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Abstract— We propose an axiomatic approach to defining of
the validity of probabilistic inductive rules E ⇒ H . The set
of rules is evaluated against an available dataset, where the
conditions E, H are either true or false for each instance in
the dataset. Introduced here are six axioms which formalize
common sense dependencies between the validity of rules and
their support, confidence, lift and amount of available evidence.
Having a single validity measure, contrary to multiple criteria,
helps compare and rank induced rules. We demonstrate that the
z-test of difference of proportions satisfies all the axioms and
can be used as a measure of rules validity. Knowing that the
z-test statistics is normally distributed, allows one to filter out
statistically unreliable rules. We demonstrate advantages of the
proposed approach on a real life medical dataset.

I. INTRODUCTION

Due to insuf�cient information for induction, the rules
inducted from a set of data are not always supposed to be true.
Therefore, the question arises, how to evaluate the “validity”
of uncertain rules; how to �nd “interesting”, important rules
among all possible ones.

Consider, for example, one of the most popular approaches:
association rules [1]. “Interesting” association rules are de�ned
by thresholds on support and con�dence. The thresholds have
to be selected before the analysis. However, the level of
association on the given dataset is a fundamental property of
the data, which can be discovered only during the analysis.

As an instructive example, we consider a paper [6], which
proposes a new way to trim some redundant association rules.
To demonstrate the advantages of the method, the author
applies it on several datasets. The selected for these datasets
support levels are ranging from 0.5%, to 97%. Yet, there is
no hint in the paper, how these thresholds may be selected on
new datasets before the analysis. If the threshold selection is
not data-speci�c, the analysis will produce either too few or
too many rules, some of which are not reliable at all.

Similar problems arise in other data mining approaches.
For example, the probabilistic rough set approach proposed
in [2] requires setting up two certainty control limits for the
inclusion of elementary sets in the set approximation, as well
as a certainty gain threshold for the positive and boundary
regions.

To avoid setting the data-speci�c thresholds a priori, one
may rank inducted rules by their validity and select only
the “top” rules [7]. Here we propose a general approach to
the problem of rules evaluation. We introduce six axioms,
which characterize the relationships between the “validity”
and the empirical criteria “con�dence”, “support” and “lift”,
traditionally used to evaluate rules.

We show that the known z-test of difference of proportions
can be used as a validity function satisfying all the axioms.
Instead of setting a threshold for selecting “interesting” rules,
the z-test allows one to discard statistically insigni�cant rules.
The advantage of this procedure is that one can select the same
level of signi�cance for all analyzed datasets.

II. AXIOMATIC DEFINITION OF VALIDITY

The goal is to formulate general commonly acceptable
epistemological requirements for validity of production rules.

As a starting point, we can follow (with some modi�cations)
the four axioms already formulated for the “quality functions”
in [4] with reference to earlier works.

The axioms for the validity of rules are formulated here for
an arbitrary rule (E ⇒ H) where E, H are conditions on the
characteristics of instances. Alternatively, we will be talking
about events E, H , implying that event E (or H) occurs when
the conditions E (or H) on an instance’ characteristics are
satis�ed.

We rephrase the axioms, postulating relationships between
the validity of a rule and popular empiric criteria support,
confidence and lift. For convenience, the criteria are de�ned
below.

For a rule E ⇒ H ,

confidence(E ⇒ H) = P (H|E),

the conditional probability of the event H under conditions of
event E;

support(E ⇒ H) = P (E),

the probability of the premise E;

lift(E ⇒ H) = P (H|E)
P (H) ,

the ratio of conditional and unconditional probabilities of the
event H .

If lift is less than one, the event E decreases the chances of
the event H . All the axioms describe validity only for rules
with a lift larger than one. If lift is less than one, the validity
may be expressed by negative a numbers, however we will not
make such a requirement here.

Now, the axioms about the validity function Q(E, H) on
rules E ⇒ H can be expressed as follows.

1) Q(E, H) = 0, when lift equals 1.
One would expect that an ability to predict a conclusion
by a premise is lowest when the premise and the con-
clusion are not related at all. This is the case when lift
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equals 1, and the premise E does not affect the chances
of conclusion H . The non-negative validity function
shall be equal to 0 in this case.

2) Q(E,H) increases in confidence of rules for a fixed
support
If two rules have equal support, the rule with higher
con�dence is more valid.

3) Q(E,H) increases in support of rules for a fixed
confidence.
If two rules have equal con�dence, the rule with higher
support is more valid.

4) Q(E,H) decreases in support of rules with constant
product of support and confidence.
This axiom formalizes an intuition that con�dence is
more important than support for the validity of rules. If
two rules have equal product of support and con�dence,
the rule with higher con�dence but lower support is
more valid.

We would like to postulate two additional properties
describing the dependence of a validity criterion on
size of a dataset, where rules are evaluated, and on the
“lift” of a rule.

5) Q(E,H) increases in size n of a dataset for a
fixed confidence, support of rules and unconditional
probability P (H).
All previous axioms compare only rules evaluated
against the same data. Yet, as available evidence grows,
our reliance on the rule grows too.

6) Q(E,H) increases in lift of rules for fixed confidence,
support and size n of a dataset.
The axiom states that knowing support and con�dence
of a rule and dataset’s size is not suf�cient to determine
the validity of the rule. One needs to know how much
knowledge about the conclusion we can gain from the
premise. Lift is a measure of association between the
premise and conclusion on the given dataset, and it is
important for evaluation of the rule’s validity.

The axioms summarize general requirements for the validity
criterion of inductive rules. We will call validity criteria,
satisfying all the axioms, justified .

III. AN EXAMPLE OF A JUSTIFIED VALIDITY CRITERION

We propose an example of a justi�ed validity criterion. It is
the z-test (without the correction for continuity) [5], evaluating
two sided hypothesis that the unconditional probability of
conclusion p = P (H) and the conditional probability p1 =
P (H|E) are equal.

Let n denotes the size of the dataset; n1 the number of cases
with the event E in the dataset, q = 1− p. The criterion may
be presented in such form:

z(p1, n1, p, n) =
p1 − p√
(p q)/n1

. (1)

In our notations, the con�dence of the rule is p1, the support
of the rule is n1/n, the lift is p1/p.

Let us show that all the axioms hold for this criterion.
Theorem 3.1: The z-test of difference of proportions is a

justi�ed criterion for the validity of inductive rules.
Proof. We need to demonstrate that all the axioms are true

for the z-test (1).

1) We need to prove that if p1/p = 1 , z(p1, n1, p, n) = 0.
This is obvious: if p1 = p, the function (1) equals 0.

2) We need to prove that on a given dataset, for �xed
support (n1/n), the proposed validity function increases
with con�dence p1 of the rules. Indeed, when (n1/n)
and n, p are �xed, and p1 increases, so does the value
of the function z.

3) We need to prove that on a given dataset, for the �xed
con�dence p1, the validity function (1) increases with
the support (n1/n). Indeed, for �xed p, n, when the
support increases, the value n1 increases. With �xed
con�dence p1, the numerator of the formula (1) stays
the same, and the denominator decreases. Therefore, the
function z increases.

4) We need to show that, for a given dataset, the function
(1) decreases in support (n1/n) for a �xed product of
support and con�dence: p1 · (n1/n).
To see it, let us multiply both the numerator and the
denominator of the expression (1) for the function z by
n1. With �xed n, n1 is proportional to support of the
rule.
In the numerator, we will have the expression

p1 n1 − p n1.

The �rst product is constant, when product of support
and con�dence is constant. The second product is in-
creasing when the support (n1/n) is increasing on the
given dataset. Therefore, the numerator is decreasing
when support is increasing.
The denominator

n1

√
(p q)/n1 =

√
p q n1

increases with support (n1/n). Therefore whole expres-
sion for the function z decreases with support (n1/n)
for the �xed product of support and con�dence.

5) We need to show that the proposed validity function
increases in n for �xed support (n1/n), con�dence p1

and unconditional probability p.
If con�dence p1 and support (n1/n) are �xed, the
number n1 increases with the growth of n. Therefore,
the denominator of the formula (1) decreases, while the
numerator stays constant, and the function z increases.

6) Now, we need to demonstrate that the proposed validity
function increases with lift l = (p1/p) for the �xed
con�dence p1 and support (n1/n).
To do it, we need to transform the formula (1) to show
how the function depends on the lift. We assume l >
1. We will replace p with 1

l p1, transforming both the
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numerator and the denominator of the expression for
the function z. For the numerator we have:

p1 − p = p1 − p1/l =
p1

l
(l − 1). (2)

For the denominator we have:

√
p q

n1
=

√
(p1/l) · (1 − p1/l)

n1
=

√
p1l − p2

1

l2n1
=

=
1
l

√
p1(l − p1)

n1
. (3)

Now, if we multiply the numerator (2) and the de-
nominator (3) by l/p1, the expression (1) will take the
following form:

l − 1√
(l − p1)/(p1n1)

=
l − p1 + p1 − 1√
(l − p1)/(p1n1)

=

=
l − p1√

(l − p1)/(p1n1)
− 1 − p1√

(l − p1)/(p1n1)
=

=
√

l − p1√
1/(p1n1)

− 1 − p1√
(l − p1)/(p1n1)

(4)

When con�dence p1, support n1/n and the size n of
the dataset are �xed, the �rst nonnegative part of the
expression (4)

√
l − p1√

1/(p1n1)

increases in l, the second nonnegative part of the ex-
pression (4)

1 − p1√
(l − p1)/(p1n1)

decreases in l, therefore the whole expression (4) in-
creases in l.

This proves that the z-test satis�es all requirements for the
criterion of the validity of rules. Q.E.D.

IV. RULES FILTERING USING z-TEST

The z-test has an additional advantage: for large samples, it
has normal distribution when the true proportion of the event
C is identical in the whole population and under conditions
E of the rule E ⇒ C.

If we select an acceptable signi�cance level α, it sets the
lowest value of the z-test tα, which allows one to reject the
zero-hypothesis about equality of proportions p, p1. This is a
natural threshold to �lter out statistically unreliable rules: all
rules with the z-test value below the threshold value, can be
considered invalid, unreliable.

Note that the z-test can not be used for selecting signi�cant
rules, because of the multiple testing problem. We test many
rules on a �nite dataset, and by chance some of them will

have high values of the z-test on the data even if premise
and conclusion are independent in general population. An
advantage of rule-based approach is that an area expert can
have a �nal word in �ltering out spurious rules with high
statistical signi�cance.

V. USING A JUSTIFIED VALIDITY CRITERION ON A REAL

LIFE DATA

We want to demonstrate on a real life dataset advantages of
rules’ selection with a justi�ed validity criterion (the z-test)
versus the traditional approach, when multiple measures with
�xed thresholds are used.

The data represent information about prostate cancer pa-
tients from the Memorial Sloan-Kettering Cancer Center. The
goal is to predict clinical failure of a patient (death due to the
disease or metastases) during �ve years after prostatectomy.
The patients are characterized by 17 features. The informa-
tion includes clinical characteristics, some measurements of
abundance of androgen receptor in the prostate tissue, as
well as histological properties of the tissue, identi�ed during
computerized analysis of H & E images. The dataset was
randomly split on the training (295 records) and test data (288
records). The clinical failure class (the �rst class) makes only
7.8% of the training set, and only 5.9% of the test set. Most
of features are continuous.

On the training data, we applied two algorithms, generating
interval production rules

(a1 ≤ x1 ≤ b1)& . . . &(am ≤ xm ≤ bm) ⇒ y = c.

The �rst algorithm [8] uses traditional threshold-based
approach for the rules evaluation. It �nds the most general
interval rules, satisfying given constraints on support and
con�dence. The rule E1 ⇒ H is more general than the
rule E2 ⇒ H , if E2 � E1.

The “concentration algorithm” [9] uses the z-test as a
single validity criterion. The algorithm �nds “digest of rules”:
compact yet representative set of rules with highest validity.
Formally, the digest of rules is de�ned as a minimal subset of
rules, which includes a preferable rule for any rule not in the
digest. A rule A is said to be preferable to a rule B of the
same class, if the rules are comparable by generality, and the
rule A is more valid. The concentration algorithm �nds rules
in the order of their validity, with the most valid rules found
�rst.

With both algorithms, we built only rules with maximum
two conditions in their premises.

For the traditional approach, con�dence threshold was se-
lected to be 98% to exceed the proportion of the �rst class in
data. The threshold for the support, 20%, was selected after
the preliminary run of the algorithm with a lower threshold
(10%) generated too many unreliable rules.

With the traditional approach and the chosen thresholds,
we found 6 rules for the �rst class, and 72 rules for the
second class (good outcome). All rules for the �rst class were
con�rmed on the test dataset, having lift more than 5.56 on
the test data. The rules for the second class have lift on the
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training equal 1.06; on the test, the lift ranges from 0.97 to
1.04. In all cases, the second class rules do not have practical
value, since premise of any such rule improves chances of
good outcome very little.

The concentration algorithm was conditioned to �nd not
more than 75 best rules total. The algorithm found 58 rules,
all of them for the class 1. All the rules had p-value by z-test
below 0.001 both on the training and on the test set.

The medical application demonstrates important advantages
of using a single justi�ed validity criterion versus the tradi-
tional approach with multiple criteria.

1) One does not need to make “preliminary runs” or
“guesses” to chose the thresholds for given data, given
class.

2) With our approach, we were able to select the most
valid and representative rules because a justi�ed validity
criterion allows to compare rules.

3) In the traditional approach, we selected rather high
values for thresholds of the support and con�dence.
However, premises in most of the found rules have
little effect on a given outcome. Contrary, all the rules
selected with the z-test describe relevant conditions,
signi�cantly affecting probability of a given outcome.

4) In the traditional approach, we were able to �nd only
six truly predictive rules. Using z-test, we found 58 such
valuable rules. Many of these rules do not satisfy the
high pre-set thresholds used in the traditional approach.
However, the generalization ability of these dependen-
cies is con�rmed on the test set.

VI. CONCLUSIONS

We formulated requirements for a criterion of validity of
probabilistic rules, to take into account all the important
aspects of rules quality, such as support, con�dence, and lift.

We demonstrated that the z-test of difference of proportions
satis�es all the introduced axioms. We suggested to use this
criterion to �lter out statistically insigni�cant rules as well.

On the real life medical data, we showed that the z-test can
replace multiple criteria, used in most studies to select rules.
Having a single validity function streamlines discovery of the
“interesting” rules, makes rules comparison more objective and
comprehensive.
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