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Abstract— We consider the design of a continuous hierar-
chical dynamic system architecture to endow cognition in an
autonomous mobile robot with bounded resources. The hierarchy
is decomposed on the basis of behavior with lower levels being
concerned with motion control, and upper levels being concerned
with ensuring overall progress. Our architecture consists of a
composition of regulators, all of which have access to sensor
data and which control problems relating to the agent’s motion
in the world (i.e., its velocity, position, and path); it hence
realizes a physically embodied cognitive system. To synthesize the
regulators, we employ a plant-controller co-design methodology;
after constructing a plant that models the salient features of
the environment relevant to the behavioral level under consid-
eration, we apply rigorous nonlinear control-theoretic toolsets to
synthesize a corresponding controller. An interesting side-effect of
our synthesis is the emergence of normalized and unnormalized
radial basis functions in our control law. Simulation results
and animations (available at the URL indicated in Section V)
illustrating the life-like behavior of the system are provided.
We highlight the emergence of satisficing intelligent behavior by
our cognitive architecture and show how this satisfies Bedau’s
definition of weak emergence.

I. INTRODUCTION

Life and cognition are strongly interrelated. Sommerhoff’s
early attempt at creating the foundations for an analytical
biology [1] sought to explain the apparent “purposiveness” of
life. The cybernetics movement sought to isolate the control
and communications mechanisms underlying artificial and
natural autonomous, goal-directed systems—mechanisms that
were felt could be applied to “all of the exteriorally directed
[i.e., cognitive] activities of an organism” [2]. Maturana and
Varela in their work on autopoietic systems [3] indicated
the direct connection between life and cognition through the
statement “living systems are cognitive systems, and living is
a process of cognition.” Finally, work on embodied cognition
and the “artificial life route to artificial intelligence” [4] make
strong cases for their work based on insight gained from
considering1 living autonomous, cognitive systems.

N.J.Mathai acknowledges the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) PGS D Scholarship.

1e.g., through ethology or neuroscience

The view that embodiment—i.e., strong coupling between
agent and environment—plays an important role in cognition
has a long history in the cybernetics, robotics, artificial in-
telligence (AI), and artificial life communities [2], [3], [5]–
[13]. Ziemke [13] surveys the differing views on embodiment,
noting that despite the acknowledgment of the vital role of
embodiment in cognition, there are a diversity of notions of
what embodiment is. In particular, physical embodiment is
defined as the strong coupling of an agent to the environment
via sensors and actuators. We find that this definition is
relevant to robotics and reflects early cybernetics-oriented
positions, such as that of Albus [9] who takes the position
that the “sensory-interactive goal-directed motor system is not
simply an appendage to the intellect, but is rather the substrate
in which intelligence evolved.” Furthermore, he suggests that
the cognitive structures used for so-called “low-level” motor
behavior may be, under slight modification, applied to endow-
ing higher-level faculties. Matarić looks at this idea in [11].

Taking a view similar to [9] we develop a physically
embodied cognitive architecture in which the primitive motif
of a regulatory system is replicated at all levels. Dynamical
systems theory and cybernetics provide a natural framework
to deal with such coupled agent-environment systems [14].
In particular, nonlinear control theory (a modern descendant
of cybernetics) yields rigorous synthesis toolsets that can
be used to realize dynamic system architectures for goal-
directed systems. We are also motivated towards control-
theoretic approaches by the promise of an analog2 system
architecture. Lumelsky [15] suggests that continuous-time
“dynamic” architectures are a natural substrate for robotics
problems in which an agent with bounded resources must
attain a global goal with only local information. In addition,
the natural parallelism of analog “computation” systems, com-
bined with the promise of economical analog implementation
made possible by neuromorphic engineering [16] motivates
us to seek system formulations that are amenable to analog
realization.

2By “analog” systems we mean those that operate on analog signals, which
are continuous in amplitude (and either continuous or discrete in time). In
contrast, digital signals are discrete in both time and amplitude.
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A. Contributions
In this work we focus on the development of embodied

cognition to endow a resource-bounded agent with the ability
to autonomously navigate through an obstacle-ridden spatial
environment to find a target. We mate control-theoretic toolsets
with a hierarchical dynamic system architecture to synthesize
these cognitive faculties. An interesting by-product of our
approach is the emergence of normalized and unnormalized
radial basis functions in the control law.

Our approach to control is novel in that we do not seek the
asymptotic stability of the system. Indeed, we find that by re-
laxing the aggressiveness of the control law to ultimate bound-
edness [17], satisficing intelligence [18]–[20] emerges [21].
We demonstrate this through simulation results, and show how
this emergence is in line with Bedau’s definition of weak
emergence.

II. DEVELOPMENT

We consider an environment, represented in Euclidean
space, R3, in which the target, obstacles and initial robot
position are located within a compact subset of R3 denoted
by C ⊂ R3. The No obstacles, No ∈ Z , 0 ≤ No < ∞,
denoted by Ωi, i = 1, . . . , No, are closed simply connected
sets satisfying Ωi ⊂ C for all i and Ωi

⋂
Ωj = ∅ for all

i 6= j. The dimensionless, stationary target, denoted by T ,
is located at position pT ∈

(
C −

⋃No

i=1 Ωi

)
. We assume that

there is some ρ > 0 such that the ρ-neighborhood about
pT , BT := {z ∈ R3 : ‖z− pT ‖ ≤ ρ}, satisfies BT ⊂ C and
BT

⋂
Ωi = ∅, i = 1, . . . , No, where ‖ · ‖ denotes the

Euclidean norm.
The robot, dimensionless but with a specific orientation, is

denoted by M and is located at position pM : R 7→ R3, which
for the initial time t = t0 is pM,0 := pM (t0). The robot has a
local frame of reference.

The basic problem we address is the real-time determination
of a path from the starting position pM,0 to a boundary point
of BT , assuming no knowledge of the environment. So that a
solution is possible, we assume the existence of a collision-
free path, defined as ps : R → R3, with ps(t0) = pM,0 and
ps(tf ) ∈ ∂BT , where tf satisfies t0 ≤ tf < ∞, such that for
any i and for any t, ps(t) /∈ Ωi.
A. Actuation

We attach a three-dimensional local coordinate system (with
orthogonal axes x1L, x2L, x3L) to the robot such that the
robot is at the origin, and the robot is oriented so that its
forward direction is along the positive x1L axis. It has one
actuator to effect forward and reverse translational motion in
the direction of the x1L axis, and two actuators that enable
(independent) rotations about the remaining axes, x2L and
x3L. These three actuators allow the robot to achieve any
orientation and position in R3.

B. Sensing
In this section, we provide mathematical models for the

sensors; note, however, that these sensor models are repre-
sentative only, and that any global information used in these

models is not necessary for our proposed robot control scheme.
For example, local obstacle detection could, in practice, be
implemented by means of an ultrasonic device rather than by
the computations implied in (1) and (2), below.

The robot perceives the environment through four sensors,
with vector-valued sensor outputs denoted as σk, k = 0, 1, 2,
and a scalar-valued sensor output σ3. We define the distance of
the robot from the target as ρT (t) := ‖pM (t)− pT ‖. The in-
fluence of obstacles is given in the local spherical coordinates
of the robot as a disturbance opposing any forward translation:

σ0(t) =

 σ0,1

σ0,2

σ0,3

 :=

 −lO[d(t)]
0
0

 (1)

where lO : R 7→ R is a class-L function, i.e., a continuous
positive strictly decreasing function such that lO(0) > 0 and
lim

d→∞
lO(d) = 0, d(t) := min

∀w∈W
‖pM (t)− w‖,

W := S(pM (t), θM,2(t), θM,3(t))
⋂(

No⋃
i=1

Ωi

)
(2)

and S(pM (t), θM,2(t), θM,3(t)) (where θM,2(t) and θM,3(t)
denote the orientation of the robot with respect to the global
coordinate system) is the set of all points in some sector
originating from pM (t) that includes the positive x1L axis.

The sensor signal σ3 is given by:

σ3 = h0[lT (ρT )], (3)

where h0 : R 7→ R is a hysteresis function of lT (ρT ) as shown
in Figure 1, and lT : R 7→ R is a class-L function. The
hysteresis thresholds, TL and TH , satisfy TL < TH .

T
L

1

0
T
H

h0[lT(ρT)]

l
T
(ρ
T
)

0

Fig. 1. Hysteresis characteristic for sensor output, σ3.

The target sensor output, σ1, is given with respect to the
local coordinate system of the robot as:

σ1(t) =

 σ1,1

σ1,2

σ1,3

 :=

 rT (t)
θT,2(t)
θT,3(t)

 (4)

and provides the relative position of the target in spherical
coordinates. If σ3 = 1, then σ1 is considered to be “invalid”
and is not used for the purposes of motion control (since, in
practical terms, the target is out of sensor range).
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Finally, the “inertial guidance” sensor produces the signal
σ2 composed of the translational speed (v) and the rotational
speeds (ω2, ω3) of the robot:

σ2 =

 σ2,1

σ2,2

σ2,3

 :=

 v
ω2

ω3

. (5)

III. HIERARCHICAL DYNAMIC ARCHITECTURE

Dynamic hierarchical organization is a fundamental ob-
served characteristic of living organisms whose importance has
been addressed in the literature [22]–[25]. In fact, [22] poses
the synthesis of dynamical hierarchies at all scales as one of
fourteen crucial open problems of artificial life. We provide
a brief survey of some representative physically-embodied
hierarchical dynamic architectures.

An early formulation of a continuous-time hierarchical
dynamic architecture was Ashby’s ultrastable system [5]. A
two level hierarchy was specified consisting of a lower-level
“reacting” part strongly coupled to the environment, and a
higher-level system operating on a slower time scale that
regulated the lower-level system based on environmental feed-
back. In the practical realization of the ultrastable system—
the Homeostat—the higher-level system possessed the ability
to search for successful controls to regulate the lower-level
system.

Albus proposed a cascaded continuous-time architecture [9]
where the output of one level becomes the input to the adjacent
lower level. Sensory feedback from the environment entered
all levels of the hierarchy, with higher levels possibly using
abstractions of lower-level senses (e.g., sensory information
from which pertinent features have been extracted). A useful
architectural insight from Albus is the suggestion that “the
same type of anatomical components which are used in the
lower and mid levels of the control hierarchy to produce
sensory interactive motor behavior may . . . be used at the upper
levels of the same hierarchy to plan and solve problems.”

Finally, Brooks [10] applies a vertical behavior-based de-
composition to generate the subsumption architecture. Here,
each “level of competence” has access to sensors and actuators
and forms a complete robot controller on its own.

A. Our Approach

E
1

E
2E

0
C

0

u
0

u
1

u
2

δδ
0

δδ
1

δδ
2

C
2 C

1

Fig. 2. Hierarchy of cascaded regulators, Ci, interacting with the environ-
ment, E = {E0, E1, E2}.

We describe our hierarchical architecture (illustrated in
Figure 2) as a cascade of regulating systems where the agent’s
cognitive component (controller, Ci) seeks to regulate its
sensory perception of the environment (E). We develop the

functional complexity of the cognition in a piecemeal fashion,
with each level introducing a new fundamental mode of behav-
ior. Our formulation is physically embodied, with each level
of the hierarchy receiving information from the environment
and actuating change on the basis of this information.

The lowest level, level zero, is concerned with causing
motion. The regulation problem here is the selection of ac-
celeration commands for the agent’s actuators to achieve a
velocity objective. At this level, beyond physical limitations
posed by the actuators, there is very little constraint on the
types of motion that are allowed.

Level one constrains the agent’s motion to ensure it avoids
obstacles while tracking a target or a reference velocity
objective. We pose the regulation problem as the tracking of
an objective (either target-tracking or velocity-tracking) while
suppressing obstacles; in Section IV-B we see that this can
be naturally formulated through the topology of a closed-loop
feedback system.

We note that level one presents the agent with potentially
conflicting goals (e.g., the problem where suppressing the
obstacle involves moving away from the target), as well as
situations where the agent is not motivated to move (e.g., the
target is out of range). Both situations can lead to lack of
progress by the agent; in the former case, limit cycles are
possible as the agent attempts to resolve its conflict, and in
the latter case, the agent stays still waiting for stimulus. Level
two addresses this by excluding these cases—we introduce
searching behavior in which the agent engages in “trial-and-
error goal-seeking” [9] to bring itself back into a domain
where the level one controller can properly regulate—this is
reminiscent of Ashby’s ultrastable system. Hence, at this level
the type of path executed by the agent is constrained.

Table I summarizes the hierarchical organization of our
architecture showing the task decomposition of each level and
the scale of operation.

Level Behavior Scale
0 motion velocity
1 velocity-tracking velocity, position

target-tracking (taxis) position
obstacle avoidance position

2 searching path

TABLE I
PROPOSED HIERARCHICAL ORGANIZATION.

IV. SYNTHESIS

We now look at each level of the hierarchy and design
a controller for that level using a methodology of plant-
controller co-design. First, we construct a system (the plant)
that models the salient dynamics of the problem posed by the
hierarchical level under consideration. In creating the plant
model, we make some simplifying assumptions about the
external world; these assumptions are supported by:
• the subsumption architecture of our cognition (i.e., that

each level provides a cognitive skill that upper levels can
exploit)
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• the separation of time scales between each level of the
hierarchy (i.e., each level operates at a faster time scale
that the one above it, as seen in Table I)

Hence, level zero (operating at the fastest time scale) assumes
that the actuators can instantaneously achieve acceleration
commands, level one assumes that level zero enables instanta-
neous tracking of velocity commands, and level two (operating
at the slowest time scale) assumes that level one provides
obstacle avoidance while executing commanded paths.

With a plant model, we have a quantitative specification
of the problem enabling the application of rigorous control-
theoretic toolsets (a combination of backstepping [26], [27]
and Lyapunov synthesis) to design a solver (i.e., the regulator)
for the problem. Our premise is that the solution of the
problem in the plant-controller domain will yield a solution
for the associated problem in the real-world domain. Further,
due to the strong coupling with the environment (due to the
sensor and actuator signals that bring information from and
to the environment, respectively) the cognition that emerges
from the composition of these controllers will be physically
embodied.

u
i

µ
i

µ

φ
i

φ

δiδ

η
i

η
C

controller

P
i i

plant

Fig. 3. Basic plant-controller motif.

The basic plant-controller motif that we employ is shown in
Figure 3 for the i-th level of hierarchy, where Pi denotes the
plant model, Ci denotes the associated controller, ηi denotes
the state of the plant model, φi denotes the reference value
to the controller, δi denotes the sensory perception of the
environment that is relevant to the cognitive skill for which Ci

is being designed, µi denotes parameters to the model, and ui

denotes the controller output (the “control”). We note that Pi

models the effect of all controllers downstream from Ci (i.e.,
C0, . . . , Ci−1) due to the cascaded hierarchy of Figure 2. The
general control problem then is to design a control law for Ci

that will drive ui to actuate change that will cause the error
ei := φi − δi to go to zero (i.e., lim

t→∞
δi → φi).

A. Level Zero

For the motion causation problem, we assume an actuator
that is able to instantaneously respond to acceleration com-
mands:

u0 =

 u0,1

u0,2

u0,3

 :=

 a
α2

α3

 (6)

(where a is translational acceleration, and α2 and α3 are rota-
tional accelerations about the x2 axis and x3 axis, respectively)
Then, with η0 = σ2 we construct a model of how the inertial

guidance sensor responds to u0:

P0 :
{

η̇0 = u0

δ0 = η0
(7)

Now, we synthesize a controller that will track the reference
velocity command:

φ0 =

 φ0,1

φ0,2

φ0,3

 :=

 φ0,v

φ0,ω2

φ0,ω3

 (8)

(where φ0,v is the command translational speed, and φ0,ω2 ,
φ0,ω3 are the command rotational speeds). Define the tracking
error:

e0 =

 e0,1

e0,2

e0,3

 := φ0 − δ0 (9)

and the scaler-valued function:

V0 :=
1
2

eT
0 e0 (10)

which is positive-definite with respect to e0. Differentiating
(10) with respect to time, we obtain:

V̇0 = eT
0 (φ̇0 − u0). (11)

Let K0 be a positive-definite matrix. Then setting u0 =
φ̇0 + K0e0 makes (11) negative-definite with respect to e0,
and hence lim

t→∞
δ0 → φ0 with the rate of convergence set by

K0.

B. Level One

We begin by recasting the problem of obstacle avoidance
and sensor tracking into a multivariable feedback control
problem. Figure 4 illustrates a refinement to the motif of
Figure 3 where we introduce a signal suppression channel
(located where σ0 is injected) in addition to the tracking
channel (as before, where φ1 and δ1 are injected).

The parameter µ1 ∈ {0, 1} selects whether the system
should track the target sensor (i.e., engage in taxis) or the
inertial guidance sensor. The block P1 models sensor outputs

+

+C
1

Q
1

P
1

1
u

1
φφ

δ
1

δ

µ
1

µ
1σ

0
σ

ω3

ω2

contraints

plantstatic motioncontroller

obstacle sensor output

[ ]
v

Fig. 4. Control system topology for level one motion control.

σ1 and σ2 as the vehicle moves through the environment. The
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dynamic model of P1 can be derived using straightforward
geometry and is given by:

P1 :



η̇1 = B1(η1)

 v
ω2

ω3


σ1 = η1

σ2 =

 v
ω2

ω3


δ1 = (1− µ1)σ1 + µ1σ2

(12)

where η1 =

 rT

θ2,T

θ3,T

,

B1(η1) :=

 − sin(θ2,T ) cos(θ3,T ) 0 0
− cos(θ2,T ) cos(θ3,T )

rT
− cos(θ3,T ) 0

sin(θ3,T )
rT sin(θ2,T )

| sin(θ3,T )| cos(θ2,T )
sin(θ2,T ) −1


For simplicity, we assume that the robot instantaneously

achieves any input translational or rotational velocity (which
can be approximately achieved through a “high-gain” selection
of K0 in the level zero controller), but may be subject to
external bounded actuator disturbances (either stemming from
the environment or system constraints such as quantization of
speed). Hence, the block Q1 is free of dynamics, and models
static nonlinearities in the actuators (e.g., speed quantization,
deadzone characteristics, and other memoryless functions).

The controller block, C1, constitutes the agent’s “intelli-
gence.” The formulation of Figure 4 indicates that the infor-
mation about the environment available to the controller is
limited to the instantaneous value of the agent’s finite-range
sensors. We endow the agent with an analog memory in the
form of a linear time-invariant filter to provide the machine
with a view of past sensory stimuli:

C1a :
{

ξ̇1 = Aξ1 + B(φ1 − δ1)
y1a = ξ1

(13)

where ξ1 ∈ Rn and n ∈ Z , 1 ≤ n < ∞. The filter provides a
crude model of the past, and its state, ξ1, provides information
that the agent can use in controlling its circumstances. We
place the memory block, C1a, in cascade with block C1b

(which realizes the control law), as shown in Figure 5.

_

+

C
1a

C
1b

C
1

µ
1

1
δ

φφ
1

u
y 1
1a

δ

Fig. 5. Cascade of C1a and C1b to form C1. The filter C1a serves as an
analog memory.

We define the functions pull1 : R 7→ R and satl1 : R 7→ R,
as shown in Figure 6. The notation diag(x) denotes a diagonal
matrix in which entry (i, i) is given by the i-th element of x.
The set Λr is a half-closed interval of the form [εr,∞), where
εr > 0, Λθ,2 is any closed interval of the form [εθ,2, π − εθ,2]
where 0 < εθ,2 < π, and Λθ,3 is any closed interval of the
form [−εθ,3, εθ,3] where 0 < εθ,3 < π

2 .

-1

-l1 l1

1

1/l1

sat
l
1
(x)

pul
l
1
(x)

x

Fig. 6. Definitions of the pull1 : R 7→ R and satl1 : R 7→ R functions,
parameterized by the constant l1 > 0.

Due to the need for brevity, we present an overview of the
results; detailed derivations can be found in [28].

Suppose that µ1 = 0, that is, the system is in target-seeking
mode. The first result provides a control law that is valid
in a domain D0 := [Rn × (Λr × Λθ,2 × Λθ,3)] ⊂ Rn+3 and
provides a simple basis for obstacle avoidance and taxic
behavior.

Theorem 1 (Stability on D0): Given φ1 :=
[

φr

φθ,2
φθ,3

]
where

φr, φθ,2, φθ,3 are real constants such that φr ∈ Λr, φθ,2 ∈ Λθ,2

and φθ,3 ∈ Λθ,3, if C1b is given as:

C1b : u1 = u1,1 := B−1
1 (η1)

[
f(ξ1,φ1, δ1) + BT Pξ1 −

κ1,2

2
ε1

]
(14)

where P ∈ Rn×n is a symmetric positive definite matrix,

f(ξ,φ, δ) :=
[
K1,0 + κ1,1

2 Γ(BT Pξ)BT P
]
[Aξ +

B(φ− δ)],
(15)

κ1,1, κ1,2 > 0, K1,0 is chosen such that (A−BK1,0) is Hurwitz,
Γ : Rm → R3×3 is given by

Γ(x) := diag
(
pull1(x1), pull1(x2), pull1(x3)

)
, x ∈ R3,

(16)
ε1 := δ1 − δ′1, where

δ′1 := K1,0ξ1 + φ1 +
κ1,1

2
S(BT Pξ1), (17)

and S : R3 → R3 is given by

S(x) := [satl1(x1) satl1(x2) satl1(x3)]
T

, x ∈ R3, (18)

then, assuming the state vector
[

ξ1(t)
η1(t)

]
∈ D0 for

all t, we have 1)
∥∥∥[ ξ1(t)

η1(t)

]∥∥∥ is bounded, and 2)
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lim
t→∞

‖η1(t)− φ1(t)‖ < εl1,κ2 , where εl1,κ2 > 0 satisfies
lim

l1 → 0,
κ1,2 →∞

εl1,κ2 = 0.

An overview of the proof is given in [28], but we note that
the law is obtained by first invoking the Lyapunov function:

V1 := ξT
1 Pξ1 + εT

1 ε1 (19)

and then applying Lyapunov-based synthesis, “high-gain” and
backstepping techniques to derive a control law, u1, that
ensures V̇1 < 0 for all ξ1 ∈ Rn and for all ε1 ∈ R3.

A unique aspect of our control strategy is that we inten-
tionally relax the pursuit of asymptotic stability to ultimate
boundedness [17] in order to improve obstacle avoidance
behavior. Qualitatively, this provides some latitude enabling
“counter-intuitive” decision-making to allow the robot to better
cope with obstacles (e.g., backing up even though it means
temporarily moving away from the target). We have found
that as we approach asymptotic stability (through variation of
κ1,1), the robot becomes prone to being trapped, since it is less
likely to deviate from an aggressive path towards its objective.
The following result quantifies this feature.

Corollary 1 (Intentional Relaxing of Control): Let R be a
symmetric positive definite matrix. If l1 ≤ ρ0‖BT P‖1

2 (where

ρ0 :=
√

n|κ1,1|‖BT P‖1
λmin(R)

and λmin(R) is the smallest eigenvalue

of R), then setting κ1,1 < 0 induces a neighborhood of radius
ρ0 > 0 outside of which V̇1 < 0.

Now consider the case where µ1 = 1, and the system is
in search mode. In this case, we generate the reference φ1

from an internal pattern generator (a set of oscillators) and
regulate the inertial guidance sensor, σ2. This will cause the
agent to execute an approximation of a space-filling curve
in the environment, that is, it will search the environment.
From (12), we see that the velocity sensor output is simply

σ2 =

 v
ω2

ω3

, in other words, no backstepping is needed,

and the control u1 = δ′1 is adequate (for slowly varying φ1)
to provide obstacle avoidance and velocity tracking.

1) Comment: An interesting side-effect of our synthesis is
the emergence of normalized radial basis functions in the S(·)
operator, and unnormalized radial basis functions in the Γ(·)
operator. Hence, u1 is produced, partially, by a radial basis
function network.

C. Level Two

The level two controller addresses the case when the robot
is either:

1) in a region of space where the target is out of sensor
range (i.e., σ3 = 1)

2) trapped by an obstacle formation that the level one
controller can not suppress (e.g., a concave formation)

We first construct a sense, δ2, that detects these problematic
cases. For case one, we know σ3 = 1. For case two, we
note that if the level one controller is unable to suppress the
obstacle, the integral of the obstacle sensor’s radial component

(σ0,1) with respect to time will tend to increase (due to
persistent stimulation of the obstacle sensor). Hence, we can
filter the magnitude of σ0,1 by a “leaky” integrator:

ζ̇2 = −κ2ζ2 + |σ0,1| (20)

and apply a hysteresis function, h2 : R 7→ R, that triggers
“high” (goes from 0 to 1) if ζ2 is increasing and crosses a
threshold T2,H , and resets (goes from 1 to 0) only if ζ2 is
decreasing and crosses a threshold, T2,L < T2,H . We can now
define:

δ2 := σ3 + h2(ζ2) ∈ [0, 2] (21)

with δ2 = 0 being the desired state of affairs (i.e., the absence
of the two problem conditions).

Define the actuation signal, u2 ∈ {0, 1}, such that it
controls the µ1 input of the level one controller, recalling
that µ1 = 0 enables taxis, while µ1 = 1 enables searching.
Now, we construct a plant that models the dynamics of δ2 in
terms of u2. Although we lack the information to construct
a precise model (the resource-bounded agent lacks a global
map and is constrained by sensors that can only produce local
information), we can construct one that reflects the trend of
how we expect δ2 to evolve with respect to u2. Qualitatively,
when δ2 > 0, we expect that engaging in searching (i.e., u2 =
1) should tend to decrease δ2, whereas when δ2 = 0, u2 should
cause no change in δ2. We can describe this dynamically by:

P2 :
{

η̇2 = −u2

δ2 = η2
(22)

(we note that by (21) δ2 ∈ [0, 2], hence when δ2 = 0 and
u2 6= 0 the model tends to bring δ2 out of its domain of
definition; we thus need to verify that the final control law is
consistent with the domain of definition of δ2).

To synthesize the controller that will cause δ2 to track φ2 =
0, we define the tracking error:

e2 := φ2 − δ2 = −δ2 ∈ [−2, 0] (23)

and the scaler-valued function:

V2 :=
1
2
e2
2 (24)

which is positive-definite with respect to e2. Differentiating
(24) with respect to time, we obtain:

V̇2 = e2u2 (25)

Setting u2 = −sgn(e2) = sgn(δ2) makes (25) negative-
definite with respect to e2, and hence lim

t→∞
δ2 → φ2 = 0. We

note that u2 ∈ {0, 1}, since by (23) e2 ∈ [−2, 0]—which is
consistent with our earlier definition of the range of u2.

1) Comment: The design of the level two regulator suggests
how the methodology can be expanded to higher-order cog-
nition. We note that here our plant model is derived from the
qualitative trends of how we expect the world to react rather
than a physically- and/or geometrically-precise derivation of
how the world actually reacts. We feel that this way of
divorcing ourselves from lower-level considerations is a step
in the direction of synthesizing more abstract cognitive skills.
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initial position

(a) κ1,1 ≥ 0

initial position reverse

motion

(b) κ1,1 < 0

Fig. 7. Simulation #1: traces of robot trajectories for two cases illustrating
the emergence of satisficing behavior as κ1,1 goes negative.

initial position

Fig. 8. Simulation/Animation #2: trace of robot trajectory; overstimulation
by a large obstacle.

V. SIMULATION

For clarity of presentation, we show an instantiation of
the controller for the planar case3. The robot was placed at
random initial conditions and simulated in various obstacle
courses. Figure 7 illustrates the inability of a system with
κ1,1 to get around a small wall; when stability is relaxed by
setting κ1,1 < 0 the situation is improved. Figure 8 illustrates
the “searching” behavior elicited by the level two controller.
Figures 9-10 illustrate the agent’s behavior in more complex
environments.

Animation videos for additional simulations are available
from the following URL: http://www.ece.tamu.edu/∼takis/
robotics main page.html.

In the formulation of Section II the agent is dimensionless,
whereas in our plots and animations a cone-shaped cursor
was used to track the agent’s location. This has resulted in
the occasional appearance that the agent is simply bouncing

3For the simulations in this paper, C1a was composed of two third-order
elliptic low-pass 0.1 Hz filters.

initial position

finite target 
detection

range

Fig. 9. Simulation/Animation #3: trace of robot trajectory; maze example
with target initially out of sensor range.

initial position
finite target detection

range

Fig. 10. Simulation/Animation #4: trace of robot trajectory; maze example
with target initially out of sensor range.

off of obstacles. We remark that our simulation environment
does not model any physics apart from the response due to
acceleration commands from the agent—it does not model the
physics of object-obstacle interactions. That is, in the absence
of sensory feedback from σ0 regarding the presence of an
obstacle, the agent in the simulation environment will move
through obstacles as if they were not present. Hence, the
observed deviation of the agent from obstacles is purely due
to the agent’s regulation of its sensory perception of the world.

VI. WEAK EMERGENCE OF SATISFICING INTELLIGENCE

Simon [18], [19] suggests that cognitive systems are systems
that satisfice, that is, systems that find “tolerable” rather than
optimal solutions. Pollack [20] in her AI formulation of an
intelligent agent introduces mechanisms that enable satisficing
intelligence. With respect to our system, the behavior of
Figure 7 is an example of satisficing intelligence—the agent
takes locally non-optimal actions that allow it to get around
the wall.

In [21], Bedau introduces the concept of weak emergence,
reporting that weak emergence is manifest in all complex
systems with [29] placing it as requisite property of complex
adaptive systems. Bedau’s definition states that a phenomenon,
P , of a dynamical system, S, with dynamics specified by D,
is weakly emergent if and only if P can be derived from D
and the external conditions of S but only by simulation.

We appeal to this definition to show how satisficing intel-
ligence (P ) is a weakly emergent property of the hierarchical
dynamic system ({S, D}) specified in Sections III-IV.

a) ⇒: We first show that the manifestation of P is rooted
in {S, D}. This is straightforward as through experimentation
we observe that P arises when κ1,1 < 0 (e.g., in the
simulations of Figure 7). With κ1,1 < 0, the agent exhibits
more varied behavior (including taking locally non-optimal
actions) when it meets an obstacle and reverses and/or turns
to circumnavigate the obstacle. When κ1,1 ≥ 0, the agent is
aggressive as it tracks the target—however, this fanaticism (to
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use the AI-inspired terminology of [30], [31]) prevents it from
taking non-optimal deviations from its optimizing path towards
the target.

Hence, the cause of P can be traced to {S, D} via the
parameter κ1,1—the degree to which the stability of C1 is
relaxed.

b) ⇐: Now we show that P can only be seen to emerge
through simulation, that is, we can not derive its manifestation
purely by analyzing {S, D}. We note that in the synthesis of
Section IV, we did not explicitly design behavior for turning
around obstacles. This was because the agent we designed only
had access to local non-directional obstacle sensing. Hence,
we simply did not have access to the information required
to design a regulator that could directly maneuver around an
obstacle. Thus, by solely considering {S, D} it is not possible
to deduce the emergence of P because the regulators in {S, D}
do not receive sufficient information to, by design, engage in
P -like behavior.

What we did design into the system through Corollary 1
was a relaxed requirement for stability. That is, we lessened
the constraint on the level one controller providing it with the
freedom to take more varied actions—but we can not say what
it will exactly do. Interaction with the environment—through
simulation—is necessary to observe the manifestation of P .

A. Comments

We have argued that the emergence of satisfying intelligence
satisfies Bedau’s definition of weak emergence. Moreover, we
have shown how this is rooted in a unique feature of our
architecture: the relaxation of stability of Corollary 1.

Traditional control-theoretic design methodology pursues
aggressive optimization, i.e., asymptotic stability, with ultimate
boundedness being the “next best thing” to be sought only
when asymptotic stability is not possible. As we have seen,
however, while asymptotic stability may lead to optimality, it
does not necessarily lead to intelligence. We feel this insight
is important to “tame” the application of control-theoretic
tools so that cognition for “life-like” artificial agents can be
synthesized.

VII. CONCLUSION

Recognizing:
• the vital role of cognitive processes in life
• the prevalence of hierarchical dynamic systems in living

processes and cognition
• the importance of embodiment in cognition

we sought to develop a cognitive architecture for an embod-
ied robotic agent. Specifically, we composed an embodied
hierarchical system by replicating regulator motifs, utilizing
a methodology of plant-controller co-design to approach this
synthesis rigorously. We note that despite the mathemati-
cal sophistication of the toolsets used, the resulting control
system is amenable to economical analog implementation;
data converters—expensive requirements of software-based
control—are not needed.

Beyond the simulation results and animations which illus-
trate the functioning system, we point to the weak emergence
of satisficing intelligence as a demonstration of the utility of
our methodology in synthesizing the cognitive faculties for
artificial life.
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