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Abstract- Social order and unity require consensus among 
individuals about cooperation and other issues. Boolean network 
models (BN) help to explain the role played by peer interactions 
in the emergence of consensus. BN models represent a society as 
a network in which individuals are the nodes (with two states, e.g. 
agree/disagree) and social relationships are the edges. BN models 
highlight the influence of peer interactions on social cooperation, 
in contrast to models, such as prisoner's dilemma, that focus on 
individual strategies. In BN models, the behavior that emerges 
from peer interactions differs in subtle, but important ways from 
equivalent mathematical models (e.g. Markov, dynamic systems). 
Despite their simplicity, BN models provide potentially important 
insights about many social issues. They confirm that there is an 
upper limit to the size of groups within which peer interactions 
can create and maintain consensus. In large social groups, a 
combination of peer interaction and enforcement is needed to 
achieve consensus. Social consensus is brittle in the face of global 
influences, such as mass media, with the peer network at first 
impeding the spread of alternative views, then accelerating them 
once a critical point is passed. BN models are sensitive both to the 
network topology, and to the degrees of influence associated with 
peer-peer connections.  

I.  INTRODUCTION

In the tribal societies in which early humans evolved, social 
groups usually consisted of mere handfuls of people. One of 
the unsung triumphs of civilization is that we have managed to 
create communities in which literally millions of people can 
live together in relative harmony. As societies continue to 
grow, to mix and to adopt new forms, it is important to under-
stand how harmony is achieved, and why it breaks down so 
catastrophically from time to time.  

Social order and unity require a level of agreement (con-
sensus) between individuals. For a society to avoid splitting 
apart, its members need to agree on certain basic issues. They 
need to agree that they are all members of the same society. At 
the very least they need to agree to cooperate enough for soci-
ety to function. Note that by consensus here we do not mean 
complete conformity, nor even that every individual will agree 
on every issue.. 

In tribal societies, consensus arises through interpersonal 
relationships. The anthropologist Robin Dunbar argues that 
whether it be apes or humans, there is a natural group size, and 
larger groups fragment [1]. Many apes maintain social rela-
tionships by grooming one another, but the number of indi-
viduals that one ape can groom regularly is limited. Conse-
quently, for apes and monkeys, social grooming leads to a 

natural group size of about 40-60 individuals. For humans, 
Dunbar argues that the greater efficiency of speech leads to a 
natural group size of 100-150 individuals. This observation 
raises a crucial question: how is social cohesion maintained in 
the much larger human societies of today? How does a com-
munity with shared values emerge from a large group of self-
interested individuals? One answer is that the structure of 
human social networks can influence the spread of informa-
tion and attitudes.  

However, many questions about consensus remain. How do 
personal relationships lead to consensus? Why is there a limit, 
a natural group size? How can consensus and cooperation be 
achieved in large societies? Conversely, what factors allow 
diverse opinions to coexist? What effect do different social 
structures have on consensus?  

In this short account, we summarize some of our recent 
findings about social consensus that derive from the applica-
tion of Boolean network (BN) models. We summarize these 
results as a series of Alife experiments that deal with three 
social issues: (1) emergence of social consensus by peer inter-
actions; (2) the influence of mass media on public opinion; 
and (3) the role of peer influence in maintaining law and or-
der. In such a short account, we cannot present a comprehen-
sive, detailed overview of all our past results. For this reason 
our accounts of experiments (1) and (2) are chiefly summaries 
of the main findings. However, the present study does include 
several new results, especially from our “law and order” 
model in experiment (3), which we do describe in more detail. 

II.  COMPLEXITY AND SOCIAL NETWORKS

A.   From complex individuals to complex networks 
Social groups consist of agents (people, often referred to as 

“actors”) linked by networks of interactions and relationships. 
The richness of these networks makes society complex. How-
ever, models of social order have usually omitted or simplified 
the pivotal role that inter-personal interactions play.  

Game theoretic models focus on individual strategies, such 
as cooperation or defection. For instance, the Prisoner’s Di-
lemma model [2] identifies conditions under which reciprocity 
is favored within groups of individual agents. However, the 
patterns of interactions within a social network play a crucial 
role in the emergence of cooperation within such networks 
[3],[4],[5],[6],[7],[8]. Furthermore, the motivation for human 
behavior often extends beyond selfish opportunism. An indi-
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vidual’s beliefs and attitudes are often culturally mediated.
They may be colored, for example, by the individual’s experi-
ences and by interpersonal relationships and the influence of 
the person’s peer group.

In contrast to game theoretic models, our work stresses the 
way in which consensus emerges from interactions between
individuals, rather than the strategies that individuals them-
selves adopt [9]. That is, we consider complex social net-
works, rather than complex individuals. In our models of so-
cial consensus, we have adopted an approach that is based on
ideas and methods drawn from artificial life and complexity
theory [10],[11]. Complexity can be understood in terms of 
networks, and networks make a “natural” way of representing
patterns of social relationships (Fig. 1). So the most straight-
forward way of capturing social complexity, is to simulate a
social group as a network in which the nodes are “actors” 
(agents) that represent individuals and the edges represent the
relationships (interactions, communication links) between
them.

B.  Social relevance of network topology
The pattern of connections between individuals in a social

network is usually associated with particular kinds of social
organization. Several kinds of networks are well-known to
have social implications. Here we consider four kinds of net-
works: random, small worlds, scale-free, and hierarchies.

In random networks, the links are randomly assigned be-
tween pairs of actors. This is effectively a null model, which
assumes no systematic patterns of social connections. It would
be a valid representation for (say) newly formed groups of
individuals. The most important parameter is the edge density
 (“connectivity”), which defines how many social connec-

tions there are and ranges from 0 (no connections) to 1 (every
actor is linked to every other). In a random network of N
nodes, a connectivity phase change occurs when  = 1/N [12].
When <1/N, the network consists of small groups and iso-
lated individuals.

Small world networks [13] are common in patterns of social
connections. They fall between random networks at one ex-
treme and regular networks at the other. In social terms, small 
worlds tend to arise where most connections are local, but are 
combined with some long-range connections (e.g. a traveller
with friends in different cities).

In scale free networks the number of links per node (de-
gree) follows an inverse power law. They form when a net-
work grows with new nodes preferentially attaching them-
selves to highly connected nodes. This topology is common in
some social and political networks as well as some in large
communication networks, such as the World-Wide Web [14].

Hierarchies are common in certain social situations, includ-
ing kinship relations (family trees) and power structures
within organizations (e.g. military ranks). In network terms,
hierarchies are trees: networks in which there are paths (se-
quences of links) between every pair of nodes, but without any
cycles (a cycle is a sequence of links that form a loop). Hierar-
chies are trees that contain a “root node” (e.g. a common an-
cestor in a family tree).

III. BOOLEAN MODELS OF SOCIAL NETWORKS

A.  Boolean Networks
A Boolean Network (BN) is a network in which the nodes

are simple processing elements, and the edges are communica-
tion links between pairs of processors. In effect they are
switching networks: each node has a binary state (e.g. ON or 
OFF). Changes in the state of a node through time are gov-
erned by its programming, by its current state, and by the
states of its neighbors (nodes directly linked to it by edges).

Fig. 1. Representation of peer-peer social interactions within a Boolean 
network model. The dots arranged in a circle represent members of the 
society; the two colors denote two different opinions (eg AGREE and 

DISAGREE) about some issue. The lines joining the dots indicate social 
relationships. The bold line denotes a social interaction in progress.

Shown here is the user interface for the VLAB version of the model [11].
At left are controls; the model network is shown on the right.

The appeal of Boolean Network models is their conceptual
simplicity. The agents are reduced to the simplest possible
representation—a binary switch—so the behavior that
emerges in the system is dominated by interactions, not by
individuals. This simplicity of the components makes BN
models attractive for investigating the role of emergent prop-
erties.

For the above reasons, Boolean networks have formed the
basis for simulations of many kinds of systems. Applications
have included genetic regulatory networks [15] and spin glass
models of molecular alignment in the formation of coherent
media, such as glass [16]. Several recent studies have experi-
mented with Boolean Networks as models of peer influence in
social systems, e.g. [17],[18],[19].

B.   Application to social networks
In BN models of social networks, the nodes of the network

represent individuals (agents, people, or “actors”) and the
edges represent social connections of some kind between pairs
of individuals (e.g. family, friends, and neighbors). These
social “ties” define the patterns of communication links be-
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tween the individuals.  
In our models (Fig. 1) we have made several simplifying 

assumptions. We have considered only networks in which the 
pattern of connections between individuals is fixed. We also 
examined the effect on consensus of the four network topolo-
gies discussed earlier: random, scale-free, small-world and 
hierarchical networks. 

All of our models simulate time as a series of time periods 
(e.g. days). During each time interval, social interactions take 
the form of encounters between pairs of linked individuals. 
These encounters occur within the social networks that form 
between friends, colleagues, family and casual acquaintances. 
In each event, two actors communicate and influence one 
another. For any interaction between a pair of individuals, A 
and B say, the possible outcomes are as follows:  
1. If A and B initially agree, then neither changes opinion. 
2. If A and B initially disagree, then either:  

- One of the pair (selected randomly) switches to share 
the other’s opinion. This outcome occurs with prob-
ability pchange.

- Neither changes opinion. This outcome occurs with 
probability 1-pchange.

For the models to provide a valid representation of social 
networks, it is essential that they mimic peer-peer interactions 
accurately. Our models therefore differ from a standard BN in 
one important respect: instead of updating the states of every 
node at once, they are updated in random asynchronous order 
[20]. Each time period consists of a fixed number of interac-
tions between pairs of individual, as described above. The 
pairs that interact are chosen by selecting an edge in the net-
work at random. Each individual undergoes at least one inter-
action per time period.  

IV. INSIGHTS FROM BOOLEAN NETWORK MODELS

A.   Social interaction and consensus  
Boolean network models (BN) help to explain the role 

played by peer interactions in the emergence of consensus. As 
a starting point, we carried out simulation experiments to test 
Dunbar’s hypothesis, mentioned in the Introduction. That is, 
in small social groups can consensus emerge from peer inter-
actions? And is there an upper limit on the size of group for 
which it is possible?  

We assigned initial states (0 or 1) at random to individuals 
in a social BN and ran the model to see whether consensus 
emerged. Both peer influence and network sizes were varied 
systematically to test their effects.  

For networks with random topology, we found that the size 
of network in which consensus did emerge was highly sensi-
tive to two parameters: peer influence and the density of social 
connections. In both cases, phase changes occurred: when 
either parameter fell below a critical level, only small net-
works would reach consensus [21].

In the absence of peer interactions, the equivalent model 
would be a Markov process in which an individual’s probabil-
ity of switching opinion at any time would depend on the 
proportion of the population holding that opinion. In such a 

model, one opinion would ultimately take over through a 
process of random walk and positive feedback. The BN model 
differed in its behavior from the Markov case by changing in 
fits and starts: the proportions of each opinion would remain 
essentially constant for a time, and then shift rapidly as clus-
ters of peers influenced each other.  

This result supports Dunbar’s hypothesis [1], mentioned 
earlier, that increase in communication makes possible larger 
group sizes.  

In our experiments, hierarchies, small worlds and scale-
free networks tended to produce results similar to random 
networks [9]. That is, consensus rarely arose in large net-
works. The most revealing aspect was that networks with 
these topologies highlighted processes that make consensus 
unlikely. In hierarchies, for instance, large networks tended to 
produce entire branches that held different opinions. It then 
became a question of whether the individual at the junction of 
the two branches (i.e. their common leader) could influence 
one branch to convert, before the leader was itself converted.  

Similar processes were at work in small worlds, where 
single individuals would often provide links between clusters 
with differing opinions, In scale-free networks, highly con-
nected individuals played a similar role.  

B.    The role of leaders in forming opinions 
The pivotal role of leaders in the above experiments raises 

the related question of whether alternative opinions can suc-
cessfully invade a social group that has already reached con-
sensus. Can a single individual (a leader) succeed in changing 
an opinion that is held by the entire social group?  

The ability of a leader or some influential group of indi-
viduals to alter an established consensus depends on the struc-
ture of the social network.  

In the previous consensus experiments, every individual 
had a 50% chance of changing the opinion of others. Here we 
assigned the leader higher influence and tested how frequently 
a network of 100 individuals ended up with the same opinion 
(state) as the leader.  

In all cases, it proved difficult for a single individual (or 
even several) to convert the entire network, even if those indi-
viduals had greater influence than their peers.   

Given the central nature of hierarchies in the earlier ex-
periments, we tested this case more intensively. In this ex-
periment, we performed 100 trials for each combination of 
parameter settings. The hierarchy was a simple binary tree 
with 100 agents in all. The experiment was a sensitivity analy-
sis in which we varied the leaders’ influence over subordinates 
systematically. In all cases there was a 10% chance of subor-
dinates in the hierarchy converting their superiors. Time here 
was expressed as number of peer-peer interactions and we ran 
the model for up to 1 million interactions or until consensus 
was reached. We plotted the number of trials in which the 
leader succeeded in converting the entire group as a function 
of the leader’s influence. In virtually all cases, failure to con-
vert the group meant that the leader was converted to agree 
with the group’s existing opinion.  

As expected, any leader with 100% influence always con-
verted the group (Fig. 2), but the success rate fell away 
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sharply with even a small decrease in influence.  An interest-
ing aspect of this experiment was the “time” required to reach
consensus (whether the leader or the group converted). The
average time taken reached a maximum when the leader’s
influence was slightly higher (0.2) than the influence of sub-
ordinates (0.1). This implies that the network underwent a lot
of changes back and forth before settling into a consensus.
When the leader’s influence was high, the subordinates were
converted rapidly and reversions were much less likely.
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Fig. 2. Tests of the ability of a leader to influence members of a hierarchy. (a) Success rate (as a percentage) of the leader in trying to convert everyone to 
a new opinion plotted against influence of the leader. (b) Number of interactions required to achieve consensus. The dotted lines are 99% confidence in-

tervals. See text for further explanation.

C.  Influence of mass media
We set out to test whether a social group could maintain its

consensus when faced with a central medium exerting influ-
ence on every member. This question was inspired by debate
over the extent to which media influences public opinion on
social issues and political decisions [22], on television adver-
tising (e.g. [23]) and the portrayal of violence in mass media
[24].

In the model, we added to the network of peers an addi-
tional node, representing media, which has a one way link to
every member of the society. This process represents a sce-
nario in which people talk to each other during the day, then 
watch TV when they return home for the evening. At the start, 
every member of the social group is in the same state (say 
“0”), but the medium is pushing the alternative state (say “1”).

A mathematical approximation to what happens in this sce-
nario is given by

)1()1( ppp
dt

dp
, (1)

where p is the proportion at time t of the population in the
state advocated by the medium,  is the probability of medium
changing the mind of any individual and is the probability of
peer influence converting an individual back to the initial
consensus view. If we set k =  – , then as p approaches 1, 
the above model leads to the approximate relationship:

ktetp 1)( . (2)
This model implies that the medium state will increase asymp-
totically towards total coverage.

BN simulations of the medium scenario show that except in 
totally connected networks, the influence of a central medium
rapidly breaks down a pre-existing consensus and eventually
leads to a complete reversal of opinion throughout a society
[25]. As in the previous experiments, the peer network alters
the course of events predicted by the equivalent mathematical
model. It does this by changing the way in which the view
promoted by the media spreads. Initially, it serves to slow the
spread of the medium’s view by converting back some of the
individuals who are converted. However, when the view pro-
moted by the media reaches a critical prevalence, the peer 
network serves to accelerate its spread.

In Hebbian learning, the strength of the links between indi-
viduals (i.e. their influence on one another) changes through
time [26]. Each interaction between individuals leads to a 
change in the peer-peer influence. If individuals are in the 
same state after an interaction (i.e. they agree), then the 
strength of their connection (i.e. their mutual influence) in-
creases. But if they end up in different states (they “disagree”),
then the strength of their connection decreases. If Hebbian
learning occurs within a peer network that is subject to outside
influence then the most common outcome is polarization of
opinion and fragmentation of the network into factions with
opposing views [21].

D.   Law and order in large social groups
Given that there is an upper limit to the size of a social 

group in which peer-peer interactions can maintain consensus
and cohesion, how can large societies persist? Our hypothesis
was that in plausible human social networks, consensus is
likely to emerge only with a combination of top-down control
(law and punishment) and bottom-up influence (peer pressure)
[27].

To test the above hypothesis, we formulated a simple Boo-
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lean network model to explore the possible dynamics of these
interacting pressures in human societies (Fig. 3). In the model,
we take the state of the individuals to be their attitude towards
obeying the law. This attitude can take one of two values:
HONEST or DISHONEST. If they are HONEST, then they
will obey the law, except under the most extreme circum-
stances (see below). If they are DISHONEST, they will not
hesitate to break the law.

We also assume that there is an incentive for individuals to 
commit a crime. This incentive is expressed as a probability
that an HONEST individual will nonetheless commit a crime.
During each time period, every actor has an opportunity to
commit a crime, and there is a chance that if this happens, the
individual may change state and become DISHONEST. The 
procedure is summarized as follows, where A is an individual
(actor) whose current incentive to crime is I(A). We assume
that honest actors do not break the law unless I(A) > F, that is
:

1. IF attitude(A)= DISHONEST, then
A breaks the law.

2. IF attitude(A)= HONEST, then:
 IF I(A) > Random_number, then

A breaks the law;
ELSE A obeys the law. 

Table 1 summarises the values used for the model parame-
ters used in the law and order experiments.

Table 1. Default parameter settings for the Law and order
experiment.

Parameter Value
No. of people in society 250
Initial percent of people who are HONEST 100
Peer-peer interactions per time period 10,000
Peer influence 0.5
Probability of corrupting HONEST people 0.1
Probability of DISHONEST reforming 0.0
Incentive to crime 0.1

As happened in the previous models, the peer network al-
ters the way levels of honesty change over time (Fig. 4). In the
absence of the of peer influence, the society responds as a 
Markov process. Assuming that the society starts out 100%
honest, the course of change in the Markov case is a steady 
decline in honesty to an equilibrium level that is governed by
the relative influences of economic stress and law enforce-
ment. As before, the effect of the peer network is to resist
change. Peer influence maintains honesty at near 100% most
of the time (Fig. 4). However the network is subject to occa-
sional outbreaks of dishonesty. In extreme cases, these out-
breaks can flip the entire society from honest to dishonest.

At first sight, the above result seems unlikely. However, it
is consistent with the abrupt onset of many riots and cases of 
anarchy, such as those observed during famous incidents such
as the New York blackout of 1987 or widespread ethnic vio-

lence seen in France during the summer of 2005. There are 
even instance of widespread dishonesty in everyday life. In 
many countries, for example, drivers on the roads habitually
exceed the speed limit, egged on by peer pressure exerted by 
other drivers.

Fig. 3. Influences acting on agents in the “law and order” model.

Results from the model suggest that both enforcement and
peer pressure are required to ensure social conformity. In 
general, law breaking increases as peer pressure decreases
(Fig. 5). In the absence of enforcement, peer pressure can act
either to reinforce law-abiding behavior, or to convert the
entire society into outlaws. However, when connectivity in the
social network is high, even a small incidence of punishment
suffices to ensure conformity.

In the above scenario, the “crimes” committed by agents in
the society were victimless: they had no impact on other
agents. In real life, crimes are generally committed against 
another individual or group. When this happens the event is
likely to affect the victim's opinion about honesty.
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Fig. 4. Influence of peer-peer interactions on performance of the “law and 
order” model. The markov model traces the changes in honesty within the 
network over time, with no interactions between individuals. When peer –

peer interactions are introduced, the entire society tends to stay honest,
within occasional bursts of dishonesty. These bursts can even flip the entire 

group to become dishonest! See text for further explanation.
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To test what effect this might have, we ran the above sce-
nario again, but changed the model so that each crime in-
volved a pair of agents: criminal and victim. In the case where 
victims automatically became honest, the change in behavior
of the network was dramatic. Virtually all members of the
society remained honest, even under extremely high economic
stress (Fig. 5b).

V. CONCLUSION

Despite their simplicity, or perhaps because of it, BN mod-
els provide potentially important insights about many social
issues. They confirm that there is an upper limit to the size of
groups within which peer interactions can create and maintain
consensus. In large social groups, a combination of peer inter-
action and enforcement is needed to produce consensus. So-
cial consensus is brittle in the face of global influences, such 
as mass media, with the peer network at first impeding the
spread of alternative views, then accelerating them once a 
critical point is passed. BN models are sensitive both to the
network topology, and to the degrees of influence associated
with social connections. 

It is tempting, but dangerous, to draw general conclusions
from the results of the experiments presented here. In the law
and order model, for instance, we saw that a change in our
assumptions about the nature of crimes led to major change in 
the outcome. So the results are strictly valid only where the
assumptions match social conditions.

A common objection to these BN models is that humans
are much more sophisticated than switching circuits. This, of
course, is true. But there are many instances where human
responses are akin to simple switches. Our argument is that
before investigating models with complex agents, we need to
understand what kinds of phenomena can be explained by
simple agents embedded in complex networks of relationships.
If we try to make our models more “realistic”, with complex
and intelligent agents, then it could be very difficult to isolate
exactly why and how particular features emerge.

Our models have implications for many kinds of “social”
systems besides human social groups. In computing, for in-
stance, many applications require coordination of many inde-
pendent agents to achieve some goal. Examples include
swarms of agents, nanotech devices, networks of sensors, and
distributed processing via grids and clusters. Our results about
the emergence of consensus imply that some kinds of coordi-
nation will be difficult to achieve in large networks of agents
and that a degree of central coordination may be required.
With appropriate modification, the models could also be ap-
plied to economic and commercial systems. For instance,
simulations of interactions within networks of agents have
been applied to the question of technology innovation [28].
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