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Abstract-We consider how accretive evolution is able to evolve 
optimal solutions to hierarchical decomposable non-separable 
problems epitomized by hierarchically consistent test problems. 
We find that this feat is not as improbable as previously thought 
if a suitable phenotype which reflects the levels in the hierarchy is 
used as the object of a selection scheme which applies level 
directed selection pressure. An ideal selection scheme is first 
described and tested experimentally, followed by a meta-
population model to evolve the ideal selection scheme. 
Experiments with the model revealed that evolution of the ideal 
selection scheme is not a pre-requisite to evolving optimal 
solutions. Optimal solutions were found even when the ideal 
selection scheme was not.  
 No recombination of partial solutions is used in this paper. 
The findings of this paper reopen the question: what type of 
hierarchical structure is difficult to evolve through random 
mutation and selection. 
 

I. INTRODUCTION  
 There has been considerable debate in the field of 
evolutionary computation about the utility of the 
recombination operator [1, 2]. These debates often take the 
form of a comparison between hill-climbing algorithms and 
genetic algorithms [3]. In his doctoral dissertation, Watson 
draws an analogous debate in natural evolution between step-
by-step evolution or gradualism and evolution by jumps or 
compositional evolution, from an algorithmic point of view 
[4]. The centerpiece of his dissertation is the class of 
hierarchically consistent (HC) problems [5]. 
 The class of hierarchically consistent problems is used to 
discriminate between the adaptive capacity of accretive 
evolution and of compositional evolution: “Certain kinds of 
complex systems, considered unevolvable under normal 
accretive change, are, in principle and under certain 
circumstances, easily evolvable under compositional change.” 
[4, p.1] The terms accretive evolution and compositional 
evolution are explained further on in this section. Section II 
explains what HC problems are.  
 In this paper, we offer a way for finding solutions to HC 
problems with accretive evolution.  If our proposed method 
succeeds, then the case for evolution – that the blind process 
of evolution can produce complex forms – is further 
strengthened. Because now there are two ways of evolving 
complex structures: accretive and compositional. However, 
this does blur the distinction between the adaptive capabilities 
of evolutionary algorithms which use recombination from 
those which do not on problems with hierarchical structure. 
 Our experiments in section V, confirm that if a suitable 
phenotype is introduced and if an appropriate selection 
scheme is used, evolution of optima for hierarchically 

consistent problems under accretive evolution is not as 
improbable as portrayed in [4]. Section VI presents a multi-
population model to evolve the appropriate selection scheme. 
Experiments with this model produced unexpected results. 
 Both accretive evolution and compositional evolution use 
selective accumulation of genetic changes to evolve units. 
Accretive evolution and compositional evolution are 
differentiated on the basis of the type and source of variation: 
random in the accretive case; and biased and from other 
existing units in the compositional case.  The change or new 
material introduced to the unit under accretive evolution “have 
not been pre-adapted elsewhere as a set” and is, in this sense, 
random; while the change or new material under 
compositional evolution “have been semi-independently pre-
adapted in parallel in different lineages” [4, p.4].   
 Examples of compositional mechanisms in nature given in 
[4] include sexual recombination, horizontal gene transfer and 
endosymbiosis. Examples of artificial compositional 
mechanisms include genetic algorithms (GA) with tight 
genetic linkage and the Symbiotic Evolutionary Adaptation 
Model (SEAM) [6].  There are no random mutations in SEAM 
[4, p.235].  Examples for artificial accretive mechanisms are 
genetic algorithms without tight genetic linkage and the 
Random Mutation Hill Climbing (RMHC) algorithm [1]. The 
RMHC algorithm is defined in section III. 
  Reference [4] considers optima to HC problems 
unevolvable under normal accretive change because (i) 
accretive evolution as defined in [4] cannot manipulate 
modules effectively, (ii) the adaptive landscape of HC 
problems have wide fitness-saddles which grow wider as the 
problem size increases, (iii) there is a high-degree of 
ruggedness and hence many local optima in the adaptive 
landscape and (iv) the optimal solutions are irreducibly 
complex for accretive evolution.  
 When looking at the problem of evolving complex 
solutions in artificial systems, one could consider whether 
random mutation is capable of producing variations for 
selection to act upon to produce the complex solution.  
Alternatively, one could consider whether the selection 
scheme is capable of shaping the complex solution via 
evolution. In other words, is the selection scheme up to the 
task?  Watson uses the first approach when he uses features of 
the adaptive landscape for a mutation operator to explain why 
accretive mechanisms have difficulty with HC problems [4].  
We take the second approach and propose a selection scheme 
that is up to the task for HC problems.  
 The selection scheme we propose is biased towards 
conserving the adaptation of some features of a phenotype, 
possibly to the detriment of other features in the phenotype 
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and the genotype’s aggregate fitness. Section IV elaborates on 
our approach. Note that compositional evolution also 
manipulates its selection scheme; it does so to maintain 
population diversity, which is crucial to the success of 
compositional evolution on HC problems [4, p.20].  
 The work presented in this paper is novel because to the 
best of our knowledge to date, there has been no other attempt 
to solve HC problems with RMHC.  We have not found any 
approach that splits up the fitness of a genotype into a 
sequence of per-level fitness values, and compares per-level 
fitness values in its selection scheme. Other approaches to HC 
problems include hierarchical GA, competent GA, 
dimensional reduction, multi-objective simulated annealing, 
learning, neutral networks and development [7, 8, 9, 10, 11, 
12]. Multi-level selection has been the subject of intense 
debate in biology [20] and has also received attention in 
artificial life [21]. 
 The conclusion we reach in this paper is that accretive 
evolution can evolve solutions to HC problems provided (i) 
the genotype-phenotype map is known, and (ii) suitable 
selection pressure is applied. This conclusion is supported by 
experimental results summarized in Section V.  
 

II. HIERARCHICALLY CONSISTENT PROBLEMS 
A. Background 
 A problem is decomposable if its variables can be 
partitioned into identifiable subsets, in some intuitive way.  If 
a problem is decomposable into a hierarchy of sub-problems 
or modules, it is hierarchical.  If the difficulty of solving a 
sub-problem is the same as the difficulty of solving the whole 
problem, the problem is consistent [5].  
 The subsets of variables or modules in hierarchically 
consistent problems are interdependent. Two modules are 
interdependent if the optimal solution for one module depends 
on the solution of the other module, and vice versa.  Two 
criteria must be satisfied to possess modular interdependency: 
(i) for each module, the number of configurations that can lead 
to an optimal solution in a given context (the other modules) 
must be less than the total number of possible configurations 
but more than one; and  
(ii) the ratio of inter-module dependency strength to intra-
module dependency strength must be neither too high nor too 
low: “... the strength of inter-module dependencies should be 
low enough that intra-module dependencies create local 
optima” [4, p.139].   
 The implication of this is that finding optimal solutions to 
lower level modules does not guarantee optimality to modules 
higher up the hierarchy. Concepts introduced in this section 
are treated more thoroughly in [4, 7, 13]. 
 Hierarchically consistent (HC) problems describe a class 
of test problems, which include Hierarchical If-And-Only-If 
(HIFF), Hierarchical Exclusive-Or (HXOR) and their shuffled 
versions, SHIFF and SHXOR [4, 14].  The most common 
version of HC problems has a block size of 1 and a binary 
alphabet. Reference [14] explored the impact of bias, different 
block sizes and different alphabet sizes on search difficulty. 
HIFF and HXOR are exact complements of each other thereby 

making the use of either function alone sufficient for our 
purpose. This is not the case with their biased versions [14], 
but we need not worry about this here. 
 
B. Algorithm 
 In this paper, the genotypes are bit strings of length N = 
2n. We use the HIFF function defined on page 139 in [4] but 
modified to calculate fitness by levels.  
 A genotype has log2 N levels, and N/2λ modules at level λ, 
with λ = 1…n. According to our algorithm, the aggregate 
fitness value for an optimal genotype is N-1. An optimal 
genotype is one with all zeroes or all ones.  
 The pseudo-code for our algorithm is listed in Fig. 1. 
Examples are worked out in Tables 1 and 2. The algorithm 
comprises three functions: (i) calculateHIFFLevelFitness, (ii) 
count_ones, and (iii) iff_function.  
 The calculateHIFFLevelFitness function returns the fitness 
for a given level, also known as per-level fitness. Per-level 
fitness is the sum of the fitness of every module at that level. 
Fitness of a module is calculated using the remaining two 
functions.   The count_ones function returns the number of 
ones in a given bit string divided by the length of the bit 
string. The iff_function is the continuous version of discrete 
logical iff. It is (p × q) + (1 – p) × (1 – q).  
 
PROCEDURE: calculateHIFFLevelFitness 
INPUT: λ, N 
OUTPUT: level_fitness 
BEGIN 
 module_size  2λ 
 num_modules  N / module_size 
 FOR each module i at level λ 
  IF (module_size = 2) 
   p  first bit of module i 
   q  second bit of module i 
   level_fitness  level_fitness + iff_function(p, q) 
  ELSE 
   bit_string1  first half of module i 
   bit_string2  second half of module i 
   level_fitness  level_fitness +  
    iff_function(count_ones(bit_string1),  
        count_ones(bit_string2)) 
 END FOR 
END 
Fig. 1 HIFF function defined on page 139 in [4] modified to calculate fitness 

by levels. 
 

TABLE 1 
AN EXAMPLE OF HIFF EVALUATION 

Genotype 170 
Level 

Number of  
Modules 1 0 1 0 1 0 1 0 Per level fitness 

(lowest) 1 4 0.0 0.0 0.0 0.0 0.0 
2 2 0.5 0.5 1.0 

(highest) 3 1 0.5 0.5 
Phenotype 〈 0.5, 1.0, 0.0 〉 

Aggregate fitness 1.5 
  
 In Table 1, modules at level 1 all have 0.0 fitness because 
iff_function(1, 0) yields 0.0.  At level 2, there are 2 modules 
of 4 bits each. Count_ones(“10”) yields 1/2 = 0.5 since there is 
one ‘1’ bit and the length of the bit string is 2.  
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iff_function(0.5, 0.5) yields 0.5 so fitness per module at level 
2 is 0.5 and fitness for level 2 is 2 × 0.5  = 1.0. 
 

TABLE 2 
ANOTHER EXAMPLE OF HIFF EVALUATION 

Genotype 111 
Level 

Number of  
Modules 0 1 1 0 1 1 1 1 Per level fitness 

(lowest) 1 4 0.0 0.0 1.0 1.0 2.0 
2 2 0.5 1.0 1.5 

(highest) 3 1 0.5 0.5 
Phenotype 〈 0.5, 1.5, 2.0 〉 

Aggregate fitness 4.0 
 

III. RMHC 
 Reference [4] used the random mutation hill climbing 
(RMHC) algorithm as the mechanism for accretive evolution.  
RMHC was introduced in [1]. The algorithm below follows 
[4]: 
1. Create a fully-specified random bit string. 
2. Choose k bits at random to mutate. k is determined by a 

given mutation rate. Mutation is by randomly assigning a 0 
or a 1 to the bit.  

3. If the mutation results in an equally fit or fitter offspring 
string, keep the mutation. Otherwise, ignore the mutation. 

4. If the optimal string has not been found and the pre-
determined number of fitness function evaluations has not 
been performed, go to step 2. Otherwise return the current 
bit string as the solution. 

RMHC does not use a population, so there is no population 
diversity to maintain.  
 

IV. THE PROPOSED METHOD 
A. Phenotypes 
 The sequence of per level fitness values for a genotype 
forms the phenotype for the genotype, with the highest level (λ 
= n) fitness situated at the leftmost position of the phenotype 
sequence, followed by the second highest (λ = n-1) level 
fitness and so on. Tables 1 and 2 illustrate this.  
 The optimal HIFF phenotype for a problem of size N = 2n 
is 〈20, 21, …, 2i, 2i+1, … 2n-1〉. Work to calculate per level 
fitness is already ordinarily expanded to calculate genotype 
fitness, so creating phenotypes does not involve additional 
computation, only additional space. 
 Each element of a phenotype is a feature. The phenotype 
in Table 1 has 3 features. The fitness of its first feature is 0.5 
out of a possible 1.0. 
 
B. The selection scheme and the “ideal” sieve 
 Selection in RMHC (step3, section III) selects the 
genotype with the higher aggregate fitness value.  We do not 

compare aggregate fitness values.  Instead, per-level fitness 
values between a parent and its offspring are compared.   
 Our selection scheme uses a sieve to determine the order in 
which per-level fitness values of two phenotypes are 
compared.  A sieve can be viewed as an adaptation strategy a 
genotype employs unconsciously and which it has no control 
over. Alternatively, a sieve could be seen as environmental 
influence, differentiating the survival importance of the 
features of a phenotype.  A sieve is represented as an array of 
positive integers. In a problem with 3 levels, any 3-
permutation of the set {1, 2, 3} is a valid sieve. There are n! 
possible sieves for a problem with n levels.  
 Suppose the sieve for a HIFF problem with size N = 8 is 
〈2, 1, 3〉 and the two competing phenotypes are p1 = 〈a, b, c〉 
and p2 = 〈x, y, z〉. Then under our selection scheme, reals b and 
y are compared first, since they are the fitness values for the 
second level feature, followed by c and z, and finally a and x.  
 The genotype that improves any per level fitness value 
earlier in a comparison is selected, regardless of what happens 
to the fitness values of the other features or to the aggregate 
fitness. So going back to the previous example, if (b > y) or (b 
= y and c > z) or (b = y and c = z and a > x), then p1 is more fit 
and its genotype is selected over the competitor.  If all three 
per-level fitness values are pairwise equal, then the genotype 
for p2 is selected by default. 
 The “ideal” selection scheme uses the “ideal” sieve, which 
says to inspect features of phenotypes in level descending 
order, i.e. 〈n, n-1, n-2,…, 1〉. According to this order, the 
adaptation of the largest module has priority, followed by its 
sub-modules, sub-sub modules, and recursively down to the 
smallest modules. Since adaptation of smaller modules in the 
lower levels does not guarantee concurrent adaptation of 
larger modules in the higher levels, features of a phenotype 
can be seen as selfish and competing with each other. The 
“ideal” sieve is ideal for the HIFF problem because it does not 
allow any lower level feature to gain the upper hand in this 
competition. 
 Table 3 demonstrates the “ideal” selection scheme. 
Genotype number 2 is selected over genotype number 3 even 
though its aggregate fitness (f) is lower because it is fitter than 
genotype number 3 at a higher level.  For this same reason, 
genotype number 182 is selected over genotype number 179. 
 
C. RMHC2 
 RMHC2 incorporates phenotypes and the “ideal” selection 
scheme into RMHC. It is the algorithm we use to evolve an 
optimal solution for HIFF problems. RMHC2 uses k-bit 
macro-mutation, where k is an integer within [1, K], randomly 
 

TABLE 3  
EXAMPLE OF THE IDEAL SELECTION SCHEME AT WORK.  

THE IDEAL SELECTION SCHEME USES THE IDEAL SIEVE FOR THIS PROBLEM WHICH IS 〈3, 2, 1〉. 
  HIFF Phenotype  

gnum Genotype λ=3 λ=2 λ=1 
 
f Selection 

2 (parent) 0000 0010 0.75 1.5 3.0 5.25 
3 (offspring) 0000 0011 0.50 1.0 4.0 5.50 

2 

179 (parent) 1011 0011 0.5 0.5 3.0 4.0 
182 (offspring) 1011 0110 0.5 1.0 1.0 2.5 

182 
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chosen before each mutation event; and K = Pm × N, Pm is a 
fixed predefined mutation rate within (0, 1) and N is the 
problem size or length of the genotype. A macro-mutation 
operator mutates a contiguous section of a genotype within 
two randomly picked loci [15] and is the type of mutation 
operator with the best chance of succeeding on HC problems 
[4].  The RMHC2 algorithm:  
1. Start with a fully specified (every loci has a value of either 

1 or 0) genotype.  
2. Make a copy of the parent genotype and mutate the copy to 

produce the offspring genotype. Starting at a random locus 
l, mutate k consecutive bits, wrapping around to the start of 
the genotype if the end of the genotype is reached. 
Mutation is by random assignment of a 0 or a 1.  

3. If the offspring phenotype is selected, replace the parent 
genotype with the offspring genotype. Otherwise, discard 
the offspring genotype. 

4. If the optimal string has not been found and the pre-
determined number of function evaluations has not been 
performed, go to step 2. Otherwise return the current 
genotype as the solution. 

 
V. EXPERIMENTS AND RESULTS 

A. Experimental setup 
 Unless otherwise stated, the experiments use the parameter 
values detailed in Table 4. These values are taken from [4] 
with the exception of maximum evaluations per run. After a 
few preliminary tests, we found running to a maximum of 
3,000,000 evaluations, which is the figure used in [4], to be 
overkill for our purpose.   
 

TABLE 4  
DEFAULT PARAMETER VALUES 

Parameter Value 
Number of runs per experiment 30 
Maximum evaluations per run 1,000,000 
Problem size, N 128 
Mutation rate, Pm 0.0625 

 A different random number seed is used in each run in an 
experiment, but all experiments used the same series of 
random number seeds for their runs.  The number of times an 
optimum is found is used to measure the performance of the 
various algorithms under test.   
 
B. Experiments with the “ideal” selection scheme 
 To test the performance RMHC2, we compared it with 
RMHC1. RMHC1 uses variable k-bit macro-mutation and 
compares aggregate fitness to decide whether to accept a 
changed genotype.  The algorithm for RMHC1 is therefore the 
same as the algorithm for RMHC2 except step 3 is replaced 
with step 3 of RMHC.  
 Table 5 compares results obtained from this experiment 
with relevant previous results. That no RMHC1 run succeeded 
confirms that the difficulty of the HIFF problem under normal 
accretive change is preserved in our implementation of the 
problem. 100% of RMHC2 runs succeeded on the HIFF 

problem, even when the problem size is doubled to 256. This 
is a significant improvement over RMHC1.  Therefore our 
first hypothesis, that using a suitable phenotype which reflects 
the levels in the hierarchy, coupled with a selection scheme 
which applies level directed selection pressure on the 
phenotype, significantly improves the performance of 
accretive evolution (RMHC), is confirmed.   
 

TABLE 5 
NUMBER OF TIMES AN OPTIMUM IS FOUND. RMHC2 STOPS WHEN IT FINDS ONE OF THE 

OPTIMA.   
Method Character Times found Evaluations 

SEAM [6]  compositional 30/30 (100 %) - 

RMHC [4] compare aggregate fitness 
fixed k random mutation 0/30 (0 %) - 

RMHC1 compare aggregate fitness 
variable k macro-mutation 0/30 (0 %) - 

RMHC2 compare phenotypes, 
variable k macro-mutation 30/30 (100 %) 2245 (avg.) 

660 (std. dev.) 

RMHC2 
compare phenotypes,  
variable k macro-mutation 
N=256 

30/30 (100 %) 8084 (avg.) 
2325 (std. dev.) 

 
 Fig. 2 compares the progress made by a RMHC1 run with 
a RMHC2 run. In the RMHC1 run, lower level modules 
quickly make progress, but this progress does not lead to the 
evolution of an optimal solution. In the RMHC2 run, progress 
is made at all levels and an optimal solution is found. 
 RMHC2 is able to evolve optimal solutions for HIFF 
because it prevents devolution of higher level features by 
selecting against mutations which attempt to do so even when 
this means preventing adaptation or causing regression in 
lower level features. In a sense, RMHC2 imposes horizontal 
(level view) separability on a vertically (module view) non-
separable problem.  From the vantage point of the highest 
level feature, a HIFF problem becomes a hill-climbing effort.  
And since an optimal solution for the highest level feature or 
largest module is also optimal for all lower level modules, 
evolving an optimal solution is not an improbable pole vault 
up the steep side of a mountain with the “ideal” selection 
scheme.  
 Table 6 lists correlation values between fitness values at 
different levels and hamming distances to the closest global 
optimum on the HIFF problem for problem size 8 and 16. 
Fitness Distance Correlation (FDC) was introduced by Jones 
and Forrest [18], as a measure of search difficulty. Intuitively, 
FDC measures whether fitness increases as distance to a 
global optimum decreases. A search problem with a negative 
FDC value is categorized as straightforward or not misleading. 
Search difficulty for straightforward problems increases as 
FDC approaches 0. There are known problems with this 
summary statistic [19] and its application does not appear to 
depend on the search operator which is worrying. 
Nevertheless, FDC has been shown to reflect search difficulty 
on a number of known problems [18]. We use FDC as a first 
approximation of the search difficulty at different levels in a 
HIFF problem which may account for the success of the 
“ideal” selection scheme. 
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Fig. 2 N=128. The selfish interests of modules in the lower level dominate the RMHC1 run, and prevent the formation of an optimal solution. On the other hand, 

modules at different levels in the RMHC2 run evolve in concert and an optimal solution is formed for all levels. 
 
 The FDC values in Table 6 reveals that search difficulty on 
the HIFF problem is straightforward at all levels but not 
uniform across levels. Further, there is clear indication that 
search is least difficult at the highest level and becomes 
progressively more difficult at lower levels.  

 
TABLE 6 

FDC 
Level N=8 N=16 

4 - -0.6770 
3 -0.6972 -0.4787 
2 -0.4930 -0.3385 
1 -0.3486 -0.2394 

Aggregate -0.5712 -0.4199 
 

VI. EVOLVING THE SIEVE 
A. The meta-population model 
 In this section, we outline our model to evolve the sieve 
and optimal solution concurrently. Meta-population [16] refers 
to a model where a population is divided into demes with 
minimal interaction between demes so that demes may diverge 
in their characteristics, and there are frequent extinction and 
re-colonization of demes.   
 A meta-population model was used to study the evolution 
of far-sighted traits through the suppression of short-sighted or 
evolutionary pathological traits [17]. Short-sighted traits are 
those which confer short-term benefits but lead the population 
to extinction in the long term.  

 In the HIFF problem, higher level features may be viewed 
as far-sighted traits and lower level features, short-sighted 
ones since adapting smaller modules, with no regard for the 
adaptation of larger modules, results in sub-optimal solutions. 
However, rather than suppressing traits, our task here is to 
rank traits. 
 Our model splits a population of genotypes into minimally 
interacting demes or subpopulations. Every subpopulation 
comprises one or more genotypes, occupies a cell in a two 
dimensional lattice with periodic boundaries, remembers the 
number of changes made to its genotypes and is assigned a 
randomly generated sieve at the start of the experiment.
 There are two types of selection in our model: long-term 
and short-term. A short-term selection event happens after 
every mutation event and is specific to a genotype1 within a 
subpopulation. Short-term selection evaluates genotypes in a 
subpopulation on the basis of the subpopulation’s current 
sieve. If a mutation is accepted, that is an offspring genotype 
is selected over its parent, and the offspring is at least one 
Hamming distance away from its parent, the number of 
changes for the subpopulation is increased by one. Mutation in 
this model is k-bit random mutation, and not macro-mutation; 
that is the k bits for mutation are selected randomly with 
replacement. 

                                                
1 Genotypes within a subpopulation do not interact with each other. 
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 A mutation event followed by a short-term selection event 
is an update event. A long-term selection event is triggered 
after a specified number of updates to the whole population 
have occurred. For example, in a 4 cell lattice with 2 
genotypes per cell, each update is 8 evaluations. Suppose 
long-term selection is configured to occur every 10 
generations, then a long-term selection event will be triggered 
after every 80 updates.  
 It is only during a long-term selection event that demes 
interact. In this interaction, a subpopulation compares its 
number of changes with that of its 8 closest neighbors (Moore 
neighborhood). A subpopulation is marked for extinction if its 
number of changes is strictly less than that of all its 
neighbors2. When all subpopulations have interacted with their 
neighbors, extinction and colonization of subpopulations 
begin. 
 A decimated subpopulation is replaced or colonized by a 
neighboring subpopulation with the highest number of 
changes3. A copy of every colonizer genotype is placed in the 
colonized subpopulation, so at the end of the replacement 
event both colonized and colonizer subpopulations have the 
same set of genotypes. The colonized subpopulation inherits 
its colonizer’s number of changes value and a mutated copy of 
its colonizer’s sieve. To avoid generation of invalid sieves, 
sieves are mutated by swapping two randomly picked 
elements of a sieve.  
 
B. Experiments and results 
 Runs in this section use the parameter values set out in 
Tables 4 and 7.  

TABLE 7 
DEFAULT VALUES FOR ADDITIONAL PARAMETERS 

Parameter Value 
Lattice dimensions 4 × 4 
Subpopulation size 5 
Number of generations 100 

 
 The results of the multi-population runs are summarized in 
Table 9.  In spite of not “knowing” and not finding the “ideal” 
sieve, and not using macro-mutation, the multi-population 
runs did just as well as RMHC2. They had a 100% success 
rate on HIFF.  
 Fig. 3 traces the progress of a successful genotype in a 
multi-population run. Table 8 lists significant events leading 
up the optimal solution for this run.  
 The genotype4 in Fig. 3 and Table 8 spent about two thirds 
of its time in cells with sieves that prioritized progress at level 
7 (the highest level) and the rest of its time in cells with sieves 
that prioritized adaptation at level 1 (the lowest level). 
Although the “ideal” sieve was not found in this run, the 
pattern of emphasizing progress at the highest level early on in 

                                                
2 This is un-evolutionary. A more likely scenario is for an active 
subpopulation, one with more changes, to seek out less active subpopulations 
and colonized them. Further, this colonization needs some kind of pay-off to 
the colonizer, perhaps space.  
3 This policy, along with others, may be modified after more detailed studies. 
4 Strictly speaking, copies of the genotype. Genotypes do not move from cell 
to cell, but copies of them are made. 

evolution appears sufficient to produce the effect of the 
“ideal” sieve, as evidenced from this example. It is important 
to note that the “ideal” sieve effect emerged without design.  
 We did not expect the pattern exhibited in Table 8. Instead, 
we expected cells with sieves that emphasized progress at 
lower levels to be more active early on in a run since smaller 
modules require fewer consecutive bits to agree and would be 
easier to form with random mutation. Further investigation is 
necessary to ascertain the frequency of this phenomenon and 
to identify the contributing factors. 
 

TABLE 8 
ABBREVIATED HISTORY OF EVENTS LEADING UP TO AN OPTIMAL SOLUTION  

Generation Event 

0 Cell 14 
Sieve at cell 14: 7, 6, 4, 3, 5, 1, 2 

300 (after 24,000 
evaluations) 

Cell 14 colonizes cell 1 
Sieve at cell 1: 7, 6, 1, 3, 5, 4, 2 

700 Cell 1 colonizes cell 12 
Sieve at cell 12: 1, 6, 7, 3, 5, 4, 2 

800 (after 64,000 
evaluations) 

Cell 12 colonizes cell 8 
Sieve at cell 8: 1, 2, 7, 3, 5, 4, 6 

900 

Cell 8 colonizes cell 7 
Sieve at cell 7: 1, 6, 7, 3, 5, 4, 2 
Optimum found in cell 7 after 87,398 evaluations 
(after 87398 / (4×4×5×100), about 1092, 
generations).  

  
C. Is extinction-recolonization necessary? 
 Since evolution of the “ideal” sieve is not necessary, is our 
multi-population approach unparsimonious? To investigate 
this, we performed multi-population runs without long-term 
selection. In this set of runs, there are no extinction-
recolonization events, hence no interaction between demes 
and no changes of sieves. This model is akin to evolving 
genotypes independently and in parallel with different sieves, 
and for this reason is called the parallel-model.  
 Results of the experiment with the parallel-model are 
summarized in Table 9. Fig. 3 depicts the progress made at 
four levels by a successful genotype in a parallel-model run. 
The parallel-model runs were just as successful at finding an 
optimal solution as the multi-population model runs, achieving 
100% success rate. Further, the parallel-model runs did not 
take significantly more evaluations than the multi-population 
runs to evolve an optimum. Base on these results, our multi-
population model is unnecessary.  
 

TABLE 9 
NUMBER OF TIMES AN OPTIMUM IS FOUND FOR HIFF,  N=128. 

HIFF (Pm = 0.0625) k-bit random mutation 
Model Times Found Evaluations 

Multi-population 30/30 (100 %) 77,076 (avg.) 
16,723 (std. dev.) 

Parallel 30/30 (100 %) 82,033 (avg.) 
16,845 (std. dev.) 

 
D. What makes a successful sieve for HIFF?  
 Fig. 4 compares the distribution of features in successful 
sieves, i.e. sieves which produced an optimum in their run; 
against the backdrop of all sieves that were randomly 
generated in 10 randomly chosen runs in the parallel-model  
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Fig. 3 N=128. In general, progress is made at all levels. Some regression occurs, indicated by a dip in the graph which reflects the non-altruistic nature of our 

selection scheme, progress in a feature can come at a cost to other features in the same phenotype. The multipop run goes through a series of sieves (Table 7). The 
parallel run uses only one sieve 〈5, 2, 4, 1, 7, 3, 6〉. 

 
experiment. We will use these 160 random sieves as our 
reference set.   
 Only 3 of the 6 features were found at the first position of 
the successful sieves, and these features are all higher level 
features: 5, 6 and 7. In relation to our reference set, the 
probability of generating a set of 10 sieves with only features 
5, 6 or 7 at the first position of the sieves is 0/10 = 0.00 and 
the probability of generating a set of 5 sieves with only 
features 5, 6 or 7 at the first position of the sieves is 1/20 = 
0.05.  Thus the distribution of features in the set of successful 
sieves is significantly different from that in the set of random 
sieves. Further, 9/10 sample runs had more than one sieve 
with features 5, 6 or 7 in the first position. Further analysis 
into the relative positions of features in a successful sieve 
could be useful. 
 So while our experiments confirm that an “ideal” sieve is 
not necessary, they also confirm that it is not the case that any 
sieve will be successful. From the distribution of features in 
successful sieves, the basic idea of prioritizing high level 
features over lower level ones is still operating in the parallel-
model.  
 This conclusion is further supported by the following 
experiment where the first halves of the initial sieves are 
restricted to lower level features. When this initial condition is 
imposed, the multi-population runs outperformed the parallel-
model runs significantly. 96% of the multi-population runs 
succeeded but only 36% of the parallel-model runs did. Due to 
the smaller problem size, N=64, it was possible for a few 

parallel-model runs to succeed. The multi-population runs and 
the parallel-model runs start with the same initial conditions as 
the same series of random seed numbers is used (section V).  
 

VII. CONCLUSION 
 In this paper, we have described how to increase the 
adaptive capability of a random mutation hill climbing 
algorithm on a class of test problems known to be very 
difficult for accretive evolution but easy for compositional 
evolution, the hierarchically consistent problems. Our 
approach involved the introduction of phenotypes, a level-
specific selection scheme and a meta-population model. We 
found that the evolution of the “ideal” selection scheme is not 
a pre-requisite to our approach on the HIFF problem. 
Specifically, the experiments in this paper confirm (i) that 
selecting on level fitness values is beneficial, and (ii) while it 
is not necessary to compare level fitness values in the “ideal” 
order, it is necessary to prioritize certain levels over others, 
namely higher levels over lower levels.   
 The problem addressed in this paper uses a continuous 
fitness function. The discrete version of HIFF is difficult for 
RMHC2 because the fitness landscape of the highest level is 
akin to two needles in a haystack. We are investigating how 
RMHC2 can be enhanced to solve the discrete HIFF problem. 
We are also working on a variation of the HIFF problem 
which has a uniform FDC value across all levels. So far we 
have found that this variant problem is intractable for RMHC2 
but solvable under a RMHC with an altruistic selection
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Fig. 4 Distribution of features in sieves in 10 randomly chosen parallel-model runs, N=128. One run has 16 sieves since the lattice we use is 4 × 4. Position 0 is the 

leftmost position in a sieve, position 6 is the rightmost. 
 
scheme and under a genetic algorithm with deterministic 
crowding [22]. Our RMHC2 approach to the problem of 
evolving complex structures has some similarity with the 
“screening-off” process described in [23] and the question of 
“real” modules. We plan to investigate this further. 
 

ACKNOWLEDGMENT 
 Thanks to Dr. P. Grogono and the anonymous reviewers 
for their helpful comments. This work is supported by NSERC 
and the Faculty of Engineering and Computer Science, 
Concordia University.  
 

REFERENCES 
1 S. Forrest and M. Mitchell, “Relative building-block fitness and the 

building-block hypothesis,” in D. Whitley (editor) Foundations of 
Genetic Algorithms (FOGA) vol. 2, 1993, Morgan Kaufmann. 

2 T. Jansen and I. Wegener, “Real royal road functions – where crossover 
provably is essential,” Discrete Applied Mathematics, vol. 149, pages 
111-125, 2005. 

3 J. H. Holland, “Adaptation in natural and artificial systems,” 1992, The 
MIT Press. 

4 R. A. Watson, “Compositional Evolution: Interdisciplinary investigations 
in evolvability, modularity and symbiosis,” Ph.D. Dissertation, Brandies 
University, 2002. 

5 R. A. Watson, G. S. Hornby, and J. B. Pollack, “Modeling building-block 
interdependency,” in A.E. Eiben, T. Bäck, M. Schoenauer and H.-P. 
Schweffel (editors) Parallel Problem Solving from Nature (PPSN) vol. V, 
1998, pp. 97 – 106, Springer, Berlin. 

6 R. A. Watson and J. B. Pollack, “A computational model of symbiotic 
composition in evolutionary transitions,” BioSystems vol. 69, 2003, pp. 
187 – 209, Elsevier. 

7 E. D. de Jong, D. Thierens and R. A. Watson, “Hierarchical genetic 
algorithms,” in X. Yao, et al. (Editors) Parallel Problem Solving from 
Nature (PPSN) vol. VIII, 2004, pp. 232 – 241, Springer, Berlin. 

8 M. Pelikan and D. E. Goldberg, “Escaping hierarchical traps with 
competent genetic algorithms,” in L.E Spector, et al. (editors), Genetic 
and Evolutionary Computation Conference (GECCO), 2001, pp. 511 – 
518, Morgan Kaufmann. 

9 J. Wiles, B. Tonkes and J. R. Watson, “How learning can guide evolution 
in hierarchical modular tasks,” in J.D. Moore and K. Stenning (editors), 
Conference of the Cognitive Sceince Society (CogSci), 2001, pp. 1130 – 
1135, Lawrence Erlbaum Associates.  

10 J. D. Knowles, R. A. Watson and D. W. Corne, “Reducing local optima in 
single-objective problems by multi-objectivization,” in Conference on 
Evolutionary Multi-criterion Optimization, (EMO), 2001, pp. 269 – 283, 
Springer-Verlag.  

11 M. Ebner, M. Shackleton and R. Shipman, “How neutral networks 
influence evolvability,” Complexity, vol. 7, 2001, pp. 19 – 33, Wiley 
Periodicals. 

12 J. A. Walker and J. F. Miller, “Embedded Cartesian Genetic 
Programming and the Lawnmover and Hierarchical-if-and-only-if 
problems,” in M. Keijzer et al. (Editors) Genetic and Evolutionary 
Computation Conference (GECCO), 2006, pages 911 – 918. 

13 H. A. Simon, “The sciences of the artificial,” 1969, The MIT Press. 

14 R. A. Watson and J. B. Pollack, “Hierarchically consistent test problems 
for genetic algorithms,” in P. Angeline, Z. Michalewicz, M. Schoenauer, 
X. Yao and A. Zalzala (editors), Congress on Evolutionary Computation 
(CEC), 1999, pp. 1406 – 1413, IEEE Press.  

15 T. Jones, “Evolutionary algorithms, fitness landscapes and search,” PhD 
Dissertation, University of New Mexico, 1995, p. 57. 

16 R. Levins, “Evolution in changing environments,” 1968, Princeton 
University Press. 

17 L. Altenberg, “Evolvability suppression to stabilize far-sighted 
adaptations,” Artificial Life, vol. 11, 2005, pp. 427 – 443, The MIT Press. 

18 T. Jones and S. Forrest, “Fitness distance correlation as a measure of 
problem difficulty for genetic algorithms,” in L. Eshelman (editor), 6th 
Interrnational Conference on Genetic Algorithms (ICGA), 1995, pp. 184 – 
192, Morgan Kaufmann. 

19 L. Altenberg, “Fitness distance correlation analysis: an instructive 
counterexample,” in T. Bäck (editor) 7th International Conference on 
Genetic Algorithms (ICGA), 1997, pp. 57 – 64, Morgan Kaufmann. 

20 L. Keller (editor), “Levels of selection in evolution,” 1999, Princeton 
University Press. 

21 T. Lenaerts, D. Groβ and R. A. Watson, “On the modeling of dynamical 
hierarchies: Introduction to the Workshop WDH 2002,” in R. Standish, M. 
A. Bedau and H. A. Abbass (editors) Artificial Life VIII, 2002, The MIT 
Press. 

22 S. Khor, “HIFF-II: A hierarchically decomposable problem with inter-level 
interdependency,” IEEE Symposium on Artificial Life, 2007. 

23 L. Altenberg, “Modularity in evolution: some low-level questions.” In W. 
Callebaut and D. Rasskin-Gutman (Editors) Modularity: Understanding the 
development and evolution of natural complex systems. 2005, pp. 99-128. 
MIT Press. 

 

416

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)


