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Abstract-  In this paper we present a simple genetic algorithm, 
possessing a notion of viability, in which a population of 
individuals in one niche spreads to populate a second niche with a 
different fitness function.  The two niche populations then 
diverge genetically to such a degree that offspring produced by 
the crossover operator are inviable in both niches.  We argue that 
this simple adaptive evolutionary behavior in the genetic 
algorithm can be likened to the concept of speciation in biology. 
 

OVERVIEW 
 

The fields of evolutionary computation (EC) and artificial 
life (ALife) are replete with attempts to describe, and take 
advantage of a wide variety of evolutionary behaviors and 
dynamics in digital systems of Darwinian evolution.  These 
include such phenomena as the Baldwin effect [1, 2], arms 
races [3], mimicry [4], parasitism [5, 6], co-evolution [7], and 
exaptation [8] among others.  In this paper we describe 
experiments with a model of speciation that relies on the 
exaptation of evolved structures, a distinction between viable 
and inviable individuals, and is based on a biological notion of 
species.  This contrasts  with the more common notion of 
species and speciation in GAs, in which the distinction 
between viable and inviable interspecies hybrids is  not made1, 
and in which individual species are merely subpopulations 
exploring different regions of a common fitness landscape. 

The concept of a species and the processes of speciation are 
central ideas in the field of evolutionary biology, and are vital 
to our understanding of the abundant diversity of life forms on 
Earth.  In the biological sciences speciation is said to occur 
when two populations of organisms, having originated from a 
common ancestral stock, diverge from one another either 
genetically or behaviorally to such a degree that members of 
one population either cannot or do not interbreed with 
members of the other population.  Once speciation has 
occurred the two populations are said to be reproductively 
isolated, and continue to diverge from one another via genetic 
drift, selection, or both, increasing the diversity of life.  The 
process of speciation is thought to be triggered either by the 
geographical isolation of a group of organisms from the 
original stock, in which case the phenomenon is called 

                                                 
1  It should be noted that the notion of viable and inviable 
individuals comes into play in some GAs in which certain 
regions of the search space are considered infeasible (such as 
repeating cities in a candidate TSP solution), and in some GAs 
with zero-fitness individuals under fitness-proportional 
selection regimes. 

allopatric speciation, or by behavioral changes that prevent 
interbreeding despite both lineages living in the same location.  
This second alternative is referred to as sympatric speciation.  
Numerous instances of speciation have been observed both in 
the lab and in the wild, and are documented extensively in the 
biological literature [9]. 

Just as the biological phenomenon of speciation is a source 
of diversity and innovation in the biosphere, it may be that a 
comparable notion of speciation, which is mostly lacking in 
extant EC systems, will yield benefits.  As one population 
speciates, the system in question applies previously learned or 
evolved knowledge and structures to newer and possibly more 
difficult problems.  An ability to harness behavior of this sort 
could conceivably prove to be a useful addition to the EC 
design and optimization toolkit. 

The genetic algorithm (GA) described in the next section 
consists of two populations of individuals, called “niches”.  
Each niche has its own fitness function by which individuals 
are evaluated and compared.  The fitness functions are such 
that the standard GA practice of random population 
initialization will tend to produce viable solutions in the first 
niche but not the second.  The second niche population 
remains effectively uninitialized until individuals from the 
first niche population are able to jump to the second and 
become founders of a new population of viable individuals. 

The authors examine the data collected from thousands of 
runs of the GA and provide a brief analysis.  These show that 
once a viable population of individuals begins to evolve in the 
second niche the two populations rapidly diverge to the point 
of effective speciation –  hybrid offspring produced by the 
crossover operator are inviable under the fitness functions of 
both niches. 
 

THE GENETIC ALGORITHM 
 

The GA used in our speciation experiments operates in a 
fairly standard manner as far as GAs are concerned, but with 
some minor noteworthy differences.  The fitness functions for 
both populations (or “niches”) are maximization problems.  
Both map GA individuals to non-negative integer values and 
both have a minimum attainable fitness of zero.  In this GA  
individuals with zero fitness are considered inviable solutions 
and are forbidden from reproducing.  In this respect the GA 
operates more like many ALife systems with their endogenous 
fitness imposing a distinction between viable and inviable 
individuals.  A second noteworthy difference is that, as will be 
seen in the next section, one of the fitness functions (that of 
the first niche) will appear to rapidly converge and level off, 
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yet the population will continue to undergo significant 
evolutionary change driven by selection pressure (as opposed 
to mere pseudo-clone genetic drift as would be the case in 
many GAs after fitness convergence). 
 
GA Parameters 

The same GA parameters and operators are applied to both 
niches and are as follows.  The population size is 50 with 
single individual elitism.  Selection is done by tournaments of 
size two, and only viable individuals are eligible for selection.  
Ten percent of offspring are produced by uniform crossover, 
with the rest produced by mutating a copy of a single chosen 
parent.  Chromosome length is variable and is modified by 
mutation and crossover operators.  Since the experiments 
described herein are concerned with the high-level speciation-
like behavior of the GA, and not with the efficient generation 
of highly fit solutions, as would be the case with most GAs, no 
effort has been made to tune these parameters. 
 
Representation 

Both niches’ fitness functions assign a non-negative integer 
value to individuals’ phenotypes.  Those phenotypes are two-
dimensional structures constructed within a grid of 30 rows 
and 14 columns, called the “game board”.  Each grid cell in 
the game board is blank by default unless the individual’s 
genes specify otherwise.  Nonblank grid cells can have one of 
four types of “boxes” placed in them, designated by the letters 
S, A, L, and R.  The meaning of each box type depends on 
which fitness function is being evaluated.  Each of the two 
fitness functions is explained below under the “Fitness 
Problem One” and “Fitness Problem Two” sections. 

Individuals’ chromosomes are composed of three strands of 
equal length.  This length can vary between individuals but not 
between strands in the same individual.  Strand one is a 
sequence of game board row indices with values ranging from 
0 to 29 since the game board has 30 rows.  Strand two is a 
sequence of game board column indices with values ranging 
from 0 to 13 since the game board has 14 columns.  The third 
strand is a sequence of letters (either S, A, L, or R) 
representing box types.  The phenotype is decoded from the 
genotype by simply reading the three strands in lockstep from 
left to right and placing boxes of the specified types in the 
specified cells on the game board.  If the same cell is specified 
multiple times only the final box assignment will dictate the 
type of box that ends up in the cell.  This decoding creates a 
two-dimensional structure on the game board which is then 
examined for fitness evaluation. 

Chromosome length is variable from individual to 
individual but is constrained to have a minimum length of one 
and a maximum length of 400. 
 
Crossover Operator 

The crossover operator employed is a simple uniform 
crossover for variable length chromosomes.  Each row-
column -box assignment in the chromosome has a 50% chance 
of coming from parent one and a 50% chance of coming from 
parent two.  In the case of unequal parental chromosome 

lengths, row-column -box assignments in the longer parent that 
have no counterparts in the shorter parent are appended to the 
offspring’s chromosome 50% of the time, at random. 
 
Mutation Operators 

When offspring are produced by mutation, one of three 
mutation operators is chosen with uniform probability.  The 
first is a point-mutation operator which chooses a locus and a 
strand from the chromosome uniformly at random and 
replaces it with a different value from the range of legal values 
for the strand.  The second is a deletion mutation operator 
which chooses a chromosome locus at random and deletes it 
from all three strands thereby shortening chromosome length 
by one.  The third is an insertion mutation operator which 
chooses a chromosome insertion point at random and inserts a 
new value into each of the three strands thereby increasing the 
chromosome length by one.  If a mutation operator would 
result in a violation of the chromosome length constraints, one 
of the remaining two operators is chosen uniformly at random 
instead. 
 
Fitness Problem One: A Ball Game (BG) 

Fitness in the first niche is calculated by interpreting the 
two-dimensional phenotype on the game board in the 
following manner.  A game ball falls through the board, 
entering from above at column index 5.  The ball carries with 
it a point value which is initially set to 15 points.  As the ball 
falls downward through the game board from row 0 to row 29, 
it is manipulated by any boxes it encounters.  The four 
different types of boxes can modify the number of points 
assigned to the game ball, its direction of travel through the 
board, and even the number of balls in play.  The manner in 
which each type of box affects game balls that pass through it 
is explained below.  Any game balls emerging from column 8 
at the bottom of the game board contribute to a total tally of 
points collected during the game.  The goal of the game, then, 
is to steer and multiply the game ball(s) on the game board in 
such a way as to funnel as many high-point-value balls out of 
the bottom of column 8 as possible.  This point tally 
contributes to the BG niche fitness value according to the 
fitness function 
 
 fitness = max{ 0, p – (c * P) }, (1) 
 
where p is the number of points collected, c  is the 
chromosome length, and P is a penalty value which increases 
during a run in order to make the game more difficult as the 
population evolves2.  The value of P in the niche begins at 
zero and is increased at the end of every generation by the 
minimum (integer) amount required to keep the population’s 
maximum fitness value at or below a fixed threshold of 1000.  
An example of a highly evolved individual in this niche, from 
the final generation of a run, is shown on the left side of Fig. 2.  

                                                 
2 The rationale for P  stems from its effect on certain aspects of 
evolved solution complexity for this problem, which is the 
subject of other research by the authors. 
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The Effect of Each Box Type on the Game Ball 
The four types of boxes specified by the third strand of an 

individual’s chromosome, designated by the letters S, A, L 
and R, affect the game ball in the following ways.  The Split 
Box (or S-Box) splits the game ball into two balls, each with a 
point value one less than the original.  The two reduced-point-
value balls exit the Split Box in different directions.  The 
second type of box, called the Add Box (or A-Box) allows the 
game ball to pass through and exit traveling in the same 
direction in which it entered.  At the same time the point value 
assigned to the ball is increased by one point.  The third and 
fourth box types, called Left Boxes and Right Boxes (or L-
Boxes and R-Boxes) modify only the ball’s direction of travel.  
The Left Box will cause the ball to make a left turn, as seen 
from the ball’s point of view.  The Right Box will cause the 
ball to make a right turn.  In the cases in which such turns 
would cause the ball to exit the boxes traveling upwards, the 
ball exits traveling downward instead.  The upward direction 
is forbidden in order to ensure that the time required for game 
play is finite.  When a game ball enters a blank cell on the 
board, it always exits traveling downward.  The rules for the 
S-, A-, L-, and R-Boxes are depicted in Fig. 1.  
 

 
Fig.  1. Rules governing the passage of the game ball(s) through S-, A-, and L-

Boxes (R-Box rules are a mirror image of L-Box). Labeled arrows indicate 
game balls entering and exiting the boxes carrying particular point values. 

Fitness Problem Two: Largest Enclosed Area (LEA) 
The fitness function in the second niche makes no 

distinction between the four different types of boxes placed on 
the game board.  To attain nonzero fitness in the LEA niche, 
the two-dimensional structure created by an individual’s 
phenotype must create an unbroken path of boxes from the top 
of the board (row 0) to the bottom (row 29).  Such a path can 
be established between successive neighbors in the Moore 
Neighborhood (neighbors in any of the eight cells surrounding 
a box).  Provided such a path exists, fitness is then equal to the 
largest contiguous region of blank cells which is completely 
enclosed by a circuit of boxes.  Like the top-to-bottom path, 
this circuit follows the von Neumann Neighborhood of a box 

at each step.  If an individual’s phenotype does not possess a 
path connecting the top and bottom of the board, or does not 
possess a circuit enclosing an empty region consisting of at 
least two blank cells, the individual is assigned zero fitness 
and is considered inviable.  An example of a highly evolved 
individual from the final generation of a run is shown on the 
right side of Fig. 2. 

The LEA fitness function operates in such a way that 
randomly generated individuals in the first generation are 
inviable with extremely high probability.  The LEA niche only 
becomes populated when speciation occurs in the GA and 
structures evolved in the BG niche become viable in the new 
niche.  All randomly generated individuals, whether in the BG 
niche or the LEA niche, place their boxes only on a restricted 
region of the board (explained in the next section on 
population initialization).  This prevents a top-to-bottom path 
from ever appearing in the first generation and renders all 
first-generation individuals inviable in the second niche.  
Nevertheless, even without this restriction, viable individuals 
are almost never produced at random for the second niche.  To 
test the claim that this restriction does not materially change 
this property of the niche with regards to the inviability of 
random individuals, the authors generated 8,000,000,000 
random individuals without the box placement restriction and 
not one was viable in the LEA niche. 
 

 
Fig.  2. Two examples of highly evolved individuals from the final generation 
of a run ; on the left is the phenotype of an individual from the BG niche, and 

on the right from the LEA niche. 

Population Initialization 
Since the population sizes in these experiments are quite 

small at 50 individuals per niche, population initialization has 
been biased in two ways in order to start each run off with a 
better sample of random individuals.  The first bias, as was 
mentioned in the previous section, is a row and column 
restriction on the placement of boxes for randomly generated 
individuals.  Randomly generated individuals’ chromosomes 
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restrict box placement to rows 2 through 15, inclusive, and to 
columns 3 through 10, inclusive.  This boosts the chances of 
random individuals collecting points in the ball game.  Once a 
GA run begins, mutation can immediately violate this 
restriction.  Unlike the LEA niche, random individuals in the 
BG niche are sometimes viable.  Since inviable individuals are 
prevented from reproducing, this bias during initialization 
only ensures that nearly all runs will have at least one viable 
individual in the first generation in niche one instead of 
terminating immediately for lack of individuals from which to 
produce successive generations.   

The second bias in population initialization is that every 
individual in the first generation is the best of ten randomly 
generated individuals.  This was done for the same reason as 
was mentioned above, and applies to both niches. It is 
effectively of no benefit to the second niche, however, given 
the extremely low probability of generating viable individuals 
at random. 
 
Pioneer Jumps 

Since the LEA niche remains effectively empty after 
population initialization, some means of allowing the niche to 
become populated at a later time is required.  This is 
accomplis hed by choosing a random viable individual from 
the BG niche at the end of every generation and evaluating 
that individual’s fitness in the LEA niche.  If the individual, 
called a “pioneer”, is found to be not only viable in the new 
niche, but also more fit than the least fit viable individual 
already in the niche, then a pioneer “jump” event takes place, 
and a copy of the pioneer is placed in the new niche, replacing 
the least fit individual.  In this manner, structures evolved in 
the BG niche can be exapted (co-opted for a function other 
than the one(s) for which selection adapted them) to allow 
individuals to survive in a new niche with new selection 
pressures.  After the exaptation event(s), the newly-founded 
population in the second niche can undergo further adaptation 
in an entirely new direction.  The two populations then diverge 
genetically to the point where hybrid offspring, produced by 
the crossover of a parent from each niche, are inviable in both 
niches.  When this occurs, the initial population, which started 
in the BG niche, has speciated into two populations which are 
unable to interbreed.  This GA setup is depicted in Fig. 3. 
 

EXPERIMENTAL RESULTS 
 

The authors performed 7500 runs of the speciation GA with 
the parameters and configuration described in the previous 
section.  Each run lasted for a duration of 5000 generations.  
At the end of every twentieth generation the following 
statistics were logged. 
 

· The fitness of the best individual in each niche 
· The number of viable individuals in the LEA  niche 

(between 0 and 50 individuals) 
· The number of successful pioneer jumps during the 20 

generation interval (between 0 and 20) 

· The outcome of a crossover operator hybridization test 
between the best individual from the first niche and the 
best individual from the second niche (three possible 
outcomes, described below) 

 
Fig.  3. GA niche configuration.  Pioneers from the BG niche may jump to the 
LEA niche and, if found to be viable and competitive there, inhabit the new 

niche, possibly becoming founders of a new population. 

In the case of the hybridization tests, the first possible 
outcome occurs when at least one of the two niches contains 
no viable individuals to take part in the crossover and no 
hybrid offspring can be generated.  The second possible 
outcome occurs when the hybrid offspring is viable (has 
nonzero fitness) in at least one of the two niches.  The third 
possible outcome occurs when the hybrid is inviable in both 
niches. 

Fig. 4 shows the change over time in the average fitness 
value of the best individual in the BG niche during a run.  The 
fitness threshold and chromosome length penalty create a 
fitness graph with negative slope in some regions, which is 
unusual for a GA employing elitism.  The graph is somewhat 
deceptive, however, since the number of points collected by 
individuals in the board game continues to increase 
(exponentially) throughout the run, as reflected by the 
chromosome length penalty graph in Fig. 5.  This is analogous 
to van Valen’s Red Queen Effect [10] in biology, with the 
adjustments in chromosome length penalty playing the role of 
the second party in an arms race. 

Fig. 6 and Fig. 7 show, for the LEA niche, the number of 
viable individuals and the average best fitness, respectively.  
Both of these graphs attest to the fact that the niche population 
is an offshoot of the BG niche population.  The initial period 
(hundreds of generations on average) devoid of viable 
individuals at the beginning of the runs indicates that the final 
population in the niche cannot have evolved from the initial 
random stock since inviable individuals cannot reproduce.  
This is evident in the graph despite the fact that Fig. 6 
averages over multiple runs in which pioneer jumps take place 
at different times or in some cases not at all.  This has the 
effect of exaggerating variance during the period in which 
pioneer jumping takes place, and yet there is still a period of 
calm in the graph which is common to all the runs regardless 
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of when the first pioneer jumps.  It is during this initial period 
of calm that a co-optable structure is being evolved in the BG 
niche, which can then be used to seed the new niche. 

 
Fig.  4. Mean best fitness over time in the BG niche, averaged over 7500 runs, 

together with several percentile graphs. 

 
Fig.  5. Chromosome length penalty value in the BG niche over time, 

averaged over 7500 runs, together with several percentile graphs.  Due to 
exponential growth, the mean is greater than the 90 th percentile, and the y-axis 

is scaled logarithmically. 

Fig. 8 shows the behavior of the GA with respect to 
pioneers jumping from the first niche to the second.  The 
sloped-spike shape of the graph reflects the fact that such 
pioneer jumps are made during the first half of the run, after 
the initial period of calm in which a co-optable structure is 
being evolved3, and that, because of secondary adaptations in 
                                                 
3 This ability to co-opt evolved systems from one domain for 
use in another reveals relationships between domains that 
would otherwise, it seems, go entirely unnoticed and 
unanticipated.  The authors posit that these sorts of counter-
intuitive connections between differing domains may be an 

the new niche, the chance of another successful jump drops 
rapidly to a value near zero.  The histogram inside Fig. 8 
shows that, of those runs in which jumps occurred at all, often 
only a single individual seeded the new population, with 
subsequent potential pioneers having been unable to compete 
against the new population’s rapid adaptation to the demands 
of the new fitness function. 

 
Fig.  6. Number of viable individuals in the LEA niche, averaged over 7500 

runs, together with several percentile graphs which show that at least 25% of 
the runs never create a viable individual in this niche. 

 
Fig.  7. Best fitness value in the LEA niche, averaged over 7500 runs, together 

with several percentile graphs which, like those in Fig. 6, show that at least 
25% of the runs never create a viable individual in this niche. 

                                                                                     
important resource in future efforts to produce flexible 
evolutionary systems capable of producing perpetual and 
clever novelty. 
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Finally, Fig. 9 shows the results of the hybridization tests. 
The graphs show unambiguously that the offshoot population 
in the second niche becomes unable to interbreed with the 
original population in the first niche.  This divergence is so 
rapid, in fact, that at the twenty-generation logging interval 
resolution of the graph, the hybridization outcomes in which 
the offspring are viable in at least one niche amount to only a 
small bump at the bottom of the graph. 

 
Fig.  8. Timing and frequency of successful pioneer jumps from the BG niche 
to the LEA niche in the GA, averaged over 7500 run s.  The histogram at upper 
right shows the distribution in the number of such jumps during an entire run. 

 
Fig.  9. Number of hybridization test outcomes over time in the GA, summed 
over 7500 runs.  A "no outcome" result occurs when at least one of the two 

niches contains no viable individual to participate in the crossover operation. 

CONCLUSIONS 
 

Whereas the term “species” in GAs has often come to refer 
to isolated subpopulations diverging from one another but 
working toward the same goal in roughly the same fitness 
landscape, such as the creation of a highly-fit solution to a 
combinatorial optimization problem, the term is very often 
divorced from its biological counterpart’s focus on 
interbreeding (or lack of ability to do so) between the two 
populations.  Many researchers employing speciation in GAs 
do so in order to place greater emphasis on the exploration 
side of the exploration-vs-exploitation tradeoff inherent in 
such algorithms.  The issue of barriers to interbreeding in a 
GA often arises from population isolation, and not from an 
inability to produce viable offspring.  In many GAs any 
individual may cross with any other individual (although in 
some cases they may simply be forbidden from doing so) and 
from this point of view all individuals in all subpopulations 
belong to a single species.  For these reasons, and because 
many GAs make no distinction between viable and inviable 
offspring, the terms “species” and “speciation” have only a 
tenuous connection to their counterparts in biology. 

By introducing a notion of viability, and by allowing 
individuals with the same underlying genetic coding format to 
evolve under two dis tinct and very different fitness functions, 
we allow an original interbreeding population to split and 
diverge to the point where crossover can no longer produce 
viable offspring.  In doing so the GA is able to make progress 
in a new niche which would otherwise have remained filled 
with inviable solutions.4  Although simple in design, and very 
rudimentary, this GA reliably exhibits a speciation-like 
phenomenon, achieved through exaptation, which more 
closely adheres to the meaning of the term as it is used in the 
biological sciences. 
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