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Abstract— We present a method of learning relationships
at the triadic level of a relationship network. The method
proposes learning linkages of a particular network using a
Support Vector Machine (SVM) classifier trained on the known
part of a relationship network. Using features drawn from the
topological information of the two degrees of separation of a
link a classifier learns whether two people of that link are
related or not. We investigate empirically the performance of the
technique for various relationship networks derived from email,
web hyperlinks, and questionnaires.

I. INTRODUCTION

Most social networks are either constructed from data
gained from questionnaires or some form of information
retrieval. One common problem is missing data. In the case
of relationship networks this missing data is where we don’t
know if one actor1 is linked to some other actor in the network.
In automatic social network formation via web pages, as used
in [3], inevitably there will be missing links simply because
of incomplete sampling of the network. The dynamic nature
of web pages and email also means we can’t assume complete
knowledge of linkages.

We wish to evaluate how effective the two degree of
separation is at reconstructing relationship networks. Mak-
ing the prime objective of this paper to be able to learn
the relationships within the two degrees of separation of a
network. The core of this method is to learn whether a link
is missing or not based on the general behaviour of the two
degrees of separation of that network. To learn whether a
link is missing or not is dependent on network properties
like the transitive nature of the three actors which make
up the two degrees of separation. That is given three actors
(A,B,C) they are transitive if that persons A is linked to
person B and person B is linked to person C then A and C
are linked. We propose using a pattern classifier to learn the
nature of network properties of the two degrees of separation,
properties like transitivity. For instance in friendship networks
we expect the transitivity to be high because friends of friends
are usually friends themselves. This is not necessary the case
in an organisation’s email system because the relationships can
be rather hierarchical [6]. Suggesting other network measures
as well as transitivity need to be considered when learning
linkages. Measures like an actor’s directional degree—the

1An actor being the social unit used in a social network.

number of distinct linkages, either to or from that actor—
are considered. The degree of a person in that relationship
network is key to determining whether others in that network
are likely to communicate with that person or not. In citation
networks it has been shown that papers with a high in-degree2

are more likely to exhibit preferential attachment [1] i.e. those
papers with already high citations are more likely into the
future attract more citations.

One application of learning network relationships is as
part of a recommender system for web sites like: friend-
ster www.friendster.com, a friendship building network;
and LinkedIn www.LinkedIn.com, a business-oriented so-
cial networking site. These recommender systems would sug-
gest to a person registered on these web sites other people who
they are most likely to be interested in based on that person’s
network features.

Another application of having a more complete relationship
network is it can be used as part of a system of email
security. Viruses and spam present enormous problems to an
organisation’s email system. We propose that as part of a
whole security system that incoming emails are checked to see
if they might be from a person who is part of the recipient’s
relationship network. For instance when determining if an
email is spam rather than just basing the decision on the
content alone we propose considering whether that email
is from someone from the recipient’s relationship network
drawn from the organisation’s email system. By considering
the relationship network combined with the spam content
detection the number of legitimate emails being identified
as spam can be reduced. This improvement is achieved by
allocating more weight to an email whose content was detected
as spam and the sender of the email was determined not to be
part of the recipient’s network. When dealing with viruses
having knowledge to whether the email is from a person
potentially known to the recipient or not, enables better ability
to identify certain types of viruses. In some cases presents a
mechanism to warn others in that recipient’s network that they
may have received a virus.

The rest of the paper is as follows. In Section II prelimi-
naries are given. Section III provides details of the proposed

2In-degree refers to the number of edges or links into that node in the
network.
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Fig. 1. The two degree separation for (i, j).

approach, and in Subsection III-A a description is given of
the various attributes used to form the feature vector. We
describe in Section IV the data sets considered in this study.
The experimental results of the proposed method are presented
in Section V, and Section VI concludes the paper.

II. PRELIMINARIES

We model a network as a simple complete digraph G(V, E)
consisting of the set of all possible vertices V and edges E =
{(i, j), for i �= j and i, j = 1, . . . , N}, where given i and j
are the vertices of the graph and each edge has a corresponding
ordered pair (i, j).

A discrete scale is assigned to each ordered pair (i, j) ∈
E denoted by ei,j ∈ {0, 1}. We restrict for simplicity of
discussion to a binary scale, i.e. if actor i says she or he
is related somehow with actor j then the scale assigned is
one, otherwise it is a zero indicating there is possibly no link
between i and j. H(V, E′) is the graph (with no missing data)
we are estimating given the graph K(V, E ′′) with missing data,
i.e. E′′ E′ E.

The two degree of separation is formed from a triad of two
actors i and j and a third actor k (see Fig. 1). The third actor
k is in the two degree of separation of (i, j) if it belongs to
the subset of actors

K = {k ∈ V : R or S or T or U}, (1)

with events R = (ek,i = 1 and ej,k = 1), S = (ei,k =
1 and ej,k = 1), T = (ei,k = 1 and ej,k = 1), and U =
(ek,i = 1 and ek,j = 1).

III. APPROACH

For each edge of E a feature vector x and label y ∈
{ 1, 1} are assigned according to the scales associated with
K(V, E′′). A label is 1 if the scale is 0 and 1 otherwise. See
subsection III-A for details of how the features are constructed.
Thus, the set of observations used in training of the classifier
are (x1, y1), . . . , (x|E|, y|E|) with indices allocated (i 1)
N +(j i) for i < j and (i 1) N +(j i+1) for i > j. For
example a network with N = 10 actors the link (i = 3, j = 4)
is allocated the feature x21 and corresponding label y21, since
i < j the index is (i 1) N + (j i) = 21. The support
vector machine (SVM) [8] was chosen as the classifier because
of its good generalization in determining a link’s label from
its corresponding feature.

A. Feature vector

The attributes of x capture the
significance of the triad (actors i,
j and k) in relation to the link
of interest. The directional infor-
mation is partially captured in the
attributes by including the degree’s
direction. The first six attributes
are the in and out degrees (degree
being the number links to that ver-
tex) of the various actors of the
triad (refer to Fig. 2). For example
“in degree i“ is

∑
j:i�=j ei,j where

(i, j) ∈ E′′. The in degree of an
actor is often a measure of the

1. in degree i

2. out degree i

3. in degree j

4. out degree j

5. in degree k

6. out degree k

7. no. ei,k and ej,k

8. no. ek,i and ek,j

9. no. ei,k and ek,j

10. no. ek,i and ej,k

Fig. 2: Feature vector

actor’s prestige. The higher the in degree the more prestigious
the actor; and more likely they are to attract linkages with
new actors, i.e. preferential attachment. Alternatively, the out
degree of an actor is often a measure of the expansiveness
of that actor to the rest of the network. When determining
whether the link of interest is missing, or not, the direction of
the degree is important, but so is the pairwise combinations
of an actor’s degrees. An example of why considering the
pairwise combinations is important is that it is more likely
that the link between actors i and j exists if there is a high
out degree for actor i and a high in degree for actor j rather
than if there is a high out degree for both actors i and j.

To illustrate the in and out degree attributes consider the
example network of Fig. 3. In this network of six actors the
link of interest is from actor A to actor B. For this example the
in and out degrees of i = A are both two. When calculating
the in degree of k it is different to in degrees of i and j. It is
cumulative sum over all possible triads, so for the example in
Fig. 3

∑
k={C,D,E,F} in degree k = 2 + 2 + 0 + 1 = 5. For

the out degree of k a cumulative sum is also used. Therefore,
the out degree k in Fig. 3 is

∑
k={C,D,E,F} out degree k =

1 + 1 + 2 + 1 = 5.
The last four attributes are the number of two degrees of

separation in a particular direction (see Fig. 2). Attribute 9,
“no. ei,k and ek,j” is the total number of two degrees of
separation for the link between i and j, i.e. where k ∈ K
and event U is true in (1). For example in Fig. 3 attribute 9
has the value of one, since only k = C has ei,k = 1 and
ek,j = 1. We use attribute 9 to measure whether the link of

j = B

k = Ek = F

i = A

k = D k = C

Fig. 3. Example network.
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interest exists based on the transitive behavour of triads of
that network. As mentioned previously, a triad is transitive if
i is linked to k and k is linked to j then i is linked j. The
theory of cognitive balance suggests in the case of friendship
“like” networks that there is a tendency for relationships to
be consistent, i.e. people tend to like their friends’ friends [6].
Meaning if a network is transitive then attribute 9 will be high
in value with a positive likelihood that the link exists between
i and j. Attribute 10, “no. ek,i and ej,k” is closely connected
with the measure of cyclicality of triads within the network.
Cyclicality means a triad has j linked to k, k is linked to i and i
is linked to j. When the relationship is one of sharing resources
then typically cyclicality in a network represents an indirect
sharing of resources. For example in exchanging favors within
a network when i does a favor for j, rather than j returning
the favor directly to i, instead it is indirectly done, so j does
a favor k then k does a favor i. In the case of the example of
Fig. 3 the value of attribute 10 is two, as both actors D and
F have ek,i = 1 and ej,k = 1.

While attributes 9 and 10 measure the positive likelihood
that there exists a link from i to j actors, attribute 8 is more a
measure of the negative likelihood case where it does not exist.
Unconnected links between actors are sometimes referred to
as network holes. In fact people take advantage of holes as a
means to control of the flow of information between people not
directly connected. These people are referred to as “brokers”.
Attribute 8 should measure the likelihood within a network
that some actors in the network are brokers. For the example
in Fig. 3 actor E is a “broker” for actors i and j, because it
has ek,i = 1 and ek,j = 1.

Lastly, attribute 7 is capturing the case of whether i and
j are linked based on they both are linked to the same
person. Attribute 7 is closely related to the in degree of k but
restricted to the triad. Therefore, attribute 7 crudely speaking
is a measure of the importance of the third actor k within the
triad. For the example in Fig. 3 this relative importance has
the value of two, because both C and D have ei,k = 1 and
ej,k = 1.

IV. DATA SETS

Enron’s executive email network. This network consists of
the emails sent between different executives of Enron from
1998 through 2002. We used a modified version of the data3

used in [7]. We restricted the study to the 110 user ids who
had sent more than 100 emails over the 189 weeks. If one or
more emails were sent from user id i to destination user id j
the value of one was allocated to ei,j . When determining the
destination user id no discrimination was made between “to”,
“cc’ and “bcc”, they were all treated as a link. The digraph
produced had |V | = 110 and |E ′| = 1177.

Krackhardt’s High-tech Managers networks. The data used
to construct the relationship networks consisted of question-
naire responses of 21 managers of a high tech manufacturing

3http://cis.jhu.edu/˜parky/Enron/enron.html

firm. Originally collected by Krackhardt [5] to study the man-
agers perceptions of network structure. We consider only two
of the relations studied: advice and friendship. The question
used to study advice was “Who would you go to for advice
at work (other managers only)”. The question used to study
friendship was “Who are your friends”. Two relational net-
works were formed from the advice and friendship questions
(|V | = 21, |E′| = 190) and (|V | = 21, |E′| = 102)
respectively.

Freeman’s Electronic Information Exchange System (EIES)
network. The EIES network describes the acquaintanceships
of 32 researchers at a conference in Sept. 1978 [4], [9].
The data used to construct the network was derived from a
questionnaire. Five scales were used in the questionnaire: 4
= close personal friend; 3 = friend; 2 = person I’ve met; 1
= person I’ve heard of, but not met; and 0 = unknown name
or non-response. The final digraph consisted of |V | = 32 and
|E′| = 759.

WebKB networks. Two relationship networks were built
using the hyperlinks contained in the home pages of students
and facility members of the computer science departments
of Washington and Wisconsin universities in 1996. The html
home pages used were from http://www-2.cs.cmu.
edu/˜webkb. The Washington data produced a digraph with
|V | = 39 and |E′| = 55. The Wisconsin data produced a
smaller digraph with |V | = 22 and |E ′| = 29. We created a
directional edge between the home page person and a student
or faculty member, if a hyperlink existed between their home
pages. The intention was to use hyperlinks between home
pages as a means of inferring relationships. To increase the
likelihood that the triad existed we restricted the set of vertices
to C = {i : \(∑k ei,k 1 and

∑
k ek,i 1)} making the set

of edges E′ = {(i, j) ∈ C C : i �= j}.

V. EXPERIMENTAL RESULTS

In all the experiments C-SVM with SVMlight optimization
from the MATLAB library Spider 4 was used. To compensate
for the fact that most of the networks had unbalanced classes
the hyperparameter “balanced_ridge” was used. All the
parameters were chosen using a small validation data set
independent of the training data. A polynomial kernel of
degree 3 was chosen for the SVM classifier. All the features
had scale normalization. The main performance metric used
was the balanced error rate (BER):

BER = 0.5 (FP + FN) , (2)

where FP is false positive rate =
number of false positives

total number of negative instances and FN is false negative

rate = number of false negatives
total number of positive instances . As a benchmark

we compared the SVM results of the feature vector with
a “naive” method which assumed transitivity. In this naive
method the link between persons i and j was deemed to exist

4Library can be found at http://www.kyb.tuebingen.mpg.de/
bs/people/spider/download_frames.html.
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when there was no observed link between persons i and j
only if person i was linked to person k and person k is linked
to j.

Fig. 4 shows the results for the various data sets when
linkages in networks were randomly removed to simulate
missing data. The BER results were produced using 5-fold
cross-validation. We used 5-fold cross-validation in an effort
to give a good idea of the generalization performance of each
method. The test labels were derived from the scales associated
with H(V, E′), the graph with no links removed. Though the
features used in testing were from the graph which had links
randomly removed, i.e. K(V, E ′′) .

We see for all the data sets in Fig. 4 the SVM classifier
can reconstruct links better than the naive method. In most
cases of the networks in Fig. 4 as the number of missing
links increased the balanced error rate differences between
the two methods decreased. The only exception was the
EIES friendship network where the methods BERs diverged.
The most probably reason for this difference was that the
EIES network has a low sparsity factor—ratio of the number
links labeled as negative to the number labeled as positive—
compared to the other networks, as displayed in Table I. One
explanation for the divergence of the EIES BER results was
due to the effective sparsity being increased by removing links,
therefore decreasing the effectiveness of the naive method at
predicting the positive labels. Looking at the results of Table II
this seems to confirm this since the false negative rate for the
naive method compared to the SVM is higher. When compared
to the other networks the Enron BER result was the lowest.
One possible reason for the lower BER result for Enron was
due to the larger number of linkages used to train the classifier
in the case of Enron compared to the other networks enabling,
a better generalization of the SVM classifier.

In an effort to understand the results of Table II and Fig. 4
we used a Fisher linear discriminant [2] to determine the six
highest ranking attributes in descending order of importance
(see Table III). From the results of Table III we see attribute 9
was amongst the three highest ranked attributes. Highlighting
attribute 9 as one of the key factors to the successful learning
of links by both the SVM and naive methods. When looking
at the Enron result we see in Table II that the naive method
has a bias with a very low false negative rate (FN) but a
high false positive rate (FP). The higher FP in the naive
method was most likely due to the fact that for the Enron data
transitivity in isolation was not sufficient to make the decision
whether the link should exist or not. In an organisation like
Enron it is fair to assume that there would be “brokers”
wanting to build social capital and hierarchical relationships.
The idea of brokers from a social capital perspective is they
take advantage of unconnected individuals, network holes. By
sharing information with them indirectly the broker increases
their status in the network. Both hierarchical relationships and
network holes are more likely to be captured by attributes 8
and 7. The lower FP rate of the SVM method for Enron could
be explained by attributes 7 and 8. The higher FP rate of the
naive method for the Enron network is not that well reflected

TABLE I

SPARSITY FACTOR, NUMBER OF VERTICES |V | AND EDGES |E|.
Network |V | |E| Sparsity

Enron (email) 110 1177 9.28
Krackhardt (friendship) 21 102 3.32
Krackhardt (advice) 21 190 1.32
EIES (friendship) 32 759 0.35
WebKB (Washington) 39 55 26.65
WebKB (Wisconsin) 22 29 15.69

TABLE II

TEST RESULTS FOR 10 PERCENT OF LINKS MISSING.
Description FN FP BER

Enron naive 2.0( 1.3) 26.4( 0.6) 19.4( 0.3)
SVM 13.0( 3.1) 8.1( 3.1) 10.5( 1.6)

Krack. frien. naive 21.2( 5.9) 50( 2.3) 35.8( 3.5)
SVM 33.5( 11.7) 17.2( 2.4) 25.3( 6.1)

Krack. advice naive 3.9( 3.2) 69.7( 7.4) 36.8( 2.6)
SVM 24.0( 8.5) 15.9( 7.9) 19.9( 6.4)

EIES naive 34.6( 3.6) 14.6( 2.7) 24.6( 2.8)
SVM 27.9( 3.5) 16.2( 5.2) 22.1( 4.1)

Webkb Wash. naive 74.3( 7.3) 1.5( 0.8) 37.9( 3.3)
SVM 34.4( 5.4) 11.7( 3.8) 23.1( 0.9)

Webkb Wisc. naive 51.3( 7.3) 3.7( 2.1) 27.5( 11.2)
SVM 38.8( 29.2) 4.6( 2.1) 21.7( 14.2)

TABLE III

ATTRIBUTE RANKINGS USING FISHER DISCRIMINANT.
Network 1st 2nd 3rd 4th 5th 6th

Enron 9 8 7 5 6 10
EIES 9 8 7 10 6 5
WebKB (Washington) 3 2 9 5 1 6
WebKB (Wisconsin) 2 6 9 3 5 7
Krackhardt (friendship) 3 9 2 7 5 10
Krackhardt (advice) 3 9 2 7 5 10

in the BER measurement, and particularly when the network
has a sparsity factor of 9.28.

For both the friendship and advice Krackhardt networks the
BER was a fairer measure of performance compared to Enron
due to the networks having sparsity factors closer to one.

We see from the naive method results of Table II that for
the Krackhardt networks transitivity does not appear to be the
most dominant network property. Krackhardt was interested in
the perceptions of respondents of friendships and advice rela-
tionships of others within the network [9]. To evaluate these
perceptions Krackhardt asked them to evaluate links between
all actors, not just those actors the respondent was involved
with. Krackhardt used a centrality measure of importance in
the questionnaire finding that more important actors had better
perceptions compared to other actors. This was supported by
the results of Table III where the in degree of j (attribute 3)
was ranked first. The in degree generally reflects that actor’s
prestige ,or importance, within the network. Interestly, the
rankings of attributes for both advice and friendship networks
were the same. This similarity between networks supports the
hypothesis that the same network attributes at the triadic level
were used to determine the perceived importance of a manager
within Krackhardt’s advice and friendship networks.

We now shift our focus to the WebKB results. Unlike the
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(a) Enron’s email network
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(b) Krackhardt’s friendship network
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(c) Krackhardt’s advice network
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(d) Freeman’s EIES network
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(e) WebKB’s Washington network
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(f) WebKB’s Wisconsin network

Fig. 4. Test BER percentages versus increasing percentages of missing links for naive and SVM approaches.

Krackhardt and Enron networks the naive method has a higher
FN rate than FP rate (see Table II). This indicated that neither
transitivity or cyclicality were major properties of the WebKB
networks. From the results of the Table III we see that attribute
9 was only the third highest ranking and attribute 10 was
not even in the top six ranking attributes. One explanation
could be that the hyperlinks being predominately between
students and staff members making transitive relationships
less likely. Particularly in the case of the Wisconsin network
the hyperlinks were most likely student homepages to their
supervisors homepage explaining the higher influence of the
out degree for the Wisconsin network (see Table III). In the
Washington WebKB network certain graduate supervisors had
higher in degrees making them more likely to be linked from
their students homepages. This hypotheses was supported by
the prominence of the in degree of j being the highest ranking
attribute followed by the out degree of i. When looking at the
BER results for WebkB the lower results compared to other
networks are probably a result of the larger sparsity, and the
smaller size of the WebKB networks.

VI. CONCLUSION

We presented machine learning methods to learn the re-
lationships within the triad of a network. Through these

machine learning methods we were able to deduce a better
understanding of relationships at the triadic level. As well as
being an effective tool for understanding triadic relationships
we demonstrated empirically that the same methodology was
effective at learning linkages when some links were missing.
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