

Rethinking the Adaptive Capability of Accretive
Evolution on Hierarchically Consistent Problems

Susan Khor
Concordia University, Montreal, CANADA

Email: slc_khor@cse.concordia.ca

Abstract-We consider how accretive evolution is able to evolve
optimal solutions to hierarchical decomposable non-separable
problems epitomized by hierarchically consistent test problems.
We find that this feat is not as improbable as previously thought
if a suitable phenotype which reflects the levels in the hierarchy is
used as the object of a selection scheme which applies level
directed selection pressure. An ideal selection scheme is first
described and tested experimentally, followed by a meta-
population model to evolve the ideal selection scheme.
Experiments with the model revealed that evolution of the ideal
selection scheme is not a pre-requisite to evolving optimal
solutions. Optimal solutions were found even when the ideal
selection scheme was not.
 No recombination of partial solutions is used in this paper.
The findings of this paper reopen the question: what type of
hierarchical structure is difficult to evolve through random
mutation and selection.

I. INTRODUCTION
 There has been considerable debate in the field of
evolutionary computation about the utility of the
recombination operator [1, 2]. These debates often take the
form of a comparison between hill-climbing algorithms and
genetic algorithms [3]. In his doctoral dissertation, Watson
draws an analogous debate in natural evolution between step-
by-step evolution or gradualism and evolution by jumps or
compositional evolution, from an algorithmic point of view
[4]. The centerpiece of his dissertation is the class of
hierarchically consistent (HC) problems [5].
 The class of hierarchically consistent problems is used to
discriminate between the adaptive capacity of accretive
evolution and of compositional evolution: “Certain kinds of
complex systems, considered unevolvable under normal
accretive change, are, in principle and under certain
circumstances, easily evolvable under compositional change.”
[4, p.1] The terms accretive evolution and compositional
evolution are explained further on in this section. Section II
explains what HC problems are.
 In this paper, we offer a way for finding solutions to HC
problems with accretive evolution. If our proposed method
succeeds, then the case for evolution – that the blind process
of evolution can produce complex forms – is further
strengthened. Because now there are two ways of evolving
complex structures: accretive and compositional. However,
this does blur the distinction between the adaptive capabilities
of evolutionary algorithms which use recombination from
those which do not on problems with hierarchical structure.
 Our experiments in section V, confirm that if a suitable
phenotype is introduced and if an appropriate selection
scheme is used, evolution of optima for hierarchically

consistent problems under accretive evolution is not as
improbable as portrayed in [4]. Section VI presents a multi-
population model to evolve the appropriate selection scheme.
Experiments with this model produced unexpected results.
 Both accretive evolution and compositional evolution use
selective accumulation of genetic changes to evolve units.
Accretive evolution and compositional evolution are
differentiated on the basis of the type and source of variation:
random in the accretive case; and biased and from other
existing units in the compositional case. The change or new
material introduced to the unit under accretive evolution “have
not been pre-adapted elsewhere as a set” and is, in this sense,
random; while the change or new material under
compositional evolution “have been semi-independently pre-
adapted in parallel in different lineages” [4, p.4].
 Examples of compositional mechanisms in nature given in
[4] include sexual recombination, horizontal gene transfer and
endosymbiosis. Examples of artificial compositional
mechanisms include genetic algorithms (GA) with tight
genetic linkage and the Symbiotic Evolutionary Adaptation
Model (SEAM) [6]. There are no random mutations in SEAM
[4, p.235]. Examples for artificial accretive mechanisms are
genetic algorithms without tight genetic linkage and the
Random Mutation Hill Climbing (RMHC) algorithm [1]. The
RMHC algorithm is defined in section III.
 Reference [4] considers optima to HC problems
unevolvable under normal accretive change because (i)
accretive evolution as defined in [4] cannot manipulate
modules effectively, (ii) the adaptive landscape of HC
problems have wide fitness-saddles which grow wider as the
problem size increases, (iii) there is a high-degree of
ruggedness and hence many local optima in the adaptive
landscape and (iv) the optimal solutions are irreducibly
complex for accretive evolution.
 When looking at the problem of evolving complex
solutions in artificial systems, one could consider whether
random mutation is capable of producing variations for
selection to act upon to produce the complex solution.
Alternatively, one could consider whether the selection
scheme is capable of shaping the complex solution via
evolution. In other words, is the selection scheme up to the
task? Watson uses the first approach when he uses features of
the adaptive landscape for a mutation operator to explain why
accretive mechanisms have difficulty with HC problems [4].
We take the second approach and propose a selection scheme
that is up to the task for HC problems.
 The selection scheme we propose is biased towards
conserving the adaptation of some features of a phenotype,
possibly to the detriment of other features in the phenotype

409

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

1-4244-0701-X/07/$20.00 ©2007 IEEE

and the genotype’s aggregate fitness. Section IV elaborates on
our approach. Note that compositional evolution also
manipulates its selection scheme; it does so to maintain
population diversity, which is crucial to the success of
compositional evolution on HC problems [4, p.20].
 The work presented in this paper is novel because to the
best of our knowledge to date, there has been no other attempt
to solve HC problems with RMHC. We have not found any
approach that splits up the fitness of a genotype into a
sequence of per-level fitness values, and compares per-level
fitness values in its selection scheme. Other approaches to HC
problems include hierarchical GA, competent GA,
dimensional reduction, multi-objective simulated annealing,
learning, neutral networks and development [7, 8, 9, 10, 11,
12]. Multi-level selection has been the subject of intense
debate in biology [20] and has also received attention in
artificial life [21].
 The conclusion we reach in this paper is that accretive
evolution can evolve solutions to HC problems provided (i)
the genotype-phenotype map is known, and (ii) suitable
selection pressure is applied. This conclusion is supported by
experimental results summarized in Section V.

II. HIERARCHICALLY CONSISTENT PROBLEMS
A. Background
 A problem is decomposable if its variables can be
partitioned into identifiable subsets, in some intuitive way. If
a problem is decomposable into a hierarchy of sub-problems
or modules, it is hierarchical. If the difficulty of solving a
sub-problem is the same as the difficulty of solving the whole
problem, the problem is consistent [5].
 The subsets of variables or modules in hierarchically
consistent problems are interdependent. Two modules are
interdependent if the optimal solution for one module depends
on the solution of the other module, and vice versa. Two
criteria must be satisfied to possess modular interdependency:
(i) for each module, the number of configurations that can lead
to an optimal solution in a given context (the other modules)
must be less than the total number of possible configurations
but more than one; and
(ii) the ratio of inter-module dependency strength to intra-
module dependency strength must be neither too high nor too
low: “... the strength of inter-module dependencies should be
low enough that intra-module dependencies create local
optima” [4, p.139].
 The implication of this is that finding optimal solutions to
lower level modules does not guarantee optimality to modules
higher up the hierarchy. Concepts introduced in this section
are treated more thoroughly in [4, 7, 13].
 Hierarchically consistent (HC) problems describe a class
of test problems, which include Hierarchical If-And-Only-If
(HIFF), Hierarchical Exclusive-Or (HXOR) and their shuffled
versions, SHIFF and SHXOR [4, 14]. The most common
version of HC problems has a block size of 1 and a binary
alphabet. Reference [14] explored the impact of bias, different
block sizes and different alphabet sizes on search difficulty.
HIFF and HXOR are exact complements of each other thereby

making the use of either function alone sufficient for our
purpose. This is not the case with their biased versions [14],
but we need not worry about this here.

B. Algorithm
 In this paper, the genotypes are bit strings of length N =
2n. We use the HIFF function defined on page 139 in [4] but
modified to calculate fitness by levels.
 A genotype has log2 N levels, and N/2λ modules at level λ,
with λ = 1…n. According to our algorithm, the aggregate
fitness value for an optimal genotype is N-1. An optimal
genotype is one with all zeroes or all ones.
 The pseudo-code for our algorithm is listed in Fig. 1.
Examples are worked out in Tables 1 and 2. The algorithm
comprises three functions: (i) calculateHIFFLevelFitness, (ii)
count_ones, and (iii) iff_function.
 The calculateHIFFLevelFitness function returns the fitness
for a given level, also known as per-level fitness. Per-level
fitness is the sum of the fitness of every module at that level.
Fitness of a module is calculated using the remaining two
functions. The count_ones function returns the number of
ones in a given bit string divided by the length of the bit
string. The iff_function is the continuous version of discrete
logical iff. It is (p × q) + (1 – p) × (1 – q).

PROCEDURE: calculateHIFFLevelFitness
INPUT: λ, N
OUTPUT: level_fitness
BEGIN
 module_size 2λ
 num_modules N / module_size
 FOR each module i at level λ
 IF (module_size = 2)
 p first bit of module i
 q second bit of module i
 level_fitness level_fitness + iff_function(p, q)
 ELSE
 bit_string1 first half of module i
 bit_string2 second half of module i
 level_fitness level_fitness +
 iff_function(count_ones(bit_string1),
 count_ones(bit_string2))
 END FOR
END
Fig. 1 HIFF function defined on page 139 in [4] modified to calculate fitness

by levels.

TABLE 1
AN EXAMPLE OF HIFF EVALUATION

Genotype 170
Level

Number of
Modules 1 0 1 0 1 0 1 0 Per level fitness

(lowest) 1 4 0.0 0.0 0.0 0.0 0.0
2 2 0.5 0.5 1.0

(highest) 3 1 0.5 0.5
Phenotype 〈 0.5, 1.0, 0.0 〉

Aggregate fitness 1.5

 In Table 1, modules at level 1 all have 0.0 fitness because
iff_function(1, 0) yields 0.0. At level 2, there are 2 modules
of 4 bits each. Count_ones(“10”) yields 1/2 = 0.5 since there is
one ‘1’ bit and the length of the bit string is 2.

410

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

iff_function(0.5, 0.5) yields 0.5 so fitness per module at level
2 is 0.5 and fitness for level 2 is 2 × 0.5 = 1.0.

TABLE 2
ANOTHER EXAMPLE OF HIFF EVALUATION

Genotype 111
Level

Number of
Modules 0 1 1 0 1 1 1 1 Per level fitness

(lowest) 1 4 0.0 0.0 1.0 1.0 2.0
2 2 0.5 1.0 1.5

(highest) 3 1 0.5 0.5
Phenotype 〈 0.5, 1.5, 2.0 〉

Aggregate fitness 4.0

III. RMHC
 Reference [4] used the random mutation hill climbing
(RMHC) algorithm as the mechanism for accretive evolution.
RMHC was introduced in [1]. The algorithm below follows
[4]:
1. Create a fully-specified random bit string.
2. Choose k bits at random to mutate. k is determined by a

given mutation rate. Mutation is by randomly assigning a 0
or a 1 to the bit.

3. If the mutation results in an equally fit or fitter offspring
string, keep the mutation. Otherwise, ignore the mutation.

4. If the optimal string has not been found and the pre-
determined number of fitness function evaluations has not
been performed, go to step 2. Otherwise return the current
bit string as the solution.

RMHC does not use a population, so there is no population
diversity to maintain.

IV. THE PROPOSED METHOD
A. Phenotypes
 The sequence of per level fitness values for a genotype
forms the phenotype for the genotype, with the highest level (λ
= n) fitness situated at the leftmost position of the phenotype
sequence, followed by the second highest (λ = n-1) level
fitness and so on. Tables 1 and 2 illustrate this.
 The optimal HIFF phenotype for a problem of size N = 2n
is 〈20, 21, …, 2i, 2i+1, … 2n-1〉. Work to calculate per level
fitness is already ordinarily expanded to calculate genotype
fitness, so creating phenotypes does not involve additional
computation, only additional space.
 Each element of a phenotype is a feature. The phenotype
in Table 1 has 3 features. The fitness of its first feature is 0.5
out of a possible 1.0.

B. The selection scheme and the “ideal” sieve
 Selection in RMHC (step3, section III) selects the
genotype with the higher aggregate fitness value. We do not

compare aggregate fitness values. Instead, per-level fitness
values between a parent and its offspring are compared.
 Our selection scheme uses a sieve to determine the order in
which per-level fitness values of two phenotypes are
compared. A sieve can be viewed as an adaptation strategy a
genotype employs unconsciously and which it has no control
over. Alternatively, a sieve could be seen as environmental
influence, differentiating the survival importance of the
features of a phenotype. A sieve is represented as an array of
positive integers. In a problem with 3 levels, any 3-
permutation of the set {1, 2, 3} is a valid sieve. There are n!
possible sieves for a problem with n levels.
 Suppose the sieve for a HIFF problem with size N = 8 is
〈2, 1, 3〉 and the two competing phenotypes are p1 = 〈a, b, c〉
and p2 = 〈x, y, z〉. Then under our selection scheme, reals b and
y are compared first, since they are the fitness values for the
second level feature, followed by c and z, and finally a and x.
 The genotype that improves any per level fitness value
earlier in a comparison is selected, regardless of what happens
to the fitness values of the other features or to the aggregate
fitness. So going back to the previous example, if (b > y) or (b
= y and c > z) or (b = y and c = z and a > x), then p1 is more fit
and its genotype is selected over the competitor. If all three
per-level fitness values are pairwise equal, then the genotype
for p2 is selected by default.
 The “ideal” selection scheme uses the “ideal” sieve, which
says to inspect features of phenotypes in level descending
order, i.e. 〈n, n-1, n-2,…, 1〉. According to this order, the
adaptation of the largest module has priority, followed by its
sub-modules, sub-sub modules, and recursively down to the
smallest modules. Since adaptation of smaller modules in the
lower levels does not guarantee concurrent adaptation of
larger modules in the higher levels, features of a phenotype
can be seen as selfish and competing with each other. The
“ideal” sieve is ideal for the HIFF problem because it does not
allow any lower level feature to gain the upper hand in this
competition.
 Table 3 demonstrates the “ideal” selection scheme.
Genotype number 2 is selected over genotype number 3 even
though its aggregate fitness (f) is lower because it is fitter than
genotype number 3 at a higher level. For this same reason,
genotype number 182 is selected over genotype number 179.

C. RMHC2
 RMHC2 incorporates phenotypes and the “ideal” selection
scheme into RMHC. It is the algorithm we use to evolve an
optimal solution for HIFF problems. RMHC2 uses k-bit
macro-mutation, where k is an integer within [1, K], randomly

TABLE 3
EXAMPLE OF THE IDEAL SELECTION SCHEME AT WORK.

THE IDEAL SELECTION SCHEME USES THE IDEAL SIEVE FOR THIS PROBLEM WHICH IS 〈3, 2, 1〉.
 HIFF Phenotype

gnum Genotype λ=3 λ=2 λ=1

f Selection

2 (parent) 0000 0010 0.75 1.5 3.0 5.25
3 (offspring) 0000 0011 0.50 1.0 4.0 5.50

2

179 (parent) 1011 0011 0.5 0.5 3.0 4.0
182 (offspring) 1011 0110 0.5 1.0 1.0 2.5

182

411

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

chosen before each mutation event; and K = Pm × N, Pm is a
fixed predefined mutation rate within (0, 1) and N is the
problem size or length of the genotype. A macro-mutation
operator mutates a contiguous section of a genotype within
two randomly picked loci [15] and is the type of mutation
operator with the best chance of succeeding on HC problems
[4]. The RMHC2 algorithm:
1. Start with a fully specified (every loci has a value of either

1 or 0) genotype.
2. Make a copy of the parent genotype and mutate the copy to

produce the offspring genotype. Starting at a random locus
l, mutate k consecutive bits, wrapping around to the start of
the genotype if the end of the genotype is reached.
Mutation is by random assignment of a 0 or a 1.

3. If the offspring phenotype is selected, replace the parent
genotype with the offspring genotype. Otherwise, discard
the offspring genotype.

4. If the optimal string has not been found and the pre-
determined number of function evaluations has not been
performed, go to step 2. Otherwise return the current
genotype as the solution.

V. EXPERIMENTS AND RESULTS

A. Experimental setup
 Unless otherwise stated, the experiments use the parameter
values detailed in Table 4. These values are taken from [4]
with the exception of maximum evaluations per run. After a
few preliminary tests, we found running to a maximum of
3,000,000 evaluations, which is the figure used in [4], to be
overkill for our purpose.

TABLE 4
DEFAULT PARAMETER VALUES

Parameter Value
Number of runs per experiment 30
Maximum evaluations per run 1,000,000
Problem size, N 128
Mutation rate, Pm 0.0625

 A different random number seed is used in each run in an
experiment, but all experiments used the same series of
random number seeds for their runs. The number of times an
optimum is found is used to measure the performance of the
various algorithms under test.

B. Experiments with the “ideal” selection scheme
 To test the performance RMHC2, we compared it with
RMHC1. RMHC1 uses variable k-bit macro-mutation and
compares aggregate fitness to decide whether to accept a
changed genotype. The algorithm for RMHC1 is therefore the
same as the algorithm for RMHC2 except step 3 is replaced
with step 3 of RMHC.
 Table 5 compares results obtained from this experiment
with relevant previous results. That no RMHC1 run succeeded
confirms that the difficulty of the HIFF problem under normal
accretive change is preserved in our implementation of the
problem. 100% of RMHC2 runs succeeded on the HIFF

problem, even when the problem size is doubled to 256. This
is a significant improvement over RMHC1. Therefore our
first hypothesis, that using a suitable phenotype which reflects
the levels in the hierarchy, coupled with a selection scheme
which applies level directed selection pressure on the
phenotype, significantly improves the performance of
accretive evolution (RMHC), is confirmed.

TABLE 5
NUMBER OF TIMES AN OPTIMUM IS FOUND. RMHC2 STOPS WHEN IT FINDS ONE OF THE

OPTIMA.
Method Character Times found Evaluations

SEAM [6] compositional 30/30 (100 %) -

RMHC [4] compare aggregate fitness
fixed k random mutation 0/30 (0 %) -

RMHC1 compare aggregate fitness
variable k macro-mutation 0/30 (0 %) -

RMHC2 compare phenotypes,
variable k macro-mutation 30/30 (100 %) 2245 (avg.)

660 (std. dev.)

RMHC2
compare phenotypes,
variable k macro-mutation
N=256

30/30 (100 %) 8084 (avg.)
2325 (std. dev.)

 Fig. 2 compares the progress made by a RMHC1 run with
a RMHC2 run. In the RMHC1 run, lower level modules
quickly make progress, but this progress does not lead to the
evolution of an optimal solution. In the RMHC2 run, progress
is made at all levels and an optimal solution is found.
 RMHC2 is able to evolve optimal solutions for HIFF
because it prevents devolution of higher level features by
selecting against mutations which attempt to do so even when
this means preventing adaptation or causing regression in
lower level features. In a sense, RMHC2 imposes horizontal
(level view) separability on a vertically (module view) non-
separable problem. From the vantage point of the highest
level feature, a HIFF problem becomes a hill-climbing effort.
And since an optimal solution for the highest level feature or
largest module is also optimal for all lower level modules,
evolving an optimal solution is not an improbable pole vault
up the steep side of a mountain with the “ideal” selection
scheme.
 Table 6 lists correlation values between fitness values at
different levels and hamming distances to the closest global
optimum on the HIFF problem for problem size 8 and 16.
Fitness Distance Correlation (FDC) was introduced by Jones
and Forrest [18], as a measure of search difficulty. Intuitively,
FDC measures whether fitness increases as distance to a
global optimum decreases. A search problem with a negative
FDC value is categorized as straightforward or not misleading.
Search difficulty for straightforward problems increases as
FDC approaches 0. There are known problems with this
summary statistic [19] and its application does not appear to
depend on the search operator which is worrying.
Nevertheless, FDC has been shown to reflect search difficulty
on a number of known problems [18]. We use FDC as a first
approximation of the search difficulty at different levels in a
HIFF problem which may account for the success of the
“ideal” selection scheme.

412

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

HIFFAggregate Fitness, max=127

50

60

70

80

90

100

110

120

130

0 1000 2000 3000 4000
Evaluation

Fi
tn

es
s

RMHC2 RMHC1 HIFF Level 7 Fitness, max=1

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000
Evaluation

Fi
tn
es
s

RMHC2 RMHC1

HIFFLevel 4 Fitness, max=8

2

3

4

5

6

7

8

0 1000 2000 3000 4000
Evaluation

Fi
tn

es
s

RMHC2 RMHC1 HIFF Level 1 Fitness, max=64

24

32

40

48

56

64

0 1000 2000 3000 4000
Evaluation

Fi
tn

es
s

RMHC2 RMHC1

Fig. 2 N=128. The selfish interests of modules in the lower level dominate the RMHC1 run, and prevent the formation of an optimal solution. On the other hand,

modules at different levels in the RMHC2 run evolve in concert and an optimal solution is formed for all levels.

 The FDC values in Table 6 reveals that search difficulty on
the HIFF problem is straightforward at all levels but not
uniform across levels. Further, there is clear indication that
search is least difficult at the highest level and becomes
progressively more difficult at lower levels.

TABLE 6

FDC
Level N=8 N=16

4 - -0.6770
3 -0.6972 -0.4787
2 -0.4930 -0.3385
1 -0.3486 -0.2394

Aggregate -0.5712 -0.4199

VI. EVOLVING THE SIEVE
A. The meta-population model
 In this section, we outline our model to evolve the sieve
and optimal solution concurrently. Meta-population [16] refers
to a model where a population is divided into demes with
minimal interaction between demes so that demes may diverge
in their characteristics, and there are frequent extinction and
re-colonization of demes.
 A meta-population model was used to study the evolution
of far-sighted traits through the suppression of short-sighted or
evolutionary pathological traits [17]. Short-sighted traits are
those which confer short-term benefits but lead the population
to extinction in the long term.

 In the HIFF problem, higher level features may be viewed
as far-sighted traits and lower level features, short-sighted
ones since adapting smaller modules, with no regard for the
adaptation of larger modules, results in sub-optimal solutions.
However, rather than suppressing traits, our task here is to
rank traits.
 Our model splits a population of genotypes into minimally
interacting demes or subpopulations. Every subpopulation
comprises one or more genotypes, occupies a cell in a two
dimensional lattice with periodic boundaries, remembers the
number of changes made to its genotypes and is assigned a
randomly generated sieve at the start of the experiment.
 There are two types of selection in our model: long-term
and short-term. A short-term selection event happens after
every mutation event and is specific to a genotype1 within a
subpopulation. Short-term selection evaluates genotypes in a
subpopulation on the basis of the subpopulation’s current
sieve. If a mutation is accepted, that is an offspring genotype
is selected over its parent, and the offspring is at least one
Hamming distance away from its parent, the number of
changes for the subpopulation is increased by one. Mutation in
this model is k-bit random mutation, and not macro-mutation;
that is the k bits for mutation are selected randomly with
replacement.

1 Genotypes within a subpopulation do not interact with each other.

413

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

 A mutation event followed by a short-term selection event
is an update event. A long-term selection event is triggered
after a specified number of updates to the whole population
have occurred. For example, in a 4 cell lattice with 2
genotypes per cell, each update is 8 evaluations. Suppose
long-term selection is configured to occur every 10
generations, then a long-term selection event will be triggered
after every 80 updates.
 It is only during a long-term selection event that demes
interact. In this interaction, a subpopulation compares its
number of changes with that of its 8 closest neighbors (Moore
neighborhood). A subpopulation is marked for extinction if its
number of changes is strictly less than that of all its
neighbors2. When all subpopulations have interacted with their
neighbors, extinction and colonization of subpopulations
begin.
 A decimated subpopulation is replaced or colonized by a
neighboring subpopulation with the highest number of
changes3. A copy of every colonizer genotype is placed in the
colonized subpopulation, so at the end of the replacement
event both colonized and colonizer subpopulations have the
same set of genotypes. The colonized subpopulation inherits
its colonizer’s number of changes value and a mutated copy of
its colonizer’s sieve. To avoid generation of invalid sieves,
sieves are mutated by swapping two randomly picked
elements of a sieve.

B. Experiments and results
 Runs in this section use the parameter values set out in
Tables 4 and 7.

TABLE 7
DEFAULT VALUES FOR ADDITIONAL PARAMETERS

Parameter Value
Lattice dimensions 4 × 4
Subpopulation size 5
Number of generations 100

 The results of the multi-population runs are summarized in
Table 9. In spite of not “knowing” and not finding the “ideal”
sieve, and not using macro-mutation, the multi-population
runs did just as well as RMHC2. They had a 100% success
rate on HIFF.
 Fig. 3 traces the progress of a successful genotype in a
multi-population run. Table 8 lists significant events leading
up the optimal solution for this run.
 The genotype4 in Fig. 3 and Table 8 spent about two thirds
of its time in cells with sieves that prioritized progress at level
7 (the highest level) and the rest of its time in cells with sieves
that prioritized adaptation at level 1 (the lowest level).
Although the “ideal” sieve was not found in this run, the
pattern of emphasizing progress at the highest level early on in

2 This is un-evolutionary. A more likely scenario is for an active
subpopulation, one with more changes, to seek out less active subpopulations
and colonized them. Further, this colonization needs some kind of pay-off to
the colonizer, perhaps space.
3 This policy, along with others, may be modified after more detailed studies.
4 Strictly speaking, copies of the genotype. Genotypes do not move from cell
to cell, but copies of them are made.

evolution appears sufficient to produce the effect of the
“ideal” sieve, as evidenced from this example. It is important
to note that the “ideal” sieve effect emerged without design.
 We did not expect the pattern exhibited in Table 8. Instead,
we expected cells with sieves that emphasized progress at
lower levels to be more active early on in a run since smaller
modules require fewer consecutive bits to agree and would be
easier to form with random mutation. Further investigation is
necessary to ascertain the frequency of this phenomenon and
to identify the contributing factors.

TABLE 8
ABBREVIATED HISTORY OF EVENTS LEADING UP TO AN OPTIMAL SOLUTION

Generation Event

0 Cell 14
Sieve at cell 14: 7, 6, 4, 3, 5, 1, 2

300 (after 24,000
evaluations)

Cell 14 colonizes cell 1
Sieve at cell 1: 7, 6, 1, 3, 5, 4, 2

700 Cell 1 colonizes cell 12
Sieve at cell 12: 1, 6, 7, 3, 5, 4, 2

800 (after 64,000
evaluations)

Cell 12 colonizes cell 8
Sieve at cell 8: 1, 2, 7, 3, 5, 4, 6

900

Cell 8 colonizes cell 7
Sieve at cell 7: 1, 6, 7, 3, 5, 4, 2
Optimum found in cell 7 after 87,398 evaluations
(after 87398 / (4×4×5×100), about 1092,
generations).

C. Is extinction-recolonization necessary?
 Since evolution of the “ideal” sieve is not necessary, is our
multi-population approach unparsimonious? To investigate
this, we performed multi-population runs without long-term
selection. In this set of runs, there are no extinction-
recolonization events, hence no interaction between demes
and no changes of sieves. This model is akin to evolving
genotypes independently and in parallel with different sieves,
and for this reason is called the parallel-model.
 Results of the experiment with the parallel-model are
summarized in Table 9. Fig. 3 depicts the progress made at
four levels by a successful genotype in a parallel-model run.
The parallel-model runs were just as successful at finding an
optimal solution as the multi-population model runs, achieving
100% success rate. Further, the parallel-model runs did not
take significantly more evaluations than the multi-population
runs to evolve an optimum. Base on these results, our multi-
population model is unnecessary.

TABLE 9
NUMBER OF TIMES AN OPTIMUM IS FOUND FOR HIFF, N=128.

HIFF (Pm = 0.0625) k-bit random mutation
Model Times Found Evaluations

Multi-population 30/30 (100 %) 77,076 (avg.)
16,723 (std. dev.)

Parallel 30/30 (100 %) 82,033 (avg.)
16,845 (std. dev.)

D. What makes a successful sieve for HIFF?
 Fig. 4 compares the distribution of features in successful
sieves, i.e. sieves which produced an optimum in their run;
against the backdrop of all sieves that were randomly
generated in 10 randomly chosen runs in the parallel-model

414

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

HIFFAggregate Fitness, max=127

50

60

70

80

90

100

110

120

130

0 20000 40000 60000 80000 100000
Evaluation

Fi
tn

es
s

parallel multipop

HIFF Level 7 Fitness, max=1

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20000 40000 60000 80000 100000
Evaluation

Fi
tn
es
s

parallel multipop

HIFFLevel 4 Fitness, max=8

2

3

4

5

6

7

8

0 20000 40000 60000 80000 100000
Evaluation

Fi
tn

es
s

parallel multipop

HIFF Level 1 Fitness, max=64

24

32

40

48

56

64

0 20000 40000 60000 80000 100000
Evaluation

Fi
tn

es
s

parallel multipop

Fig. 3 N=128. In general, progress is made at all levels. Some regression occurs, indicated by a dip in the graph which reflects the non-altruistic nature of our

selection scheme, progress in a feature can come at a cost to other features in the same phenotype. The multipop run goes through a series of sieves (Table 7). The
parallel run uses only one sieve 〈5, 2, 4, 1, 7, 3, 6〉.

experiment. We will use these 160 random sieves as our
reference set.
 Only 3 of the 6 features were found at the first position of
the successful sieves, and these features are all higher level
features: 5, 6 and 7. In relation to our reference set, the
probability of generating a set of 10 sieves with only features
5, 6 or 7 at the first position of the sieves is 0/10 = 0.00 and
the probability of generating a set of 5 sieves with only
features 5, 6 or 7 at the first position of the sieves is 1/20 =
0.05. Thus the distribution of features in the set of successful
sieves is significantly different from that in the set of random
sieves. Further, 9/10 sample runs had more than one sieve
with features 5, 6 or 7 in the first position. Further analysis
into the relative positions of features in a successful sieve
could be useful.
 So while our experiments confirm that an “ideal” sieve is
not necessary, they also confirm that it is not the case that any
sieve will be successful. From the distribution of features in
successful sieves, the basic idea of prioritizing high level
features over lower level ones is still operating in the parallel-
model.
 This conclusion is further supported by the following
experiment where the first halves of the initial sieves are
restricted to lower level features. When this initial condition is
imposed, the multi-population runs outperformed the parallel-
model runs significantly. 96% of the multi-population runs
succeeded but only 36% of the parallel-model runs did. Due to
the smaller problem size, N=64, it was possible for a few

parallel-model runs to succeed. The multi-population runs and
the parallel-model runs start with the same initial conditions as
the same series of random seed numbers is used (section V).

VII. CONCLUSION
 In this paper, we have described how to increase the
adaptive capability of a random mutation hill climbing
algorithm on a class of test problems known to be very
difficult for accretive evolution but easy for compositional
evolution, the hierarchically consistent problems. Our
approach involved the introduction of phenotypes, a level-
specific selection scheme and a meta-population model. We
found that the evolution of the “ideal” selection scheme is not
a pre-requisite to our approach on the HIFF problem.
Specifically, the experiments in this paper confirm (i) that
selecting on level fitness values is beneficial, and (ii) while it
is not necessary to compare level fitness values in the “ideal”
order, it is necessary to prioritize certain levels over others,
namely higher levels over lower levels.
 The problem addressed in this paper uses a continuous
fitness function. The discrete version of HIFF is difficult for
RMHC2 because the fitness landscape of the highest level is
akin to two needles in a haystack. We are investigating how
RMHC2 can be enhanced to solve the discrete HIFF problem.
We are also working on a variation of the HIFF problem
which has a uniform FDC value across all levels. So far we
have found that this variant problem is intractable for RMHC2
but solvable under a RMHC with an altruistic selection

415

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

Distribution of Features in All Sieves

0
20

40
60

80

100
120

140

160
180

0 1 2 3 4 5 6
Position in a sieve

Fr
eq

ue
nc

y
7

6

5

4

3

2

1

Distribution of Features in Successful Sieves

0

2

4

6

8

10

12

0 1 2 3 4 5 6
Position in a sieve

Fr
eq

ue
nc

y

7

6

5

4

3

2

1

Fig. 4 Distribution of features in sieves in 10 randomly chosen parallel-model runs, N=128. One run has 16 sieves since the lattice we use is 4 × 4. Position 0 is the

leftmost position in a sieve, position 6 is the rightmost.

scheme and under a genetic algorithm with deterministic
crowding [22]. Our RMHC2 approach to the problem of
evolving complex structures has some similarity with the
“screening-off” process described in [23] and the question of
“real” modules. We plan to investigate this further.

ACKNOWLEDGMENT
 Thanks to Dr. P. Grogono and the anonymous reviewers
for their helpful comments. This work is supported by NSERC
and the Faculty of Engineering and Computer Science,
Concordia University.

REFERENCES
1 S. Forrest and M. Mitchell, “Relative building-block fitness and the

building-block hypothesis,” in D. Whitley (editor) Foundations of
Genetic Algorithms (FOGA) vol. 2, 1993, Morgan Kaufmann.

2 T. Jansen and I. Wegener, “Real royal road functions – where crossover
provably is essential,” Discrete Applied Mathematics, vol. 149, pages
111-125, 2005.

3 J. H. Holland, “Adaptation in natural and artificial systems,” 1992, The
MIT Press.

4 R. A. Watson, “Compositional Evolution: Interdisciplinary investigations
in evolvability, modularity and symbiosis,” Ph.D. Dissertation, Brandies
University, 2002.

5 R. A. Watson, G. S. Hornby, and J. B. Pollack, “Modeling building-block
interdependency,” in A.E. Eiben, T. Bäck, M. Schoenauer and H.-P.
Schweffel (editors) Parallel Problem Solving from Nature (PPSN) vol. V,
1998, pp. 97 – 106, Springer, Berlin.

6 R. A. Watson and J. B. Pollack, “A computational model of symbiotic
composition in evolutionary transitions,” BioSystems vol. 69, 2003, pp.
187 – 209, Elsevier.

7 E. D. de Jong, D. Thierens and R. A. Watson, “Hierarchical genetic
algorithms,” in X. Yao, et al. (Editors) Parallel Problem Solving from
Nature (PPSN) vol. VIII, 2004, pp. 232 – 241, Springer, Berlin.

8 M. Pelikan and D. E. Goldberg, “Escaping hierarchical traps with
competent genetic algorithms,” in L.E Spector, et al. (editors), Genetic
and Evolutionary Computation Conference (GECCO), 2001, pp. 511 –
518, Morgan Kaufmann.

9 J. Wiles, B. Tonkes and J. R. Watson, “How learning can guide evolution
in hierarchical modular tasks,” in J.D. Moore and K. Stenning (editors),
Conference of the Cognitive Sceince Society (CogSci), 2001, pp. 1130 –
1135, Lawrence Erlbaum Associates.

10 J. D. Knowles, R. A. Watson and D. W. Corne, “Reducing local optima in
single-objective problems by multi-objectivization,” in Conference on
Evolutionary Multi-criterion Optimization, (EMO), 2001, pp. 269 – 283,
Springer-Verlag.

11 M. Ebner, M. Shackleton and R. Shipman, “How neutral networks
influence evolvability,” Complexity, vol. 7, 2001, pp. 19 – 33, Wiley
Periodicals.

12 J. A. Walker and J. F. Miller, “Embedded Cartesian Genetic
Programming and the Lawnmover and Hierarchical-if-and-only-if
problems,” in M. Keijzer et al. (Editors) Genetic and Evolutionary
Computation Conference (GECCO), 2006, pages 911 – 918.

13 H. A. Simon, “The sciences of the artificial,” 1969, The MIT Press.

14 R. A. Watson and J. B. Pollack, “Hierarchically consistent test problems
for genetic algorithms,” in P. Angeline, Z. Michalewicz, M. Schoenauer,
X. Yao and A. Zalzala (editors), Congress on Evolutionary Computation
(CEC), 1999, pp. 1406 – 1413, IEEE Press.

15 T. Jones, “Evolutionary algorithms, fitness landscapes and search,” PhD
Dissertation, University of New Mexico, 1995, p. 57.

16 R. Levins, “Evolution in changing environments,” 1968, Princeton
University Press.

17 L. Altenberg, “Evolvability suppression to stabilize far-sighted
adaptations,” Artificial Life, vol. 11, 2005, pp. 427 – 443, The MIT Press.

18 T. Jones and S. Forrest, “Fitness distance correlation as a measure of
problem difficulty for genetic algorithms,” in L. Eshelman (editor), 6th
Interrnational Conference on Genetic Algorithms (ICGA), 1995, pp. 184 –
192, Morgan Kaufmann.

19 L. Altenberg, “Fitness distance correlation analysis: an instructive
counterexample,” in T. Bäck (editor) 7th International Conference on
Genetic Algorithms (ICGA), 1997, pp. 57 – 64, Morgan Kaufmann.

20 L. Keller (editor), “Levels of selection in evolution,” 1999, Princeton
University Press.

21 T. Lenaerts, D. Groβ and R. A. Watson, “On the modeling of dynamical
hierarchies: Introduction to the Workshop WDH 2002,” in R. Standish, M.
A. Bedau and H. A. Abbass (editors) Artificial Life VIII, 2002, The MIT
Press.

22 S. Khor, “HIFF-II: A hierarchically decomposable problem with inter-level
interdependency,” IEEE Symposium on Artificial Life, 2007.

23 L. Altenberg, “Modularity in evolution: some low-level questions.” In W.
Callebaut and D. Rasskin-Gutman (Editors) Modularity: Understanding the
development and evolution of natural complex systems. 2005, pp. 99-128.
MIT Press.

416

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

