doing so helps to illuminate
the role of time in the dynamical approach.

VII. THE DYNAMICAL EMPHASIS ON NUMERICAL

MODELS

A common feature in much dynamicist research is that the
system under consideration only has real-number variables
and the dynamics are defined in terms of differential or dif-
ference equations. This is not a consequence of mathematical
dynamical systems theory: Beer, following the same textbook
mathematical definition we do, observes that

The state space S may be numerical or sym-
bolic, continuous or discrete or a hybrid of the

two, and it may be finite- or infinite-dimensional
depending on the number of variables required to
fully describe the state of the system. [12] (p92)

However, there is a strong emphasis on continuous nu-
merical models in the dynamicist literature. For instance,
Van Gelder is quite explicit [31] that these models are
the sort which should be used to understand cognition.
Indeed, he uses the term “dynamical systems” exclusively
for this limited subset of dynamical systems. That might
be acceptable as a shorthand for philosophers who want
to contrast dynamicist with computationalist approaches to
cognition, but to those of us who might want to use the
tools or language of mathematical dynamical systems theory
to study discrete-space models of cognition, it is frustrating.
We have suggested above that the specific term quantitative,
which is also used by van Gelder, should be used for this
subclass of dynamical system.

Mathematically speaking, continuous spaces do not have
to be interpreted using numbers. In practice, the only current
way for scientists to get a handle on continuous spaces
is to use numerical coordinates, so in science continuous
spaces are effectively synonymous with real number spaces.
Typically such models in A-Life have a fairly small number
of variables (although as pointed out in [12], continuous-field
models such as the Smith & Thelen [32] model of the A-
not-B task in human infants do not have a finite number of
real variables).

Most numerical dynamicist models, such as CTRNNs, are
mathematically continuous-time as well as continuous-space.
In fact there is an important mathematical distinction between
systems based on differential equations (which operate in
both continuous time and continuous state) and systems
based on difference equations (which are discrete in time but
not necessarily in state). For instance, discrete-time systems
with one variable can have chaotic dynamics, but at least
three variables are required for chaotic behaviour in smooth
systems.

A. Properties of systems based on differential equations

Well-behaved continuous systems do have various specific
dynamical properties which are not shared by all discrete
systems. For instance, they are guaranteed to be reversible
in a specific technical sense. Moreover, as observed in [3],
real-number systems come with a naturally associated metric
(notion of distance between points in phase space) without
which many of the tools of mathematical dynamical systems
theory are inapplicable; discrete systems do not always have
any readily computable natural metric. Another difference is
that in continuous systems, phase-space trajectories do not
cross one another, which is either meaningless or false for
many discrete systems.

The degree to which discrete systems respect these proper-
ties is the degree to which they work as acceptable models of
continuous systems. For instance, in digital computer simu-
lations of continuous (in the abstract) CTRNN systems, if the
Euler integration step size is set sufficiently small then (over
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the range of phase space considered) the discrete system will
behave qualitatively like the abstract continuous system. For
instance, it will respect reversibility and non-intersection of
trajectories. However, if the integration step size is set too
high, these dynamical properties will break down, producing
discretisation artifacts. As long as the system is operating
“like a continuous system” dynamically, its macroscopic
behaviour will be indistinguishable from that of a continuous
system (albeit a slightly different continuous system from the
analytical one being modelled, due to numerical errors).

There are a number of distinct possible reasons why
someone might argue for the study of numerical systems
over discrete non-numerical systems. In order to further the
debate on what sorts of models cognitive scientists should
use, we believe they should be separated.

1) The researcher is interested in biological systems, and
holds biological systems to be continuous, or at least
approximately so on the appropriate scale. For many
tasks, people and animals have to respond to stimuli
in (effectively) continuous time and space using (ef-
fectively) continuous low-level system variables such
as membrane potentials or chemical concentration.
Similar considerations apply to mechanical robots.

2) The researcher believes that the dynamical properties
of continuous systems are essential to cognition even
in the abstract (whilst allowing that some discrete
systems, such as computational models with floating-
point numbers, can also have those properties). This
could be an interesting hypothesis, but would need to
be advanced and argued explicitly. We are not aware
of anyone who has done so.

3) The researcher holds a weaker version of 2, namely
that dynamical systems with continuous-like properties
are the easiest ones to construct interesting cognitive
models in (regardless, for instance, of whether they are
operating in a discrete or continuous environment).

4) The researcher wants to apply dynamical systems the-
ory tools which require a real-vector phase space to
the analysis of his or her model. Note that none of
cases 1-3 necessarily imply that the analytical tools of
dynamical systems theory are relevant to understanding
particular cognitive processes; rather, they suggest that
certain basic properties are desirable (or necessary) for
cognitive models.

B. A note on biology and continuous models

There is no current consensus on whether continuous
models are the best ones for relevant biological systems. For
instance, many interesting biological phenomena such as cell
replication involve intrinsically discrete processes [33]. It is
argued in [34] that various biological variables with upper
and lower bounds essentially operate as digital systems due
to the regulative dynamics.

On the other hand, there are already successful biological
models which use continuous variables to model discrete
phenomena. Examples are population dynamics (modelling

the size of a population as a continuous variable), neural
field models (modelling a large collection of individual
neurons as a continuous field) and rate coding models of
neurons (modelling a series of separate action potentials as
a continuous firing rate).

C. A note on metric spaces

Occasionally dynamicist authors will make claims about
the a priori suitability of continuous numerical models based
on the metric properties of the state space. For instance: -

[The time set in a continuous dynamical sys-
tem] is a metric space, such that amounts of change
in state are systematically related to amounts of
change in time as measured by that metric. [35]

or: -

The major drawback of hybrid systems is that...
analogue processes and... symbolic processes can-
not interact with each other intimately since the two
pathways are defined in different metric spaces.
[24] (p5)

We consider that these claims are slightly misleading. One
of the features of complex dynamical systems, even ones
characterised by sets of differential equations, is that their be-
haviour is often chaotic; over more than a very short temporal
period, amounts of change in state are not systematically
related to amounts of change in time in any way which is
useful for an analyst. In other words, the state jumps about
over the metric space much as a discrete system’s state does
(Beer makes this point in [4]).

VIII. TIME AND THE DYNAMICAL APPROACH

In this section we will illustrate the value of the “cognition
as it could be” concept by examining the role of time in
the dynamical approach to cognition. Contrary to what some
previous commentators have claimed, we do not believe
that continuous-time models are a priori a prerequisite for
studying cognition in the abstract. Rather, they are appro-
priate when the agent under consideration is situated in a
continuous-time world responding to changes in continuous
time.

Timing has been put forward by as a central plank of the
dynamical approach [30], [35]. This may be reasonable in
terms of contrasting their focus with that of computationalist
approaches, but Van Gelder also makes a distinction between
what he calls “ersatz” time and genuine time: genuine time
is continuous and comes in amounts, whereas ersatz time is a
“mere order”. On this view, computational processes operate
in ersatz time as opposed to real or quasi-real time:

However, none of the properties of the integers,
over and above their constituting an ordered set,
have any relevance to the Turing machine. [35]

In other words, labelling the time steps of a computational
process using integers is held to be essentially a convenience
- we might as well use the letters of the alphabet. Van
Gelder is not wrong to insist that time in dynamical systems
comes in amounts as well as being ordered; this is part of
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the mathematical definition of time in dynamical systems
[7], where the evolution operator ψ satisfies the condition
ψ(t1+t2, x) = ψ(t2, ψ(t1, x)), i.e. evolving for t1 time units
and then t2 time units is the same as evolving for (t1 + t2)
time units.

However, as pointed out in [36], time in Turing Machines,
or other computationally universal discrete-time discrete-
space dynamical systems, does indeed come in quantities.
The fact that each discrete step takes the same amount of
time, and that four steps take twice as much time as two
steps - in other words, the fact that one can apply integer
arithmetic to time steps in computation - is essential to the
field of algorithmic time complexity.

This observation is not a mere formal detail; both com-
putationalist cognitive scientists and applied computer sci-
entists typically assume that real-world implementations of
computational processes take a consistent number of seconds
per time step. This assumption underlies computationalist
research which tries to infer cognitive “algorithms” from
psychological response time data. For instance, the famous
psychological study by Shepard and Metzler [37] on mental
rotation is cited in Johnson-Laird’s seminal computationalist
text “The Computer and the Mind” [38]. In the Shepard
& Metzler study, participants were shown two 2-D pictures
of three-dimensional objects and were asked to determine
whether or not they were the same object seen from different
angles. Response times varied linearly with the actual angle
of rotation, interpreted by the authors as suggesting that the
cognitive process could be understood in terms of constant-
speed mental rotation. Other examples are given in [36].

We believe that where the typical dynamicist approach
differs from the computationalist approach in respect to
time is actually in its situatedness. A major time-related
drawback of computationalist accounts of human cognition
is that humans exist in, and respond to, an environment
which changes in continuous time. This supports dynamicist
demands for human (and animal) cognition to be modelled
in terms of dynamical systems with a continuous (or locally
continuous-like) time dimension. It does not in general
support an insistence that cognitive processes, in the abstract,
need to occur in continuous-like time. The relevant issue
is the relation between the time scale of the cognitive
process and the time scale of the environment in which it
is situated; processes situated in a discrete-time environment
- or processes which operate in an input-processing-output
temporal regime - might get by perfectly well on time “in
ticks”.

IX. CONCLUSION

We conclude that the terms “dynamical” and “computa-
tional” when applied to cognitive science are too loose in
their meanings to be useful as technical terms, and should
be understood as sociological labels for currently separate
research communities. They are not solid enough to bear
much philosophical weight, and if used as a theoretical basis
their ambiguity risks merely reinforcing historical norms.

Our position is also that the phrase “dynamical system”
is over-used. Its most general meaning in mathematics is
simply any system whose state changes over time in a defin-
able time-independent manner, including a Turing machine.
Because mathematical dynamical systems theory is often
(though not always) relevant to dynamicist research, casual
use of its technical terminology is confusing. We strongly
prefer the terms “dynamic” or “dynamical” (approach to
cognition) over the term “dynamical systems”. “Dynamical
system” is best reserved for when technical concepts from
dynamical systems theory are in use, such as attractors, phase
portraits or Lyapunov exponents.

The theoretical emphasis put on continuous numerical
models by some dynamicists is not sufficiently justified.
In our opinion, even the claim that biological systems
“have” continuous variables is contentious, and there is no
a priori reason to use numerical differential equations when
investigating “cognition as it could be” from a dynamicist
perspective.

We recommend finer-grained technical terms to distin-
guish between different aspects of the dynamical and com-
putational approaches. Some of these terms already exist:
“situated”, “quantitative”, “sense-model-plan-act”; some may
need to be coined anew, such as for what we have called
“time-critical” behaviour or what we have termed “symbolic
representation”.
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