
An Unbounded Parallel Binary Tree Adder
for use on a Cellular Platform 

James Weston, and Peter Lee 
Embedded Systems Group 

Department of Electronics, University of Kent 
Canterbury, Kent, CT2 7NT, UK 

Phone: +44 1227 824210, E-Mail: jlw25@kent.ac.uk 

Abstract – Cellular automata are by definition highly parallel 
structures and are therefore capable of giving rise to massively 
parallel systems. The highly parallel nature of the cellular 
automata framework permits the creation of a multitude of 
structures, endowed with the flexibility to perform vast amounts 
of calculations concurrently. This flexibility and parallelism is 
also now present in a number of hardware platforms allowing for 
the adaptation of automata models into hardware. Presented 
herein is a binary tree adder implemented in cellular automata, 
able to perform substantial numbers of additions simultaneously.  
The number of calculations performed is only limited by the 
automata size. The binary tree adder is also more simplistic in 
terms of both states (25 used in total) and structure, than has 
been published before.  Due to advances in hardware technology, 
it is a very realistic ambition for the future to be able to represent 
the tree adder structure on a cellular platform such as, an FPGA, 
allowing for such advantages as, increased robustness which is an 
area regarded as vital for developing the future of electronics 
hardware.   

I. INTRODUCTION 

This paper is principally concerned with demonstrating 
that arithmetic in cellular automata can be performed 
efficiently, and simplistically, giving rise to the possibility of 
implementing highly parallel systems. The desire and 
intention is to show that it is now possible to transfer these 
properties from a cellular automata model into different forms 
of cellular hardware.  

Past research into arithmetic within cellular automata will 
be discussed and will lead into a detailed account of the 
development and implementation of a binary tree adder. The 
binary tree adder presented here is a highly parallel structure 
capable of performing binary addition in a highly parallel 
manner. It has been developed with hardware in mind as it is 
the eventual aim to place the binary tree adder onto an FPGA. 
Field programmable gate arrays offer the flexibility to be able 
to implement cellular structures like the binary tree adder as 
they have the inherent ability to locally link cells of a 
simplistic nature, leading to the advent of vast parallelism 
within the structure. 

The worlds of cellular automata and electronics hardware 
have until recently been rather disparate domains. A technique 
that has brought the two areas closer together is the concept of 
cellular computing [1].  Cellular computing provides the 
possibility of enabling cellular automata structures to be 
embedded within electronics hardware. Field programmable 

gate arrays and the cell matrix [2] are two such platforms 
within which cellular automata can be implemented. 

Cellular computing including cellular automata offers the 
opportunity to create truly parallel systems capable of, in 
cellular automata extensive computation and within 
electronics, numbers of computations only limited by the 
number of cells that can be placed onto a specific platform. 
Cellular computing provides such advantages as vast 
parallelism, simplicity of the cell, and locality, easing the 
burden of communication within a system as well as providing 
the possibility of increasing fault tolerance within a system. 

The concept of cellular computing offers the potential to 
answer one of the eternal questions surrounding the area of 
electronics hardware. How can truly robust systems be 
designed and built? This question is very important for the 
future development of hardware, as designs become more 
complex the need for greater robustness is ever present. The 
answer to this question of how to increase the robustness of 
hardware is through the use of techniques such as self repair 
[3] which can be implemented using techniques derived from 
automata theory. 

The field of cellular automata has been in existence for a 
number of decades since its inception by John Von Neumann 
[4] in the 1940s. During this time cellular automata has grown 
in its popularity as a useful modelling and theoretical tool. 
Much work has been completed using cellular automata from 
such diverse scientific fields as biology and physics as well as 
from numerous other more mathematical fields such as 
computing and engineering. It is this diversity that is 
responsible for the continued and renewed interest in cellular 
automata to this day.  

Von Neumann was the first to entertain the idea of self 
replication in cellular automata with his self replicating 
automaton. He concluded that computation universality and 
universal construction need to be present to enable a self 
replicating machine. Codd [5] then developed upon this 
introducing the periodic emitter (a basic timing element in his 
system) and the data path which allowed him to simplify Von 
Neumann’s ideas.  

Langton [6] then developed these ideas into the first truly 
simplistic self replicating loop and even simulated his 
findings, demonstrating his theory that universal construction 
is not a necessary condition for self replication. Byl [7] then 
simplified Langton’s ideas even further and managed to create 

386

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)

1-4244-0701-X/07/$20.00 ©2007 IEEE



self replicating structures that are substantially less complex
than Langton’s original.

The first signs of computation in cellular automata related
to self replicating loops came from Tempesti [8]. Tempesti
realised that although the self replicating loops were able to 
self replicate they were not capable of performing tasks with
any computational significance, moreover they could be
likened to a software or biological virus capable exclusively of 
self replication. Tempesti introduced the ability to perform
independent constructional and computational tasks alongside
replication. In addition to this the loops also continue to live
after replication, rather than dieing like in the previous work
from Langton.

The remainder of this paper will describe arithmetic in
cellular automata, as well as the details of the binary tree
adder, from its first design phase through to the finished model
of the binary tree adder. The results shown in this paper prove
the possibility of implementing a truly parallel structure in
cellular automata, capable of being transferred onto a cellular
platform with the eventual aim of improving robustness within
electronics hardware through making use of self repairing
technologies.

II. ARITHMETIC IN CELLULAR AUTOMATA

One of the next steps in the developmental history of
cellular automata was the introduction of arithmetic operations
into a cellular automata space. Performing arithmetic
operations within cellular automata is not a trivial process and
can take any of a number of structural forms, depending on the
proposed application. For example, perhaps a digital filter is
being created using binary number representations or addition
is being performed using hexadecimal number representations.

The main reason to try to perform arithmetic operations in 
cellular automata is so that a theory can be obtained that can
be transferred to a form of cellular hardware. The theory in
cellular automata allows for certain factors to be monitored
like synchronisation and communication within the system.
Performing the arithmetic in a cellular manner also allows for
later properties like self repair to be implemented within the
system through making use of the cellular architecture of such
structures.

The pre-eminent starting point regarding the research into
arithmetic in cellular automata presented here, is the advent of 
the particle machine by Squier and Steiglitz [9]. The machine
they proposed, depicted in Fig.1, is capable of addition,
subtraction and multiplication as well as combinations of these
enabling it to perform for example, finite impulse response
digital filtering.

The theory they proposed is based around the collisions of
particles within a tube like structure which they termed the
particle machine. Within this particle machine there are two
addends consisting of four types of particle (both left and right
moving zeros and ones). The addends meet least significant bit
(LSB) first which makes the encoding of the carry bit easier. 

At the cell where the addend particles collide, a fifth type
of particle is placed, known as the processor. This processor is 

Fig. 1. The particle machine.

actually one of two particles used to encode the carry bit
resulting from the collision. Collisions may occur when
particles are travelling in different directions or in the same
direction at different speeds. Fig. 1, shows the general model
of the particle machine with its particles, and processor states.
Also note that the particle machine is open ended for insertion
of particles at either end.

One of the advantages of such a parallel system is the 
homogeneity of the implementation. The composition from
like parts means that only the hardware supporting a particle
set and their interactions needs to be implemented. This in turn
yields decreased design time as each cell is identical and more
simplistic hardware designs become a reality.

Squier and Steiglitz state that they are not concerned with 
retrieving the results and say that the computation is complete
when the result appears somewhere in the array or that it could
come out by using some form of tapping along the array. This
is something that needed to be altered in the binary tree adder
as the result needed to be clearly defined so that it could be
used again later by another processor as part of the tree
structure.

Their paper also details another method for use within the
particle machine whereby the addends are stored on top of 
each other in data atoms which are defined to be stationary.
This has obvious advantages in terms of optimising space
usage, but is not feasible in a system where multiple
processors and interactions may be required. The result needs
to be more mobile and well defined so that it can be used
within another processor cell, this could occur by using a
tapping method, allowing the resultant to move out of the
structure.

They conclude that once a substrate and its particles are
defined, specifying streams of particles to inject for particular
configurations is a programming task, not a hardware design
task and hence the design time has been drastically decreased. 
This also provides added flexibility to the hardware that would
otherwise not be obtained as the particles needed are merely
injected into the system as and when they are needed.

Petraglio [10] then took the particle machine theory and
put it into practice within the structure of self replicating
loops. Due to using the self replicating loops the theory of the
particle machine was altered to fit around the loops. Petraglio
implemented both addition and multiplication and managed to
perform combinations of both of these.

The major difference between the two works is that
Petraglio uses one automaton to compute the end result of a 
single collision between two binary data bits, whereas Squier
uses processor cells to compute the entire addition. As can be
seen from Fig. 2, the starting point for addition  consists of the

387

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



o addends used to create the sum, a self replicating loop and

rough
a sl

( A + B ) * ( a + b )  (1)

he finished automaton is made up of over 30 states and
is e

 issue with Squier and Steiglitz, and to an extent
Petr

n is the binary tree adder, a
syst

ntal objective considered when developing
the

fundamentally important task considered was the
sim

III. THE BINARY TREE ADDER

As mentioned earlier there were a number of aims when
start

eas of the
part

. Initial Stages of Development

The initial form of the adder functions in a similar manner
to th

er one of the main points to
con

evelopment over the particle machine is that a 
resu

bit calculation, which is highly efficient.

Fig. 2. Petraglio’s self replicating loop adder.

tw
a special function cell. The self replicating loop is made up of 
an internal inert loop which is the sheath and an active
external program loop which contains the program to be 
executed as well as the information for self replication.

Petraglio also managed to perform multiplication th
ightly altered method and combinations of both operations

for example, equation (1) (where ‘A’, and ‘a’ are binary
numbers).

T
asily simulated. The method used takes the ideas and

concepts gained from the particle machine and develops a new
method for arithmetic in cellular automata. They proved that
self replicating loops can be used for complex mathematical
operations. This however is not the most efficient way to 
perform these operations within the cellular automata
framework.

The main
aglio’s work is that they are more parallel components

rather than complete parallel systems. What is meant by this is 
that they are built for a single addition and not a complete
series of additions. In the case of Squier and Steiglitz there is a
single particle machine which produces a result and this
machine is then incapable of interacting with another particle
machine through the transfer of resultants between machines.
Petraglio’s work also details how the self replicating loops can 
be started again to perform another addition, but again this is 
not a series of interacting additions it is separate additions, that
cannot interact with each other.

Presented in the next sectio
em with the ability to produce a resultant and then feed

this into another processor and hence create a massively
parallel system, through components capable of interacting
with each other. Petraglio details how to make multiplication
and addition work together but it takes a lot of area and also a 

lot of time, and so is quite inefficient due to the usage of self
replicating loops.

The fundame
Addend 1 Addend 2 

Function Cells 

Self Replicating Loop

binary tree adder was the need for the adder to be a system
of interacting components rather than just a lone component
capable of only a single addition. This process involves
gaining a re-usable resultant and hence a processor capable of
interpreting this resultant. This objective fosters the idea
behind a truly parallel system rather than a parallel
component.

Another
plification of the system so as to make an easier

transference into hardware and also to create the most efficient 
adder possible. The other substantial aspect was to try and
decrease the computation time compared with Petraglio and
hence make the adder more efficient in terms of time.

ing out to produce the finished version of the binary tree
adder. The essential issues thought of when designing the
system were simplicity, efficiency, and parallelism.

The binary tree adder has developed upon the id
icle machine, starting as a simple system, undergoing a

number of design changes to eventually produce a highly
parallel binary tree adder capable of efficiently performing
large numbers of interacting computations.

A

at of the particle machine. It is composed of a single data
path with bi directional flow, a static processor cell, and a 
sheath, this is shown in Fig. 3, stage A. The adder functions by
allowing the states representing binary ones and zeros to flow 
into the processing cell (state 3 at stage A). When the binary
number representations collide at the processor, the processor
cell’s state is updated and it is then ready to output the
resultant in a downward direction.

When designing the initial add
sider was to keep the concept of the particle machine as

this is a highly efficient system. This was achieved through
using the single data path with bi-directional flow. The data
path has bi-directional flow to allow two addends to flow into
the processor. The first addend (highlighted to the left of the
processor in Fig. 3, stage A) moves to the right into the
processor cell and the second addend (highlighted to the right
of the processor in Fig. 3, stage A) moves to the left into the
processor cell. 

The main d
ltant comes out of the processor, as shown by Fig. 3, stage

C, where the resultant has been highlighted. This is unlike the
particle machine, where the result remains inside the structure
of the machine. As can be seen from Fig. 3, the process takes
12 time steps to perform a 3-bit addition, including any carry

388

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



   STAGE A

im

STAG

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 

T e = 0

E B 

14 14 14 14 14 14 14 14 14 14 12 14 17 7 17 9 12 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10 10 1 10 10 10 10 10 10 10 10 10 10 10 10 10

15 2 15

1

e =Tim 9

STAGE C 

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 

14 14 14 14 14 14 14 14 14 14 14 14 14 3 9 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10

10 1 10

10 2 10

10 1 10

10

e =Tim 12

Fig. 3. Three stages
(The numbe ata space) 

Some basic information about the stat
nece

ake place at the processing cell.
ver

3) .
ents a

5) bles data flow to the right, state 9 enables

6) esultant to move downwards in

7) 2 is the stop bit.

two, 3-bit numbers are input
least

. Intermediate Stages of Development (Simplification)

At this stage it was decided to optimise the simplicity of
the

allow other  inputs  to  enter the same processor at  later  times

TABLE 1

Calculation Resultant 

of the initial adder.
rs represent the states in the cellular autom

es / system
ssary to understand the functioning of the adder is as 

follows:
1) All collisions t
2) The processor cell only changes state and ne

location, it is completely static in this sense. 
State 10 is a sheath state to keep the data path

4) State 1 represents a binary zero, state 2 repres
binary one.
State 14 ena
data flow to the left. 
State 15 allows the r
the cellular automata space.
State 11 is the start bit, state 1

8) State 17 is the carry bit.
As can be seen from Fig. 3,
 significant bit first to gain an output. Table one shows all

possible collision permutations within the system at the
processor cell (where CB = carry bit).

B

adder structure, so as to allow for easier transference into
hardware later on, this can be seen in Fig. 4. The processor
cell was made a stand alone cell with a sheath (state 20) and
the inputs were taken away from the processor. This was to 

THE PROCESSOR CELL INTERACTIONS

1 arry 1  Carry 0  1 Output 0 C

1  1 Output 1 Car y 1  Carry 1 r

0  0 Ou  0  Carry 0 tput 0 Carry

0  Carry 1  0 Output 1 Carry 0 

0  Carry 0  1 Output 1 Carry 0 

0  Carry 1  1 Output 0 Carry 1 

CB  Carry 0 CB Output 0 Carry 0 

CB  Carry 1 CB Output 1 Carry 0 

CB  Carry 0 0 Output 0 Carry 0 

CB  Carry 1 0 Output 1 Carry 0 

CB  Carry 0 1 Output 1 Carry 0 

CB  Carry 1 1 Output 0 Carry 1 

during the system was also
removed fro  decreas mplexity,

owever this increased the number of transition rules. This in

intermediate    development.   The   figure   shows    a  3-bit

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 

14 12 14 17 14 2 14 1 14 2 14 11 14 3 9 11 9 2 9 1 9 2 9 17 9 12 9

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

life cycle of the . The sheath
m the inputs to e structural co

h
turn led to the introduction of state 21 in the input number.
This extra input state tells the processor to output a downward
mover state (state 22) to enable the resultant of the addition to 
propagate down through the automata space. 

Fig. 4, shows 3 stages of the binary tree adder after

389

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



  STAGE A

20 20 20

12 14 17 14 2 14 2 14 2 14 21 14 11 0 20 3 20 0 11 9 21 9 1 9 1 9 1 9 17 9 12

Time = 0 

   STAGE

    STAGE B
20 20 20

20 20 20

 C

12 14 17 14 5 9 17 9 12 

m 1

m 1

on.

lation that takes 19 time s
o inputs are highlighted to the left and right of the

t
sum

wnward mover bit, carry bit, and stop

2)
3) ates (9 or 14 depending on the

the

4)
ng.

f
resultant  to be converted as shown in Fig. 5. 
Stat

20 2 20

10 2 10

10 22 10

10

Ti e = 1

Ti e = 9

Fig. 4. The intermediate adder implementation, an example of a 3-bit binary additi

calcu teps to complete. At stage A the
tw
highlighted processor cell. The left input represents three ones
and the right input represents three zeros. These two numbers
then flow into the processor and produce the resultant, which
is highlighted at stage C. The resultant is three ones and a 
nothing number state (state 19). The nothing number state is 
used when there is no carry bit to be output by the processor.

To be able to perform a series of additions using the same
type of processor cell it was realised that the resultan

mation of an addition needed modification. This is so that
it can be used as input into another processor, the process
behind this is shown in Fig. 6, and involved altering the output
in the following way: 

1) Adding extra states at the beginning and end so that
the start bit, do
bit are all present.
Removal of the downward mover state (state 22).
The internal mover st
direction required) needed to be added in between
other states.
Changing the direction of the resultant, to either left 
or right movi

Per orming the modification operation would lead to the
 in Fig. 4, stage C

e 14 in the modified resultant could equally be state 9 
depending on  the direction in which the resultant needs to be

Original Resultant
19 2 2 2 22

Modified e lt
12 14 17 14

R su ant
2 14 2 14 2 14 21 14 11

  Fig. 5. An exam

resultant of three twos is 
ma in a t i u s i y o ter

to another processor cell as an input.

ble to be recognised by
 this

on of
ate

ple of resultant modification.

turned. As can be seen, the
inta ed nd he mod fied res lt i su tabl ready t en

in

C. Resultant Modification (Turning and Concatenation)

This section of development was important to allow
esultants to be processed into a form ar

another identical processor. As mentioned previously
nvolved 4 stages. The entire process of concatenatii

st s and turning of the resultant is shown in Fig. 6. 
The concatenation of states to the front of the resultant is 

shown in stages A, B, and C of Fig. 6. This was achieved by
using the holder cells (state 25). They have been termed the
holder cells as they simply hold a cell in place ready for it to 
be concatenated with the front of the resultant. It can be seen
from stages A, B, and C that the states 21 and 11 are added to
the front of the resultant.

The turning and addition of the internal movement states
is achieved by using the wall like structure shown in stage C. 
The wall referred to is formed by the row of states (state 24, 
another state is used for left turning) highlighted at stage C.
These are used to turn the resultant and add the necessary state
in between depending on whether the resultant needs to be
turned to the left (state 9) or the right (state 14), stages C and
D show the resultant being turned to the right.

The addition of the last three states to the end of the
resultant is achieved simply by passing the resultant over the
three states at the end of the wall, as shown by stage E where 
one by one they are concatenated to the end of the resultant.

On completion of the outlined processes the resultant is 
then in a suitable form to be able to be processed by another
processor cell and hence there is the underlying ability to
create a parallel system of adders interacting with each other.

20 20 20 

20 3 20 

20 20 20

10 19 10

10 2 10

10 2 10

10 2 10

10 22 10

10

390

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



 10 

  STAGE A    STAGE B 

19 10

 10 2 10

10 2 10

10 2 10

10 22 10

10

25

 C STAGE D

10 19 10

21 25

25

25 11 25

25

24 24 24 24 24 24 17 14 12 

STAGE

10 2 10

10 2 10

10 2 10

10 21 10

10 11 10

10 22 10

10

24 24 24 24 24 24 17 14 12 

STAGE E 

17 14 2 14 2 14 2 14 21 14 11 

24 24 24 24 24 24 17 14 12

Fig. 6. he o ear e states and turning of the resultant.

D. Final Version of the Binar

pletely functional
inary adder which has been termed the binary tree adder. It is

poss

 three processors. The two at the
top

A video of an implementation of the binary tree adder can be viewed on the 
eb a : http://www.ee.kent.ac.uk/research/theme_project.aspx?pid=62

al lower processor to be

 dissimilar to the cellular
fram work of ore provides
n ideal platf e binary tree
dd

10 19 10

 T concatenation of fr nt, r , and dir ctional

y Tree Adder resultants then flow into the fin

The final version of the adder1 is a com
b

ible to add any binary number of the same or differing
lengths and also has a carry bit implemented for full
functionality. A representation of the finished tree adder
structure is shown in Fig. 7. 

In Fig. 7, the processors are represented by squares so in
the example shown there are

of the figure take in two inputs each and both produce a 
resultant. The resultants are then altered into the same format
as the original inputs, through the concatenation and turning
mechanism  described  earlier. Having completed this, the two

1

w t

summed together. 
The example in Fig. 7, is a simple example which can be

extended. Theoretically a suitable parallel adder system could
be conceived for any calculation required by using this
process. This could involve any number of processors and
inputs depending on the calculation to be performed and hence
is a massively parallel adder system.

IV. HARDWARE IMPLEMENTATION

he structure of an FPGA is notT
e a cellular automata space and theref

orm within which to implement tha
a er. It has numerous advantages including the ability to 
locally connect cells and some similar properties (the cellular
structure) allowing for the implementation of such a system.

10 2 10

10 2 10

10 2 10

10 21 10

10 22 10

10

25 11 25

10 19 10

25

24 24 24 24 24 24 17 14 12 

10 2 10

10 2 10

10 2 10

 10 14 21 14 11

24 24 24 24 24 24 17 14 12 

391

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



e coFig. 7. A representation of th mpleted binary tree adder.

An FPGA has vantages for implementing
this typ emory

store the transition rules in each cell. FPGA technology also 
brin

d made
up

cell

ompletely separate operations that are possibly
link

cellular platform it is  hoped that the  next  progression will be

 intro ce self repairing technologies to the system. This
a be t form of remem ering the state of each cell at a 

revious tim ystem can
be reconfigure he faulty

performing the same additions
simu

idual
cells

ely
with oth ber of

articipan clud , st, in terms of area and the total
num

s using a 

 a number o adf
e of hardware, for example, the availability of m

to
gs with it a number of other benefits including the ability

to reconfigure the system whenever may be required, and even
the capability to partially reconfigure the FPGA, allowing
different operations to be performed at the same time.

The initial idea for the design of the hardware is shown in 
Fig. 8. The figure shows the planned hardware design at the
first stages of development, where an FPGA is used an

entirely of cells equivalent to the cells in a cellular
automata space. Fig. 8, shows, data cells (D), processor cells
(P), turning cells (T), and resultant cells (R). These are used as 
simplified representations of the 25 data states that make up 
any implementation of a binary tree adder as presented here.

Each cell is likely to be composed of a couple of CLBs
(configurable logic blocks) and should have the same
capabilities as a cell in cellular automata. For example, each

should know all of the transition rules and should be 
updatable in discrete time steps. Each cell will also need the
ability to be in any one of a finite number of states, and have
the flexibility to be locally connected with all of its
neighbours.

The hardware design envisaged for the FPGA is based
around splitting the FPGA in to different segments,
performing c

ed if the need  arises. Fig. 8, shows an FPGA configured to
perform three separate addition operations. Once each of these
are performed a next batch of calculations may be loaded
(through full FPGA reconfiguration). In theory new sections
could be configured after each section is completed or on
demand. A new section may be loaded (through partial
reconfiguration) depending on factors such as the number of
cells required by a calculation and the number of cells actually 
available on the hardware.

Having set up this concept of cellular automata within a

Possible link 
between
structures

D

Fig. 8. An idea for the hardware implementation.

to
m

du
iny he b

p e step so that if a cell malfunctions the s
d to the previous time step, swapping t

cell for a spare operational cell.
Introducing self repairing technologies for the gain of 

increased robustness also leads into the field of fault tolerance
for maximising robustness. The ambition with regard to this is 
to give rise to the possibility of

ltaneously to check the validity of the resultants and
hence the idea of detecting faults within the calculations.

These hardware design options bring about many
interesting properties that may be present within the system
including self healing and fault tolerance to increase
robustness as well as the ease of design as all the indiv

 are made up of the same components. The properties also
bring a number of advantages including decreased design time
and all of the advantages associated with vast parallelism.

V. ANALYSIS AND COMPARISON OF RESULTS

Having created an implementation of a binary tree adder
is interesting to look back and compare this quantitativit

er models. This can be broken into a num
t areas in ing  cop

ber of time steps to completion, and complexity, in terms
of the total number of states and the total number of transition
rules. These are by no means the only way to judge a models
complexity or cost and are merely a representative way of 
performing such a task where in fact other factors could be 
considered to be used for comparison and analysis.

The binary tree adder produces the result of a 3-bit
addition using a maximum space (including input and output)
of 29 cells by 10 cells. This is comparable indirectly with 
other models such as Langton’s loop [6], which start

D

R

P

T

P

P

P

D

D

R

R

R

R R

R

R

DD

D

D

D

D

R

R

R

R

P

D

D

D

R

R

R T

D

UNUSED

Processor

Concatenation
and turning

Completed output 

Input

392

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



spac

state) and 
und

that 
for

are
in c

ferred to in 
the context of imple ry within a form of 

lar hardware. The success with the adder stems from its 
abil

area for further development may be that of adding 

som

ystems 
do 

ime, self repairing technology and fault 
tole

[2] L. J. K. Durbec cias, "The Cell Matrix: 
an architecture for nanocomputing," Nanotechnology,

[3]  Stauffer, "Self-

[4] y of Self-Reproducing 

[5] Press, New 

[6] 
ata," Physica D, vol. 10, pp. 135-144, 1984. 

hysica D, vol. 34, pp. 295-299, 1989. 

," 

[10] empesti, 

 in Artificial 

[11] 

y, vol. 3, pp. 187-

e of 10 cells by 10 cells and then replicates using ever 
greater amounts of space. Comparing the binary tree adder 
more directly to a model closer in purpose to itself shows the 
binary tree adder in a good light. Compared with [10] which 
details a method of binary addition using self replicating 
loops, a binary tree adder implementation is far more space 
efficient than using a self replicating loop. The area taken by 
any model is a necessary factor for consideration in theory if 
the model is to be transferred onto hardware. This is due to the 
inherent physical space constraints on all hardware.  

In terms of the total number of states and the total number 
of transition rules the binary tree adder compares favourably 
to other models showing that it is not too complex. The binary 
tree adder uses 25 states (not including the quiescent 

er 900 transition rules which is comparable with [8]. This 
model uses over 600 transition rules for self replication 
without any of the more complex operations being performed 
which would require more transition rules and more states. 
Comparing the binary tree adder to its closest model would 
again see the binary tree adder compared with [10] which uses 
over 30 states compared to the binary tree adders 25. The 30 
states does however allow the multiplication operation to be 
performed which is not trivial. This is another important 
aspect to consider for transference of a model to hardware as 
there is always limited memory available on which to store the 
set of transition rules and the states associated with these. 

One of the main areas of success of the binary tree adder 
is its time to completion of an operation (cycle time). As 
explained earlier a 3-bit addition is performed in merely 19 
time steps which is highly efficient when it is considered 

a self replicating loop to fully replicate it takes over 100 
time steps in both [6] and [8]. This means that the cycle time 
of [10] the most closely comparable model to the binary tree 
adder must have a cycle time of well over 250 time steps for a 
3-bit calculation. This is due to the loop replication time.    

This analysis and comparison shows that the binary tree 
adder compares favourably and is of significance when 
considering the implementation of cellular automata models 
within hardware. It shows the models suitability to hardw

omparison to other previous models including [9], the 
theory upon which the binary tree adder is based. 

VI. CONCLUSION 

The binary tree adder has proved to be an intriguing 
theory within cellular automata and also when re

menting the theo
cellu

ity of being a vastly parallel, highly simplistic, and 
efficient (in terms of time and space) structure.   

The simplicity of the structure will allow for ease of 
transference onto hardware and also enables the efficient 
calculation of the addition operation compared with previous 
models. 

The development of a multiplier in a similar context to the 
binary tree adder should allow for more complex arithmetic to 
be performed including operations like digital filtering. 
Another 

e form of communication within the system as at the 
moment the operations and movements must start at specific 
times in order for the operation to be performed correctly. This 
would add to the structural complexity but would increase the 
systems intelligence when performing such operations. 

This implementation of a binary tree adder has been 
created using only synchronous cellular automata. It may be 
interesting to investigate the type of system presented here 
within asynchronous cellular automata. Asynchronous s

not have some of the specific timing constraints of 
synchronous systems as outlined in [11] which details some of 
the advantages of implementing asynchronous cellular arrays 
within hardware. 

The binary tree adder is also an interesting theory when it 
is thought about with regard to hardware as it introduces a 
whole number of interesting properties to systems including 
reduced design t

rance. These properties help to increase the robustness of 
new hardware which is a property of great importance for the 
future, as we see the complexity of systems increasing. 

REFERENCES 

[1] M. Sipper, "The emergence of cellular computing," 
Computer, vol. 32, pp. 18-+, 1999. 

k and N. J. Ma

vol. 12, pp. 217-230, 2001. 
G. Tempesti, D. Mange, and A.
replicating and self-repairing multicellular automata," 
Artificial Life, vol. 4, pp. 259-282, 1998. 
J. Von Neumann, Theor
Automata. Urbana, IL: University of Illinios press, 
1966. 
E.F.Codd, Cellular Automata. Academic 
York, 1968. 
C. G. Langton, "Self-Reproduction in Cellular 
Autom

[7] J. Byl, "Self-Reproduction in Small Cellular 
Automata," P

[8] G. Tempesti, "A new self-reproducing cellular 
automaton capable of construction and computation
in Advances in Artificial Life, vol. 929, Lecture Notes 
in Artificial Intelligence, 1995, pp. 555-563. 

[9] R. K. Squier and K. Steiglitz, "Programmable parallel 
arithmetic in cellular automata using a particle 
model," Complex systems, vol. 8, 1994. 
E. Petraglio, J. M. Henry, and G. T
"Arithmetic operations on self-replicating cellular 
automata," in Advances in Artificial Life, 
Proceedings, vol. 1674, Lecture Notes
Intelligence, 1999, pp. 447-456. 
F. Peper, J. Lee, F. Abo, T. Isokawa, S. Adachi, N. 
Matsui, and S. Mashiko, "Fault-tolerance in 
nanocomputers: A cellular array approach," IEEE 
Transactions on Nanotechnolog
201, 2004. 

393

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)


