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Abstract— We present a model of Artificial Embryogeny,
Deva1, with discussion of design rationale. The motivation for an
externally-evaluated test-bed for models in Artificial Embryogeny
is discussed. We review a simple model of structural design, the
Plane Truss. The Deva1 model is applied to the evolution of
designs for Trusses, showing that a variety of trusses satisfying
distinct fitness-imposed criteria may be evolved; We evolve
trusses capable of supporting external forces efficiently while
either minimizing material usage or minimizing base size. Finally,
we introduce a model-level perturbation, the inclusion of a seed
rule, a metaphor for the initial cleavage found in real-world
embryogeny. Through an empirical evaluation, we determine that
the use of a seed rule is found to improve the overall quality of
evolved designs, and to lessen the fitness variance between the
runs.

I. INTRODUCTION

In this paper we introduce both a model of Artificial Em-
bryogeny (AE), and a domain of application which may serve
as a future testing grounds. We introduce Deva1, a Cellular
Automaton-like model where cells develop in a discrete space
and under a discrete time. Deva1 is a general means of
mapping between genotype and phenotype, where phenotype
is realized in a dynamical system guided by the genome.

There exist many models of AE, and further, we believe
that there are many more unexplored directions. In order to
differentiate between the various models and their relative
merits, there exists a need for independent and external means
of evaluation. To that end, we introduce an interpretation of
an organism as a Plane Truss, evaluated on its ability to form
a stable structure and support external forces. Plane Trusses
are common models in structural design — successful truss
design is a challenging task, relevant to engineering today. It
is our belief that this application forms a suitable starting point
from which to evaluate various models of AE.

We test the Deva1 algorithm in the context of Plane Truss
design, guiding evolution through our choice of fitness func-
tion — successful truss designs are found for each set of
imposed constraints. Finally, we introduce the notion of a seed

rule, an addition to the initial population of genotypes designed
to force an initial cleavage of cells in the developmental
phase. The seed rule is evaluated empirically in the context
of growing Plane Trusses, and is found to increase overall

fitness and lessen the fitness variance between runs.

II. REVIEW

We review three relevant fields: Initially, we review the
field of Artificial Embryogeny in a general sense; Next, we
briefly introduce Plane Trusses, and discuss their evaluation
through a matrix-base equilibrium method; Finally, we look at
previous attempts at the evolution of structural form through
Evolutionary Computation.

A. Artificial Embryogeny

There is much interest at present in the use of development
in Evolutionary Computation (EC). Artificial Embryogeny
(AE) is a term1 used to describe a developmental phase in
artificial evolution, that is, an indirect mapping between the
genotype (representation) and phenotype (evaluated organism).
It is common, although not necessary, that this mapping be
inspired by biological embryogenesis.

The first computational models of embryogenesis include
chemical diffusion work by Turing [21] and work with simple
automata by Lindenmayer [11]. Perhaps the best known model,
however, is an exceedingly simple proof of concept using
recursive systems: Dawkins’ BioMorphs, a simple user-guided
evolutionary strategy that controls the development of stick-
based trees [2]. Much research revolves around the attempt to
reverse-engineer Evo Devo, or to create “plausible” models
of embryogeny. These include the attempt to model plant
growth by Prusinkiewicz et al, who have recently success-
fully re-created phenomena including meristems, branching,
and tropism, amongst others [14], [15]. Kumar and Bentley
present a system called the Evolutionary Development System,
consisting of pre-programmed concepts of proteins, cells,
cytoplasm, genes, etc., intended to model gene expression
with cis-regulatory regions. The EDS has been shown to be
capable of mimicking Genetic Regulatory Networks within
cells, with some ability to grow embryos of particular shapes
[10]. Eggenberger Hotz has supplied a model which includes
significant modelling of the environment in which the cells

1We follow the naming convention introduced by Stanley and Miikulainen
[19] for reasons of pure aesthetic preference — other similar terms are
“Computational Development” and “Artificial Ontogeny”.
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grow as well, including the force of cells on each other — this
simulates the growth of three-dimensional structures, including
invagination [3].

Most relevant to our current interest are cases where AE
has been applied to the design of solutions to problems from
engineering and related fields. AE possess several attractive
properties which imply their potential use in situations where
direct encoding might be impossible or intractable. AE tech-
niques are believed to be capable of exploiting a canalization
of development, allowing for the design of organisms too large
for evolution via bijective encodings [9], [7]. AE is believed
to be a mechanism by which large complex systems may
maintain themselves, executing self-repair following damage
[13]. AE allows for significant environmental influence on
the development of organisms, allowing for the same repre-
sentations to be used in the development of several different
organisms [9]. Finally, it has been suggested that AE might
be used to generate not only the final organism, but also a
constructive map, detailing a plan for the assembly of the final
design [17].

Eggenberger Hotz et al have used development to grow neu-
ral network architectures of impressive size and complexity,
capable of controlling a robot arm intelligently [4]. Sekanina
and Bidlo used evolution and a developmental algorithm to
evolve sorting networks; Through their developmental scheme,
they were able to create a series of ever-larger networks,
reasonably independent of genome length [18]. Stoy and
Nagpal use a Cellular-Automata-like technique to allow an
undifferentiated mass of components to self-organize into
a pre-determined shape; They have recently described the
reconstruction of a CAD 3D model of a plane from an arbitrary
configuration of atomic components [20].

There are two existing models of embryogenesis closely
related to Cellular Automata (CA). In Basanta’s model, Em-
bryoCA, a single seed cell is placed in the centre of a
two-dimensional grid, with successive growth controlled by
a modified two-dimensional CA. Basanta et al demonstrate
the ability of their model to grow simple geometric shapes
[1]. The work of Kowaliw et al, Bluenome, was an attempt
to design a subset of all CA more suited to evolutionary
pressures — Bluenome was shown to be capable of developing
two-dimensional images maximizing several interesting fitness
functions. Additionally, Bluenome was also applied to the
problem of evolving an organism capable of surviving in
an artificial two-dimensional world, locating, consuming and
distributing food — several interesting agent strategies were
discovered in this context. This current work may be viewed
as an extension of the Bluenome work, with a re-designed
and generalized model of embryogeny, and located in a more
significant domain of application [9].

B. Trusses

Trusses are well studied examples of structural design, being
used by architects and engineers in nearly all construction;
Often, they are cited as the simplest such model. Still, as
an approximation of actual real-world structures, trusses are

Fig. 1. Two plane trusses, the left is stable, the right unstable. Labelled on
the left: external force P applied to the top joint, reactive force R from a
base joint, member force Fi of the ith member.

close enough to be suitable models for most small construction
projects, and are typically used at least in the initial design
phase of nearly all large construction. Truss-based structures
invisibly form the basis of nearly every large building or
tower, but are most obviously visible in bridges, hydro towers,
house roofing — although a simple model, truss design can
be exceedingly complex. As such, trusses are an appropriate
choice for evaluating a model’s ability to perform structural
design, allowing for an evaluation of those designs from a
completely independent context.

1) Plane Trusses: Plane trusses are two dimensional con-
structs consisting of (for our purposes) joints, beams and
grounds. A truss is any connected collection of these three
components, regardless of usefulness or triviality. All beams
are connected via joints, which may be connected to grounds.
The typical purpose of a truss is to support other structures,
and to re-distribute any external forces so as to retain its
original form; Hence, we typically talk about the stability of
a truss, and the stress on any particular component.

Given some truss, our natural first questions is whether
or not it is stable — i.e., will it (approximately) retain its
shape. The second question involves the stress placed on
the members under some external force — if the maximum
stress exceeds the yield strength of any particular beam, the
truss may quickly become unstable. Another important issue
involves the deformation of the truss members under strain;
Given some beam and an external force, a beam will either
compress or stretch, which in turn will cause the truss’ joints
to dislocate. Some dislocation is to be expected, indeed, some
dislocation is precisely the advantage to the use of joints rather
than rigid connections. Too much, of course, will compromise
the design. Figure 1 shows two trusses; The first is stable, but
the second is not — any external force would cause the second
to deform drastically.

In designing a plane truss, we typically operate under
some set of criteria, and attempt to design a truss which can
maximize those criteria while being both stable and as resistant
to external forces as possible. We will assume, for all future
discussions, that our trusses are topologically connected, pin-
connected, friction-free, and that force is applied only at joints.

2) Truss Stress Analysis: We now examine the computation
of member-forces in an arbitrary plane truss2. There exist

2This analysis is taken largely from West’s treatment [22].
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some simple counting tests that may determine if a given
truss is unstable. Failing that, we must attempt to compute the
equilibrium state given some external forces — in the process,
we obtain values for all member forces. In our example, all
truss members are identical in terms of material and area,
grown in a developmental space where units (and hence also
rc) are measured in meters; We set EA = 1.57 × 104 N,
corresponding to a modulus of elasticity for steel [12] and a
cylindrical member of diameter 1 cm.

Consider a general truss with n joints and m beams; We
are provided with external forces to be applied at joints, and
wish to determine the member forces. Let our structure forces
be {P} = {P 1, ..., Pn}T , structure displacements be {Δ} =
{Δ1, ...,Δn}T and member forces be {F} = {F 1, ..., Fm}T .
We may relate the individual member forces to displacement
and structure forces as follows:

{F}i = [k]ia[β]i{Δ} (1)

where [β]i is the connectivity matrix for the ith member
beam, and [k]ia is its stiffness matrix, relating the deformation
of the beam under a given force to the displacement at the
joint. Hence, to solve for forces, it suffices to compute the
displacements. The displacements may be computed through a
truss stiffness matrix, a combination of the individual member
stiffness matrices:

{Δ} = [K]−1{P} (2)

Hence, given a plane truss, we may first compute the stiffness
matrix, then compute the displacements, then the individual
member forces. The entire process is bounded by the calcula-
tion of a matrix inversion (or LU-Decomposition), and hence
has running time O(m3).

C. Evolution of Structures

There has been significant interest in the evolution of struc-
tural designs. This has included several frameworks for their
analysis, including plane and space trusses, simplified models
of Lego, and others. The Lego and related simple models have
led to some interesting research in design, including the early
development of buildable structures [6], or, more recently, the
use of AE for the design of a simple arch, including scaffolding
[17]. However, since we desire a notion of structural design
which may be evaluated through means external to the A-
Life community, we will instead concentrate on models taken
directly from Engineering.

There have been many attempts to use EC for structural de-
sign — an extensive recent review was conducted by Kicinger
et al [8]. Typically, use of EC in structural design concentrates
on optimizing the sizing or shape of existing frameworks —
our work, however, involves topological design. Use of a GA
to optimize a topological design through a relatively bijective
relation between genotype and phenotype has been conducted
by Rajan [16] (who also optimized sizing and shape). A more
complex approach was undertaken by Yang and Soh, who used
a GP approach to optimize topology in the context of tall
buildings [23].

III. A DEVELOPMENTAL ALGORITHM

In this section we define the Deva1 model, then describe
an interpretation of developed organisms as Plane Trusses.
Finally, we describe the evolutionary engine.

A. The Deva1 Model

Let us consider a model which consists of a developmental

space, D, a collection of cell types (or colours), C, a set of
actions, A, and a transition function, φ. The developmental
space, here simply D = Z

2, is a space in which we may grow
an organism, endowed with a discrete time. Each point in the
lattice is a cell, possibly the empty cell — each non-empty cell
may be viewed as an independent agent. Cells change in time
by executing one of several actions; Which action is executed
is determined by the cell’s genome, the transition function.

We now describe the process of growth: developmental
space is initialized empty everywhere, save the central point,
which is initialized with a cell of type “1”. At every time
step, any non-empty cell examines its neighbourhood, and
selects an action through the consultation of the transi-
tion function. If the cell has sufficient resources (measured
via an internal counter, rc), and has sufficient age, that
action is executed. The set of possible actions is A =
{nothing, divide, elongate, die, specialize(X)}, where X ∈
C. Through this process, the developmental space changes in
time — termination occurs when the space is identical to the
space that preceded it (guaranteed to occur due to a finite
maximum value of rc). This process may be written more
explicitly as:

Time t← 0
Initialize developmental space Dt

while Dt �= Dt−1 do
t← t + 1
Dt ← Dt−1

for all Cell c ∈ Dt−1 do
if c has sufficient age and crc

then
Action a← φ(μc)
Decrement crc appropriately for a
Execute a in Dt

end if
end for

end while
A deva1 transition function is a listing of descriptions of

possible neighbourhoods of a specified length, |φ|. These rules
are tuples of the form:

(c, h1, ..., hnc , a)

where c is a colour, nc = |C| is the number of cell types, a
is an action, and hi is a count of the number of neighbours
of cell type i, or a hormone-level. Hence, the size of the
representation of such a transition function is O(|φ| ·nc), and
the number of possible transition functions3 is nc · |μ|nc · |A|,
where A is the set of all actions and |μ| = 12, the size of a
neighbourhood.

3Note that many transition functions will be functionally equivalent.
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The output of φ may be computed as follows, given a current
cell c0 and its neighbourhood μc0 :

int ei ← 0 for all ei ∈ {e0, ..., enc
}

for all Cells c ∈ μc0 do
int type← cellType(c)
etype ← etype + 1

end for
Rule rmin ← Ø
int minDistance←∞
for all Rules r ∈ φ do

if rcolour = colour(c0) then
float distance← (e0 − rh0)

2 + ... + (enc − rhnc
)2

if distance < minDistance then
minDistance← distance
rmin ← r

end if
end if

end for
return amin

The null action is interpreted as “nothing”. The running time
of a transition function lookup is hence O(|φ|).

Cell actions are the sole means through which the develop-
mental space changes in time. The possible actions are:

• Nothing, the empty action
• Die, which removes the cell, leaving an empty location
• Divide, which creates a clone of the cell in the best free

location
• Specialize(X), which changes the cell’s specialization

from one cell type to another, X ∈ C
• Elongate, which causes the cell to elongate in the direc-

tion of previous elongation, or, if un-elongated, in the
best free location.

The best free location is defined to be the empty adjacent
location (in the von Neumann neighbourhood surrounding the
cell) which lies opposite to the greatest mass of non-empty
cells (in the Moore neighbourhood)4. Most cell actions come
with a cost, decrementing a cell’s rc — this is meant to
incorporate the notion of finite resources. If a cell cannot
execute an action (no best free location, insufficient resources),
it does nothing.

A Deva1 growth is controlled then through a genome
(transition function), and several system parameters (number
of cell types, nc, initial setting of resource counter, rc)5. See
Figure 2 for one possible example of Deva1 growth.

B. Interpretation as Plane Trusses

We begin by defining a representation of general plane
trusses constructively on a lattice. We aim to be able to map
a specialized lattice of integers to some (possibly trivial or
useless) plane truss.

4In the case of a tie, we select the left-most location, then clockwise.
5Of course, choice of developmental space may also be a factor, possibly

imposing constraints on organism shape; We will not consider this interesting
possibility here, instead assuming that the space is empty and sufficiently
large.

Fig. 2. An example of growth in developmental space by a Deva1 algorithm,
where cell type is indicated by colour, black being empty. (left to right, top
row): time 0; 2; 4; 6; (bottom row): time 10, 20, 30, 40.

Fig. 3. Example of a translation between a lattice of integers and a plane
truss. The triangles are interpreted as elongations of the adjacent cells.

Firstly, we define a set of cell types — each non-empty
cell will contain a joint, and between zero and five beams.
The beams will extend in directions π, 3π/4, π/2, π/4
and 0, labelled g0 through g4 respectively. Conversion from
boolean gene values to an integer is accomplished through the
following equation:

colour = 24g4 + 23g3 + 22g2 + 21g1 + 20g0 + 1

The zero cell type is reserved for the empty cell, the one value
is for a joint with no beams, and all other combinations exist
in the set {2, ..., 32}.

Finally, we may allow cells to be elongated in one direction,
by an arbitrary number of cell lengths. For example, a cell of
type 9 has an angle of 3π/4 with the x-axis, and a length of√

2; A single elongation in the y-direction would lead to a
length of

√
5, and an angle of 7π/8 with the x-axis.

Hence, excluding elongation, any two-dimensional lattice of
integers may be mapped to (some) truss6. One such mapping,
including elongations, is shown in Figure 3.

In Figure 4, the growth of an agent is shown (in grey),
whereas the final organism (in black) is much smaller — this
is the result of a trimming process, applied to every organism
following development. The trimming process serves to: (a)
remove obviously unstable sections, such as beams which do
not connect to joints at both ends; (b) to remove sections
which are not connected to the base of the structure; and (c) to
remove redundant joints, replacing them with longer beams.
All three of these can be accomplished in a single pass of the
un-trimmed truss structure, allowing for processing in O(n)
time, where n is the number of beams.

6Once elongation is included, we must make some constraints on the
relative location of the elongation integers — this is, however, unimportant
for our purposes, as deva growth would not allow for illegal combinations.
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Fig. 4. An example of growth in developmental space by a Deva1 algorithm,
under the plane truss interpretation (from left to right, top to bottom): time 0;
time 10; time 20; time 30, time 40, the final trimmed agent at time 45.

C. Initialization and Genetic Operators

As previously mentioned, an organism may be represented
by its transition function. The transition function, in turn, may
be represented as a series of rules — that is, |φ| rules, each
represented by 2 + nc integers. Hence, a genome is simply a
list of integers.

1) Initialization: The uniformly random initialization of a
genome is not a desirable strategy, as the central section of the
genome consists of a listing of hormone counts, (h0, ..., hnc

)
— selecting nc random integers with uniform values between
0 and 12 will lead to an expected overall count of 6nc, far in
excess of the maximum actual count of 12.

Instead, we desire a power-law distribution which favours
0:

Pr[X = i | 0 ≤ i ≤ 12] =
1∑12

j=0 βj
β12−i

We would like the expected value of the generation of any
particular rule to be somewhere in the range of {0, .., 12},
where selecting a larger value is preferable, since the majority
of computation will occur in a full neighbourhood; Hence, we
take E[nc ·X] ≈ 12. Solving (numerically) the equation

12
nc

=
1∑12

j=0 βj

12∑
i=0

i · β(12−j)

we obtain β ≈ 3.6 for nc = 32.
We also require a probability distribution for possible ac-

tions:

Pr[Y = a] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/4, if a = “divide”
1/4, if a = “die”
1/4, if a = “elongate”
1/4, if a = “specialize”

where all colours of specialization are equally likely, save “0”
or “1”, which are excluded.

We may generate a random rule by (uniformly) randomly
generating an initial rule colour, then generating nc hormones
and one action according to the above distributions.

Finally, we note a system option, useSeed, which forces the
first rule in any initialized agent to be: (1, 0, ..., 0, “divide”).
This rule may be viewed as similar to the undifferentiated
cleavage found in the initial stage of animal embryogenesis.
Note that useSeed has no effect after initialization, hence
allowing the “seeded” rules to possibly be removed from the
population, depending on the whims of evolution.

2) Genetic Operators: In the case of crossover, we use a
simple single-point crossover, with the tail ends of two parents’
genomes swapped. We use two kinds of point mutation: power-

mutation, which replaces an integer with another selected
from the same distribution used for initialization; and copy-

mutation, which replaces the current integer with another
selected randomly from the current genome.

D. Evolution

The use of Deva1 for the generation of designs is controlled
overall via Evolutionary Computation (EC). That is, genomes
are mapped to organisms via the Deva1 algorithm, and the
organisms are assigned fitness through the truss interpretation.
The fitness serves to select a set of genomes for the next
generation, and the actual selection and recombination is
controlled through a Genetic Algorithm (GA).

We use a typical GA, as described by Eiben and Smith [5].
The GA uses elitism, as well as crossover and mutation as
defined above. Selection is accomplished through a tournament
of five population members, using a tournament probability of
p = 0.7. As will soon become clear, convergence is difficult to
recognize, so trials were run for a fixed number of generations.
Additionally, the initial population size was larger than the
population size for successive generations, by a factor of
initMult.

The evolution of Plane Trusses may be viewed as a multi-
objective evaluation; There are many factors involved in the
computation of fitness. These factors, defined for a general
truss T , include:

• Selection for non-triviality, where T is trivial if it contains
less than five cells, or less that three cell types: t(T ) =
1/2 if T is trivial, t(T ) = 1 otherwise.

• Selection for height, h(T ) = h/(rc + 1), where h is the
raw height of T .

• Selection for minimal material use, where m ∈ [0, 1]
varies linearly between 0 for maximal use of materials
(2(rc+1)2 in beam length), and 1 for no use of materials.

• Selection for a small base, b ∈ [1/2, 1], minimized when
a minimal number of joints support the structure at the
center of the space. We define the base count, b′ to be
the sum of the distance of the existing base joints from
the center,

b′ =
rc∑

i=−rc

{
|i| there exists a joint at location i

0 ow.

and define the base factor to be

b =
1
2

+
1
2

(∑rc

i=−rc
|i| − b′∑rc

i=−rc
|i|

)
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• Selection for stability, where T is considered stable if
the inverse stiffness matrix is non-singular, and if under
external force, there are no absurd deformations7. The
stability criterion is then defined as s(T ) = 1 if T is
stable, s(T ) = 1/4 otherwise.

• Selection for distribution of pressure, p ∈ [1/2, 1]. Having
applied some external force, we measure the maximum
absolute beam pressure in the truss, M . If pressure has
exceeded our yield limit8 of 165 MPa, we return p = 1/2;
Otherwise,

p =
1
2

+
1
2

(
165 MPa− |M |

165 MPa

)

At every joint, we apply 50 N down and 50 N left, simulating
gravity and a mild horizontal force. Additional forces are
defined by the fitness function in question.

Our first fitness function, fmat, is designed to maximize
height while minimizing overall material. We evaluate pressure
by applying 20 kN down and 5 kN right9 at the highest
joint; In the case of several joints, the force is divided evenly
between them. Hence, we seek a tall, minimal structure,
capable of supporting a large mass at the top, much like a
tower supporting some additional structure at the peak. The
fitness of a truss T is defined as

fmat(T ) = t(T ) · h(T ) ·m(T ) · s(T ) · p(T ) (3)

Our second fitness function, fstoch, is similar to fmat in
all ways except that rather than apply external forces at the
highest joint, we apply them randomly. Hence, three non-base
joints are selected at random, and at each we apply 5 kN down
and 500 N either right or left (with equal probability at each
joint).

Our final fitness function, fbase is again similar to fmat

in that again, we apply 20 kN down and 5 kN right divided
between the highest joints. However, we remove the length
minimization factor and instead include the base minimization
factor — hence, fbase selects for tall trusses capable of
supporting a load at the peak occupying as little ground space
as possible:

fbase(T ) = t(T ) · h(T ) · b(T ) · s(T ) · p(T ) (4)

IV. EXPERIMENTAL SET-UP

Many trials of many different sizes (values of rc) were
run. We chose to investigate first the use of different fitness
functions (the Fitness Trials), and second the inclusion of the
useSeed parameter (The Seed Trials). Data was collected for
runs of size rc = 16, 24 — we would have preferred larger
runs as there is suggestion that AE approaches are particularly
suited for problems with a large number of components [9],

7Where absurdity kicks in at ten meters or more; This is necessary as
the equilibrium process may sometimes find stable points through profoundly
unrealistic stretching of materials.

8165 MPa is approximately 80% of the yield limit for structural steel [12])
920 kN is approximately the force exerted by 2 000 kg of mass — on

a single beam it exerts approximately 255 MPa of pressure, more than our
yield.

but the computational expense of the repeated runs necessary
for establishing a trend are great. Some runs with different
values of rc were conducted, including rc = 40, the last of
these having required more than one week of time on a dual-
processor 2.4GHz machine.

A. Fitness Trials

Parameter settings for the Fitness Trials runs are:

population size 200 initMult 20
prob. crossover 0.8 rate. elitism 0.01

prob. copy-mut. 0.05 prob. power-mut. 0.05
useSeed true |φ| 100

There were ten runs of the Fitness Trials for each fitness and
rc setting, rc = 16, 24. These runs are referred to as fit.x.y.z,
where x is a fitness function, y is an rc value, and z ∈ {0, .., 9}
is an index. Hence, fit.stoch.24.3 is the third run of the rc =
24 trial using the fitness function fstoch.

B. Seed Trials

Parameter settings for the Seed Trials runs are:

population size 200 initMult 10
prob. crossover 0.8 rate. elitism 0.01

prob. copy-mut. 0.05 prob. power-mut. 0.05
fitness function fbase |φ| 100

Twenty runs were executed with useSeed = true, then again
with useSeed = false — these runs are labelled us.x.y,
where x is 1 if useSeed = true, and y ∈ {0, .., 19}.

V. DATA AND ANALYSIS

A. Fitness Trials

In all trials, successful trusses were evolved — all runs
found stable trusses, and 56 of the 60 found trusses capable
of supporting the applied external forces10. In general, heights
of approximately 9m were found in the rc = 16 trials,
and heights of 18m when rc = 24. There were several
general trends in evolved solutions for each fitness function.
For the fmat function, all high fitness population members
somewhat resembled the exemplar, a simple triangle shaped
truss. Organisms varied greatly, however, in the fstoch and
fbase runs. For the fstoch function, sparse pyramids were
common; Also, there were many agents with thin, tall upper
sections and large bases11. For the fbase function, some tall
trusses with small, central bases were found; Additionally,
large pyramid trusses with sparse bases were also common.
Figure 5 show exemplar population members illustrating these
phenomena.

The maximum fitness of agents in the rc = 16 Fitness Trials
are graphed in Figure 6. Note that frequent plateaus are found
in each run, also present in the rc = 24 runs; This suggests
that the genetic operators are more frequently impotent or

10At least, in the case of the fstoch trials, capable of supporting the forces
as applied in the 100th generation.

11Likely chosen for the increased probability of a random force being
applied near the base, where the force is transfered easily to the grounds.
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Fig. 5. Exemplar organisms from the Fitness Trials: (top) two organisms from
the fmat function, fit.mat.24.4, fit.mat.24.1; (middle) two organisms
from the fstoch fitness function, fit.stoch.24.4, fit.stoch.24.3; (bottom)
two organisms from the fbase runs, fit.base.16.6 and fit.base.16.1

destructive, relative to more typical experiments in GAs. It
is also reminiscent of theories of evolution via punctuated
equilibria, where (real-world) evolution is believed to work
via infrequent jumps.

As illustrated in Figure 7, a visual continuity between
the phenotypes of members could typically be seen — in
the example, agents show many similar qualities, including
the presence of single-unit length crossbeams, hollowed-out
centers, and elongated base supports.

B. Seed Trials

The simplest comparison of the us trials is a direct compar-
ison of the fitness of the maximum agents — since all were
evolved using the fmat fitness function, this is a direct measure
of the effectiveness of the models. Such a comparison may be
seen in Figure 8, where the mean fitness of the twenty us.0
runs is contrasted against the mean fitness of the twenty us.1
runs. It is evident that there exists a large initial advantage to
the us.1 runs — in later generations this advantage lessens,
where final average fitness is within a standard deviation.
However, there is a clear improvement shown overall for the
us.1 runs, with a smaller variance.

One possible cause for the difference in fitness between the
two us trials was the proportion of trivial trusses in each initial

Fig. 6. Plots of fitness (y) versus generations (x). Maximum fitness of each
of the (top to bottom) fit.mat.16, fit.stoch.16, and fit.base.16 runs.

Fig. 7. The top ten (by fitness, excluding repeats) individuals of the 100th
generation of an rc = 12, fmat run. All shown agents were stable, although
the fifth and sixth had stress levels exceeding the yield of steel.

population. The occurance of trivial organisms is common
in the Deva1 model, typically comprising the majority of
the population12. In the us.0 trial, the population was 99%
trivial (mean of 20 runs), compared with 95% for the us.1
trial. However, this initial advantage soon disappeared, as
the proportion of trivial agents soon settled at approximately
60% for both trials. The initial advantage in the us.1 trial,
allowed for a more diverse initial population as fodder for the
remaining genetic search, likely explaining the initial fitness
advantage.

12We are relatively unconcerned, since these trusses can usually be
dismissed without significant processing — hence, we simply use large
population sizes.
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Fig. 8. Plot of fitness (y) versus generation (x). Mean fitness of the useSeed
runs, us.0 runs: (lighter) and us.1 runs (darker) — the bars indicate a single
standard deviation.

Fig. 9. Unusual organisms: (left) an organism notable for a lack of repetitive
pattern, and use of odd polygons, in what could have been a simple support;
(middle) a sparse pyramid in which the second highest support is completely
unconnected to the first; (right) a truss which minimizes the number of base
joints without minimizing mass at the top, distributing weight asymmetrically.

A final note about these trusses in general is their occasional
“oddness” — it is both an advantage and a drawback of EC
that evolution often finds solutions to problems which do not
readily resemble human-designed solutions. In our trusses, this
is often a result of a lack of right-left symmetry13 — in other
cases, it takes the form of unusual (and typically unnecessary)
complexity in solving simple problems. Figure 9 show several
unusual agents, that is, agents which are reasonably functional,
but bearing designs unlikely to have been created by an
engineer.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a new model of AE, Deva1. Deva1 has
been shown to be capable of evolving plane trusses — that
is, evolving designs of structure which are stable, capable
of effectively distributing external forces, and also optimizing
other constraints imposed by a fitness function.

Additionally, we have empirically explored a model-level
addition, the useSeed parameter, a metaphor for the initial
cleavage in real-world embryogeny. Relative to the task of
designing a stable, effective, tall truss with minimal material
usage, the useSeed strategy has proven effective — that is,
inclusion of the seeded rules leads to an improvement in
expected fitness generally, and a decrease in the variance
between runs, suggesting a greater probability of generating a
good truss design on a typical run.

The value of carrying out an empirical evaluation of a
model-level feature using the above trials should not be under-

13It is expected that an addition to the fitness function could help induce
symmetrical designs.

estimated. As the model name might suggest, Deva1 is not
the only envisioned model of AE we wish to explore. There
are several other Deva algorithms currently being developed,
we plan to evaluate them under the application described
above. Given the non-linearity of recursive growth, predicting
the aggregate differences (or lack thereof) resulting from
model-level decisions is very difficult, perhaps impossible —
considering the breadth of models currently existing in AE,
empirical comparison on an accepted test problem should
prove valuable.
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