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Abstract— We evolve small continuous-time recurrent neural
networks with fixed weights that perform Hebbian learning
behavior. We describe the performance of the best and smallest
successful system, providing an in-depth analysis of its evolved
mechanisms. Learning is shown to arise from the interaction
between the multiple timescale dynamics. In particular, we show
how the fast-time dynamics alter the slow-time dynamics, which
in turn shapes the local behavior around the equilibrium points
of the fast components by acting as a parameter to them.

I. INTRODUCTION

Among the insights attributed to Hebb [1] are ideas about
how the connection between two neurons should strengthen
or weaken according to the correlation of their activity. The
main principle behind his reasoning is that if one neuron
stimulates another repeatedly then the strength of their link
should increase. Hebb’s postulate makes intuitive sense when
the two components that are connected behave linearly. That
is, the more one is active the more the other is as well. In
fact, already half a century before him, James in his Princi-
ples of Psychology had written [2]: “When two elementary
brain-processes have been active together or in immediate
succession, one of them, on reoccurring, tends to propagate
its excitement into the other” (p. 566, italics in original).

Following Hebb’s insight a plethora of neural network
models has been proposed to account for learning behaviors.
Generally, these models postulate that learning takes place by
modification of the efficacy of individual synapses; or similarly
the modification of other parameters in the system (e.g. in [3]
learning takes place in the neuron’s threshold). This approach
assumes that the learning-producing mechanisms and the rest
of the internal mechanisms are separate. It also assumes that
changes to the weight in the connection between two nodes
will lead to changes to their correlation. Although this is the
case in simple linear systems, it is not necessarily the case in
more complex nonlinear systems (e.g. [4]).

A different approach has been taken within the Artificial
Life field. The general idea has been to use continuous-
time nonlinear dynamical systems (DS) as models of the
internal mechanisms of an agent and to artificially evolve the
parameters of these, specifying a behavioral task that the agent
has to perform (see [5] for an overview of the approach). This
approach allows the experimenter to synthesize systems that,

when embodied and situated, result in adaptive interactions
with their environment, whilst minimizing the assumptions
about what the internal mechanisms need to be. This approach
has demonstrated: (a) that learning can arise without param-
eter changing mechanisms (e.g. synaptic plasticity, threshold
plasticity); and (b) that the mechanisms responsible for the
learning and the ones responsible for the behavior are not
necessarily separate (cf. [6], [7], [8], [9]).

This work involves the use of continuous-time recurrent
neural networks (CTRNNs see methods section for further
detail). They are convenient models for several reasons. First,
they are universal: any smooth dynamical system can be
approximated to any desired degree of accuracy by these
systems with a sufficient number of nodes [10]. Second, they
are tractable systems and some work studying their dynamics
exists today (e.g. [11]). Finally, they have become increasingly
used for generating adaptive behavior in the artificial life and
evolutionary robotics literature.

There are (at least) two ways of conceptualizing CTRNNs:
one is to regard them as a set of artificial neurons, intercon-
nected by weights playing the role of artificial synapses. A
more general view is to think of them as simple yet generic
nonlinear DS, with no particular relationship to neurons and
synapses. Here we consider both views, hence the quotes
around the word neural in the title.

The motivation for this work is first to understand the effect
of variations in the connection strength on the correlation
between two nodes, in such nonlinear systems. Second, we
are interested in knowing whether a fixed-weight network can
generate Hebbian learning-like behavior. We are also interested
in knowing whether it is possible to synthesize such systems
using simple evolutionary techniques. If it is possible, then we
would like to understand the evolved internal mechanisms.

In order to tackle these questions, we artificially evolve
CTRNNs to perform a Hebbian learning task. The details of
the methods are described in Section II. In Section III, we
report on the evolutionary success for different sized circuits.
We also describe the performance of the best and smallest
successful circuit, providing some detail on the analysis of
the evolved internal mechanisms. Towards the end we discuss
the implications of our results for the different views on what
CTRNNs represent.
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II. METHODS

We use evolution to synthesize a continuous-time recurrent
neural network that implements some version of a Hebb rule.
The conventional rule is as follows: 2 nodes A and B, if
the activations between these two nodes are highly correlated
the weight of their connection increases; if not, it decays.
However, we do not want to explicitly specify this in terms
of what happens to the weights of the connections, since
this carries built-in assumptions about the mechanisms and
architecture required to do so. We want to define the task at
a ‘higher’ behavioral level.

A. Hebbian learning task

Suppose we have a black box and we have access to two
of its variables: A and B. We can perturb these using time-
varying inputs. The mechanism we seek is such that: (1) if
there is no long-term correlation observed between the activity
of nodes A and B, then experimental perturbations to A (in the
absence of any perturbation to B) have no (or little) discernible
influence on B. That is, the activation of nodes A and B become
uncorrelated. (2) But if there is some long-term correlation
between their activities, a stage is reached where experimental
perturbations to A (in absence of any perturbations to B) have
a correlated influence on the activation of B.

The task has two phases (see Figure 1). During the first
phase time-varying perturbations are applied to the input of
nodes A and B. This phase lasts 100 units of time and we will
refer to it as training. During the second phase a time-varying
perturbation is applied only to node A, also for 100 units of
time. This phase we will refer to as testing. Before each phase
a time delay is introduced where no perturbations are applied.

Input A

Input B

Node A

Node B

Apply input to 
nodes A & B

Apply input to A only Random
Delay

training testing

Random
Delay

Fig. 1. The structure of an individual Hebbian learning trial. The trial starts
with a random delay, where no input is applied. Then, inputs are applied to
nodes A and B (training phase). The inputs can be correlated or uncorrelated.
In the example shown, the perturbations have different frequencies. Here we
show the minimum and maximum frequencies used: fA = 1 and fB = 2.
This is followed by another delay. Perturbations are then applied to node A
only (testing phase), while the correlation between the activities of A and B
is evaluated.

The length of the delay is chosen at random between [10,
20] units of time. The time-varying input is a sine wave, with
variable frequencies: It = sin(kft), where It is the external
input at time t; k (0.2) is a constant of proportionality; and
f determines the frequency of the wave, chosen uniformly
at random between [1, 2]. The perturbations to the system
during training can be of two different types: correlated or
uncorrelated. For the correlated training, sine waves with
similar frequencies are used, randomly chosen every time so
that |fA − fB| < 0.05, where fi is the frequency given as
input to node i. For uncorrelated training, perturbations are
given with sine waves of different frequencies, also randomly
chosen. It is ensured that frequencies are not too similar during
uncorrelated training by constraining |fA − fB| > 0.2.

B. Dynamical neural network

For the ‘black box’, we use a continuous-time recurrent neu-
ral network (CTRNN) with the following state equation [11]:

τiẏi = −yi +

N∑
j=i

wjiσ (yj + θj) + siIi (1)

where y is the activation of each node; τ is its time constant;
wji is the strength of the connection from the jth to the ith

node; θ is a bias term; σ(x) = 1/(1 + e−x) is the standard
logistic activation function; I represents the external input
(e.g. from a sensor); N represents the number of nodes in the
network; and si is a ‘sensory’ weight for the external input.
Only the two nodes that receive external input (A and B) have
sensory weights. In simulation, node activations are calculated
forward through time by straightforward time-slicing using
Euler integration with a time-step of 0.1. The network is fully
connected.

C. Evolutionary algorithm

The parameters of each circuit (i.e. weights, biases and
time-constants for each node) are evolved using a version of
the microbial genetic algorithm [12]. These are encoded in a
genotype as a vector of real numbers over the range [0, 1]. Off-
spring of microbial tournaments are generated as a mutation
of the winner of the tournament (i.e. no recombination). The
mutation is implemented as a random displacement on every
gene drawn uniformly from a Gaussian distribution with mean
0 and variance 0.05. Each gene is forced to be in [0, 1]: when
a mutation takes a gene out of this range it is reflected back.
The offspring replaces the loser of the tournament. Genes
are mapped to network parameters linearly between [-10, 10]
for biases and inter-node weights, and to [0, 10] for sensory
weights. Time-constants are mapped exponentially to [e0, e5].
The size of the population used is 50. We define a generation
as the time it takes to generate 50 new individuals. A minimal
1D wrap-around geography [13] with demes of size 10 is used:
such that only nearby individuals can compete in tournaments.

D. Fitness evaluation

The fitness of a circuit is obtained by maximizing the
correlation coefficient on trials where inputs have similar
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frequencies and minimizing the absolute value of the cor-
relation coefficient on trials where the inputs have different
frequencies. We define the correlation of two time series, Y
and X , during phase p (p = 1 for training and 2 for testing)
using the Pearson product-moment correlation coefficient:

r(Y, X, p) =

∑te

i=ts(xi − x̄)(yi − ȳ)√∑te

i=ts(xi − x̄)
√∑te

i=ts(yi − ȳ)
(2)

where ts and te denote the start and end of phase p; xi and
yi are the values in the time series X and Y; x̄ and ȳ are the
average activations of X and Y, respectively. The correlation is
calculated only if both of the standard deviations are nonzero,
otherwise correlation zero is given.

The fitness is composed of six parts and it is calculated
by evaluating the circuit on R independent trials. The fitness
is, thus, given by the multiplication of the averages of each
component as follows:

f = ā · b̄ · c̄ · (1 − d̄) · (1 − ē1) · (1 − ē2) (3)

The first three components measure the correlation between
the input signals and the activities of the nodes: a =
r(A, IA, 1) is the correlation between the input to A and the
activity of A during training; b = r(B, IB , 1) is the correlation
between the input to B and the activity of B also during
training; c = r(A, IA, 2) is the correlation between the input
to A and the activity of A during testing. We would like to
maximize these. Negative values are clipped to 0.

The last three components measure the relation between the
correlations of the two nodes during training, x = r(A, B, 1),
and testing, y = r(A, B, 2), phases: d = |x − y| is the
absolute difference between the correlation of nodes A and
B during training and testing; e1 =

√
(1 − x)2 + (1 − y)2 for

trials where similar frequencies are applied we would like the
activities of A and B to be highly correlated; e2 =

√
x2 + y2

for trials where different frequencies are applied we would
like the activities to be as uncorrelated as possible. These
components we seek to minimize.

E. Incremental evolution

During the first stage of evolution, individuals in the
population are evaluated only on one consecutive trial after
initialized. This is repeated 100 times per circuit (R = 100).
During this stage the state of the nodes are initialized to 0
at the start of the trial. Once any individual in the population
obtains a fitness greater than 0.75, the task becomes harder.
During the second stage, the nodes are initialized at random
in [-10, 10] and the task involves evaluating the circuit on two
consecutive trials without reinitializing the circuit’s state. To
keep evaluation times similar R = 50, also the variance in the
mutation is decreased to 0.01. The third and last stage consists
of 5 subsequent trials and R = 20.

III. RESULTS

A. Preliminary study: effect of varying weights on correlation

Before we begin the main part of our results it will be useful
to understand what is the effect of changing the strength of
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Fig. 2. Effect of weight changes on the correlation between node activity.
Average correlation coefficient as the weight from node A to B is varied
(thick line). Average taken from 1000 randomly generated 2-node CTRNNs.
Example effects of the weight on the correlation from two of those circuits
(thin black and gray lines).

the connection from node A to B on the correlation of their
activities in nonlinear dynamical networks. In order to gain
some insight into this question, we analysed 1000 randomly
chosen 2-node CTRNNs from the same range as that used
for the evolutionary experiments. For each, we evaluated
the correlation between the activities of both nodes for 141
weights connecting A to B evenly spaced between -7 and 7.
Each circuit is first integrated for 200 units of time from
a random initial activation (between [-10, 10]). This allows
the system to settle in its long-term state. The correlation is
measured for the following 100 units of time, as node A is
perturbed by a sine wave with a randomly chosen frequency.
This is repeated 1000 times for each circuit and for each
weight. The thick black line in Figure 2 shows the mean
correlation over all generated circuits. As can be observed,
when the weight is negative there is likely to be some negative
correlation between the two nodes. Analogously, when the
weight is positive there is a good chance of some positive
correlation. Note that the correlation, on average, does not
grow particularly stronger or weaker as the absolute value of
the weight changes. Also, note that (on average) the correlation
drops to 0 only when the weight is exactly 0.

However, the most relevant insight in this preliminary study
is not to be obtained from the average over hundreds of
circuits, but in particular examples of these nonlinear systems.
The thinner lines show two examples out of all randomly
generated. In the example shown in the thin black line, the
activities are most correlated at a particular inhibitory value
for the weight, but decreases to near zero correlation when
weakened until there is virtually no weight. Interestingly, the
activity remains almost completely uncorrelated after strength-
ened. Also, increasing the strength of the inhibitory connection
results in slightly stronger negative correlations. In the second
example (gray line) the correlation is zero when there is no
weight. The slightest excitatory weight makes the activity
highly correlated. However, increasing the strength results in
less correlation, not more. This is until a minimum is hit
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and the correlation starts going up again. On the other hand,
setting the weight to any inhibitory strength results in a steady
strong negative correlation, regardless of the strength. These
individual examples show just how complex and unintuitive
the relation between increasing/decreasing the weight and the
correlation between the activities of both nodes can be.

B. Evolutionary success using small circuits

Is it possible to evolve a non-weight-changing circuit to
perform Hebbian learning behavior? To answer this question
we performed evolutionary runs using 3 and 4 node circuits.
No 3-node circuits out of 20 advanced to the second stage.
Much more successful were populations of circuits with extra
components. After 10000 generations, we found 11/20 4-node
populations that reached the last stage of the incremental pro-
tocol. The best fitness of 9/11 of those populations was greater
than 0.78 at the end of the runs. Fitness greater than 0.78
is regarded as successful from analysis of their performance.
Figure 3 shows the run that led to this circuit. During the
first hundreds of generations the population’s fitness remains
in stasis around 0.28 Around generation 1700 the population
finds a portal to higher fitness. At generation 3141 (first
dashed line) the task changes to the second stage after the best
performing circuit in the population reaches the 75% threshold.
At this point, the fitness of the best individual (as well as the
average) drops significantly. This means that the circuits in
the current population had not generalised to more than one
consecutive trial. After less than 1000 generations more, the
circuit reaches (second dashed line) again the 75% threshold
on the task involving 2 consecutive trials. At this point the task
changes to 5 consecutive trials and the circuit’s performance
does not drop as much, meaning that the circuit generalized
well. All of the features mentioned for this evolutionary run
are qualitatively similar for the rest of the successful runs. It
is the best circuit evolved in this run that we analyse in detail
in the rest of this paper. The best evolved network achieved a
fitness of 0.83 on a more thorough fitness evaluation performed
at the end of its evolutionary run. This involved 106 tests
using randomly chosen frequencies, time delays and initial
activations on 5 consecutive training and testing trials. This
was performed using a time-step of integration an order of
magnitude smaller than that used during evolution (0.01) to
avoid time integration errors.

C. Best evolved 4-node circuit

What can we say about the best evolved architecture? A
graphical depiction of the parameters are depicted in Figure 4.
There are a number of important things to note. First, com-
ponents A, B and D are fast-acting, while the C component
is significantly slower. Node A has a high threshold and
strongly inhibits itself. Nodes A and B have similarly strong
connections to D, but one of them excitatory and the other
inhibitory. D has virtually no self-connection but a strong
excitatory connection to the slower node in turn. The slow
node has a very low threshold and highly excites itself. In
general, the connections between A, B and C are very weak.
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Fig. 3. Plot of the best (black) and average (gray) fitness of the population
versus generation resulting in the best evolved 4-node circuit. Only the
first 6000 generations are shown. The transition between the stages in the
incremental evolutionary protocol are marked with dashed lines. Transitions
occur when the best fitness exceeds 0.75 (dotted gray line). The evolutionary
run shown here is representative of a typical successful one.

BA

C

Input A Input B

D

Fig. 4. A graphical depiction of the best evolved CTRNN. The shading
scheme is similar to that used in [14]. Nodes are shaded according to their bias,
with higher threshold nodes (which require more excitation to activate) shaded
darker. Excitatory connections are shaded black and inhibitory connections
are shaded gray, with the width of the line proportional to the strength of the
connection. The time-constant parameter for each node is represented by the
size of the circle, with larger circles representing slower nodes (integrating
over longer periods of time). The slow node (C) should be displayed 7 times
larger than the fast nodes (A, B and D), but this is impractical for this figure.

Thus, most of their interactions are mediated by node D. These
factors play an important role in the generation of the circuit’s
learning behavior as we will see ahead.

D. Performance of best evolved circuit

What does the circuit do? In order to visualize the circuit’s
behavior, we can record the activity of each of the components
of the circuit as well as the external perturbations applied
during an example trial. Figure 5 shows this in a trial where the
input to A and B are first correlated and later when the input is
uncorrelated, separated by a dashed line. We can observe how,
after correlated perturbations have been applied, the activities
of A and B remain highly correlated: every time node A ‘fires’,
so does node B. In contrast, after uncorrelated perturbations
are applied, the activities of these nodes becomes highly
uncorrelated. In the figure we can also see how the slower node
(C) adopts different states for each of the scenarios; similarly
node D adopts different patterns of activity altogether.
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Fig. 5. Example sequence trial. Top two rows show the external perturbations
to nodes A and B. The bottom four rows show the sigmoided activity of each of
the nodes in the circuit. The areas shaded in light gray depict training phases.
The areas shaded in darker gray depict testing phases. Time proceeds from left
to right along the horizontal axis. The circuit is first trained using similar time-
varying perturbations (1). After a delay, the circuit is evaluated while receiving
a different frequency input on A (2). The correlation between the activations
of node A and B is 0.98. Subsequently, the circuit is trained on two random
but different frequencies (3). When evaluated (4), the correlation between the
activities of A and B is -0.02. The ‘behavioral connection’ between nodes
A and B has strengthened during the first part of the trial (1, 2) and then
weakened during the second part of the trial (3, 4).

How well does the circuit learn? In Figure 6a we visualize
the relation between the correlation of nodes A and B during
training (horizontal axis) versus the correlation during testing
(vertical axis). The figure shows 1000 examples using ran-
domly chosen frequencies, time-delays and initial activations
for similar (black points) and different (gray points) time-
varying perturbations. As can be observed, application of
similar frequency inputs generates correlation in the activities
of A and B during training and this leads to correlation during
the test phase, even though no input is applied to B. Similarly,
presentation of different frequencies generates uncorrelated
activity during training, which in turn leads to uncorrelated
activity during testing.

There are two other questions of interest in the context of a
circuit that learns. The first is to do with the plasticity of
the circuit. How many times can the link between A and
B re-strengthen and re-weaken? Does the plasticity harden
after some trials? Figure 6b shows the correlation on the ith

trial following a correlated training phase (black triangles) or
following an uncorrelated training phase (gray boxes), when
all previous trials were randomly chosen to be either correlated
or uncorrelated with 50% chance. As can be seen, the circuit
is capable of maintaining high performance even after 100
re-learning experiences. This demonstrates generalized behav-
ioral plasticity.

The second question of interest concerns the circuit’s mem-
ory. How sensitive is the circuit to longer time delays? We
address this by testing its performance on a bigger range of
time delays than it was evolved for. Figure 6c shows the
average correlation coefficient for delays between 0 and 100
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Fig. 6. Performance of best circuit. (a) Correlation during training versus
correlation during testing, for trials with different time-varying perturbations
(gray) and similar perturbations (black). (b) Relearning ability. Each point
shows the average correlation coefficient on the ith trial over 10

5 different
runs. Black triangles correspond to the correlation coefficients after correlated
training (good performance should be near 1). Gray squares correspond to the
correlation coefficients after uncorrelated training (good performance should
be near 0). The gray vertical bar represents the range of trials the circuit
was evolutionary trained for [1-5]. (c) Robustness to time-delays. Average
correlation coefficient of the activity of node A and B during the testing
phase for 10

5 repetitions with randomly chosen train and test inputs, for
correlated input (black line) and uncorrelated input (gray line) using different
time-delays between training and testing phases. The gray area represents the
range of delays the circuit was evolutionary trained on [10-20].

units of time. The circuit is evaluated during the first trial
105 times for correlated as well as uncorrelated trials using
different initial activations and frequencies of sine waves. As
can be seen, the memory for the learned correlated input does
not decay across the range measured. In contrast, as the time
range increases after uncorrelated training, the activities of the
two nodes cease to be uncorrelated gradually. Eventually, it
becomes indistinguishable from the activity after correlated
training. In other words, after extended delays, the circuit
‘forgets’ how to ‘behave’ following uncorrelated training; yet
‘remembers’ perfectly well what to do after correlated training.
We will come back to this point in the dynamical analysis.
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Fig. 7. Interaction of multi-timescale dynamics during uncorrelated training
(a) and correlated training (b). (i) Activity in output state space of the fast
nodes A and B during a set of training examples with (a)(i) different-frequency
perturbations to both nodes and (b)(i) same frequency perturbations. The
shades of gray represent the state of node D for each possible state of nodes
A and B. White represents D=0 and the darkest shade of gray represents D=1.
(ii) Activity of slow dynamics (output of node C) through time for the same
set of training examples. The region shaded in light gray corresponds to the
training phase and the region in darker gray corresponds to the testing phase.
Delays are not shaded. (iii) Activity in state space of fast nodes after training,
while node A is being perturbed (testing phase).

E. Analysis of the multiple time-scale dynamics

How does this nonplastic circuit produce Hebbian learning
behavior? We know dynamics are occurring at two different
time-scales. The inputs change the activations of A and B
almost instantaneously because both are fast acting. These
change D in turn. We also know that C’s slower dynamics is
influenced mostly by the activity of D. In order to understand
this circuit’s mechanisms, we need to understand (a) how the
fast dynamics influence the slow dynamics and (b) how the
changed slower dynamics affect the fast dynamics, in turn. In
order to address these questions, we visualize the activity of
the circuit in its fast and slow state spaces using a set of trials
with different frequencies covering the whole range. We are
particularly interested in the differences between the structure
of the activities when the perturbations during training are
correlated and when they are not.

Figures 7ai and 7bi show the trajectories of the sigmoided
output of nodes A versus B during the last 80 units of time of
the training during uncorrelated perturbations (7ai) and during
correlated perturbations (7bi). The shades of gray represent
the state of node D for each possible state of nodes A and B.
The cancellation of activities from A and B during correlated
activity means that node D is maintained in a mid-level of

activation (7bi). In contrast, during uncorrelated activity node
D oscillates with the difference between nodes A and B (7bi).

How does this affect the slower component? Figures 7aii
and 7bii show the activity of C throughout each of the trials,
the light gray region represents the training phase and the
darker gray represents the testing phase. During uncorrelated
input (7aii), the firing of node D results in the saturation of
C. In contrast, during correlated input (7bii), the absence of
activity in D allows C to rest in its off state. As a result of
training, C is left in two different states. More importantly,
this difference in state persists during the testing phase (see
darker shaded regions in 7aii and 7bii).

The long term changes in C modulate the fast dimensional
dynamics in turn. Figures 7aiii and 7biii show the activity of
the fast nodes during the testing phase. Even though the pertur-
bations to A at this point are the same, the patterns of activity
are significantly different. In fact, the only difference in the
system is maintained by C. The different patterns correspond
to the correlation coefficient in a straightforward manner:
activity along the diagonal means that both nodes are firing in
phase (7biii). This results in an average correlation coefficient
of 0.99. In contrast, activity parallel to the horizontal axis
corresponds node A having little or no influence on node B
(7aiii), resulting in an average correlation coefficient of 0.01.
Finally, it is important to note that the C component does
not only modulate the dynamics of A and B. It also plays an
active role in the generation of correlated activity, as can be
seen from Figure 7bii.

F. Dynamical analysis of best evolved circuit

We can use tools from DS theory to further understand the
evolved mechanisms. We will focus on two questions: what
are the equilibrium points of the evolved system? and how do
the trajectories flow into these equilibrium points for each of
the different scenarios?

The global dynamics of the evolved system are rather sim-
ple: with just one equilibrium point (EP). When unperturbed,
this point attracts all trajectories in the phase plane. In the con-
text of the Hebbian learning task, it is near this EP where the
system arrives at after training with correlated input. Hence,
determining the local behavior (how the trajectories proceed
into this point) corresponds to the system’s performance during
the testing phase after correlated training. We will refer to this
as the correlated EP.

What about the system after uncorrelated training? Is there
not a long-term behavior associated with this scenario? There
isn’t. At least not in the strict sense. This explains why, when
longer time delays are introduced, the performance of the
system falls back into what it would be had been trained
with correlated input. However, it is here where the system’s
operation on two rather different time-scales allows it to have
a ‘temporary equilibrium point’. Although for the time-scale
of the slow node this point is merely a transient, for the much
faster subset of the dynamics the state will arrive at this point
in the relative long term. From the previous section, we know
C is near one after training with uncorrelated input. Hence,
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its influence on the states of the fast nodes is nearly constant.
We can approximate the relatively-long-term behavior of the
system after training with uncorrelated signals by studying the
dynamics of the modified circuit that assumes C is always one.
Similar to the correlated case, the reduced circuit has only one
EP. This is also a stable attractor, shifted on the AB plane. We
will refer to it as the uncorrelated EP.

While there is no global difference in the dynamics between
the two scenarios, we can still ask about the local behavior
around their associated EPs. How do the trajectories proceed
in their vicinities? This is determined by the eigenvalues of the
Jacobian matrix of the system evaluated at these points [11].
Both EPs are mixed: the trajectories proceed in a straight line
towards the fixed point in some dimensions but proceed in
spirals in other. Figures 8a and 8b show the flow around
the correlated and uncorrelated fixed points, respectively. It
is the qualitative difference in the local behavior around the
relative-long-term behavior of the two EPs that generates the
two different correlations patterns between A and B.

Next we visualize the system’s dynamical properties in a
3D projection of its 4D activation space. Figure 8c shows
the circuits EPs and the behavior of the system around its
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Fig. 8. 3D projection of the circuit’s state space. (a) Flow (gray trajectories)
around the correlated EP (black disk). (b) Flow around the uncorrelated EP
(light gray disk). (c) The light gray disk represents the system’s temporary EP
associated with the state after uncorrelated training. The black disk represents
the system’s EP associated with the state after correlated training. Trajectories
in black depict the behavior of the system in activation state space when
systematically perturbed away from the equilibria through node A. The gray
trajectory depicts the movement between the two points corresponding to the
strengthening and weakening of the ‘connection’ between A and B.

EPs as it is systematically perturbed through node A. The
perturbations are in the form of positive and negative parts
of a sine wave with different frequencies. The black disk
represents the correlated EP. Although the uncorrelated EP
only has A, B and D coordinates, we can visualize it where
the sigmoided output of C nears 1. This is represented by
the gray disk. The trajectory in gray depicts the flow of
the system from the uncorrelated to the correlated EP after
longer delays. The black trajectories to the left depict the
system in activation state space when perturbed away from
the correlated EP. The state of the system remains at all times
very near a 2-dimensional plane that cuts the A and B plane
diagonally. This results in their activity being correlated. As
remarked earlier, it is important to note that C plays a role
in maintaining the activities of A and B on this plane. The
black trajectories around the uncorrelated EP for the same
pattern of perturbations show a completely different structure.
Most importantly the activity in the B plane is minimized. This
results in uncorrelated activity. Hence, the ‘weakening’ and
‘strengthening’ of the behavioral connection between nodes
A and B corresponds to the shift between these two distinct
regions of dynamics: the global EP (black disk) and the
‘temporary’ EP (gray disk).

G. Evolved time parameters in successful circuits

Most of the analysis in this paper deals only with the internal
mechanisms of the best evolved and smallest possible circuit
(sections C through F). Is there something in common in the
parameters of all successfully evolved circuits? Due to the
high-dimensionality of parameter space, we will not attempt
to characterize successful circuits in general. Instead, we will
focus only on the time-constants because of their relevance in
the analyzed circuit. Figure 9 shows the average and standard
deviation of the evolved time-constants for all successful 4-
node circuits. The C node was arbitrarily chosen as the slowest
of the two extra components. As can be seen similar to the
analyzed circuit, all A, B and D nodes evolved to be as fast as
possible. In contrast, one of the extra components (C) is, on
average, much slower acting. More importantly, we observed
the behavior of two of these other successful circuits and found
much similar mechanisms at play.
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Fig. 9. Evolved time-constants for the successful 4 node circuits. Averages
for each of the nodes indicated by the bars and standard deviations with
the lines. Dashed gray line indicates the smallest (i.e. fastest) time-constants
allowed.
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IV. SUMMARY AND DISCUSSION

In this paper, we have (a) shown how unintuitive the relation
can be, in nonlinear systems, between changing a weight
and the correlation between the two nodes connected by that
weight; (b) demonstrated that CTRNNs with fixed weights can
be evolved to produce Hebbian-like learning; and (c) analyzed
the behavior and dynamics of the best and smallest evolved
circuit. Learning is shown to arise from the multi-timescale
dynamics. In particular, the evolved mechanism requires two
extra components: one fast and the other slow. The fast node
fires when the activities of nodes A and B are different, and
the firing of that node influences the slow one which then
settles into two different persistent states. The changed slow
component, by acting as a parameter to the fast components,
shapes their patterns of activity in turn.

In connectionist artificial neural networks, it is common
for all neurons to be constrained to operate at a single time-
scale. It is for this reason that longer term changes to the
behavior of the system have to be introduced as additional
parameter changing rules. These rules are generally applied
to the weights of the connections. One example is backpro-
pogation learning, another is Hebb’s rule. It is now known that
neurons can act over a range of different time-scales, and so
can changes in synaptic efficacy. Furthermore, the time-scales
of activity of the two can overlap (see [15] for a review). If
we think of CTRNNs as models of interconnected neurons,
then we are essentially allowing neurons to act in a range
of different time-scales. Under this view, this work suggests:
(a) that Hebbian forms of learning can arise without synaptic
plasticity; and perhaps more importantly: (b) that it can do so
via neurons (or sets of neurons) interacting over multiple time-
scales. There are at least two ways in which this is feasible
in nervous systems: single cell (i.e. changes to their intrinsic
properties) and network (i.e. active reverberation in recurrently
connected circuits) mechanisms. Both are likely to co-operate
in generating persistent activity [16]. The circuit analyzed in
this paper resembles more closely the former.

In the broader ‘CTRNN as a dynamical system’ view, each
of the nodes can evolve to instantiate any possible component,
with certain intrinsic properties and with particular rules for
interacting with the rest of the nodes. Some nodes could
resemble, for example, neurons; others: population of neurons,
a range of neurotransmitters, synapses, and so on. In fact,
these need not be constrained to things you find in brains,
but also things in other systems: plants, for example. In this
perspective, our work suggests that Hebbian forms of learning
can be present in a broader range of systems, regardless of
whether they have synapses and neurons or not. The interesting
question becomes: can we extract general principles about
the properties of the components required for learning? More
importantly still, we believe further understanding of these
systems could lead to practical suggestions to the community
studying learning and memory in living organisms. Sugges-
tions to study components, processes or even organisms not
generally considered.

This work raises several interesting directions for future
research. First, the task could be further developed in several
directions. Of particular interest would be to alter the task
to allow a continuum of different strengths of correlation. At
present, it suffices for the system to have just two modes of
long-term dynamics: fully correlated or nil correlated. Also
interesting would be to increase the range of delays experi-
enced to encourage the evolution of systems that do not easily
forget. Second, we need to understand better how the slower
components relate to synaptic plasticity mechanisms. One
question that we can ask is, can we extract a weight-changing
rule (or any parameter-changing rule) from the evolved dy-
namics of one of these circuits? Finally, although all of the
successful circuits evolved slower-acting extra components,
slow components are not the only way to generate slower-
time dynamics, as remarked earlier. An interesting direction
of research for the future is to encourage the evolution of
reverberatory dynamics by evolving larger systems and/or
constraining components to a smaller range of time-constants.
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