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Abstract— Recently the academic communities have paid more
attention to the queries and mining on uncertain data. In the
tasks such as clustering or nearest-neighbor queries, expected
distance is often used as a distance measurement among uncer-
tain data objects. Traditional database systems store uncertain
objects using their expected (average) location in the data space.
Distances can be calculated easily from the expected locations, but
it poorly approximates the real expected distance values. Recent
research work calculates the expected distance by calculating the
weighted average of the pair-wise distances among samples of two
uncertain objects. However the pair-wise distance calculations
take much longer time than the the former method. In this paper,
we propose an efficient method Approximation by Single Gaussian
(ASG) to calculate the expected distance by a function of the
means and variances of samples of uncertain objects. Theoretical
and experimental studies show that ASG has both advantages of
the latter method’s high accuracy and the former method’s fast
execution time. We suggest that ASG plays an important role
in reducing computational costs significantly in query processing
and various data mining tasks such as clustering and outlier
detection.

I. INTRODUCTION

Recently, the proliferation of areas such as sensor networks
and image processing gains the attention of researchers to
work on how to support various kinds of interesting queries
and data mining on these uncertain data. While there has been
a large amount of research work done on mining and queries
on relational databases, these works were done on databases
that store data in exact values. However, in many real-life
applications, the raw data are usually uncertain when they
are collected or produced. Sources of uncertain data include
readings from sensors, information extracted using probabilis-
tic parsing of input sources, classification results of image
processing using statistical classifiers, results from predictive
programs used for stock market, and weather predictions in
meteorology, etc. These uncertain data may be in the form
of an exact value with margins of error, sometimes with
or without a probability distribution (or density) function.
The result may also be represented as an interval or a set
of values, one of which may be the real value. However,
since traditional databases only store exact values, uncertain
data are usually transformed into exact data by, for example,
taking the weighted average or mean value (for quantitative
attributes) or by taking the value with the highest frequency

or possibility. This makes the storage, query and mining much
simpler by using existing commercial database systems and
mining techniques, but the shortcomings are obvious:

• By approximating the uncertain source data values, the
intermediate and final results from the mining tasks and
queries will also be approximate and may be wrong. For
example, the locations of centroids of clusters become
deviated from the real ones, or some data may be assigned
to the wrong clusters.

Distance between two data objects is a very important
measurement used in various queries and data mining tasks
such as nearest-neighbor queries and clustering (e.g., K-means
clustering [1]). While it is very simple to calculate the distance
between two exact data objects by applying a distance formula,
it is not trivial when the two data objects’ locations are
uncertain. An uncertain object has more than one possible
location. If each object oi has ni possible locations, then
we have n1n2 possible distances between objects o1 and o2

for every possible pair-wise combinations of their locations.
Given a probability distribution Pi of the possible locations
of object oi, we can calculate a probability distribution of the
possible distances. This result is very informative, but it is
very expensive to compute and unnecessary in most queries
and mining tasks. Instead, as in [2], an expected distance is
used by calculating the average of all the possible distances
weighted by their probabilities. The expected distance can be
directly used, for example, in nearest-neighbor queries for
finding the nearest neighbors, in clustering for finding the
cluster centroid closest to an object, and in outlier detection for
finding outliers which do not have enough neighbors within a
specified threshold distance [3].

Recent research work related to data mining on uncertain
data such as [2] obtains the expected distance by assuming
that the information of the precise probabilities of all possible
locations are known in advance. The information is either
represented as (i) a probability distribution function where
probabilities are given on the finite set of possible locations,
or (ii) a probability density function where the probability
density is defined on a region. In the first case, they calculate
the weighted average of the distances between all pair-wise
combinations of locations of two objects. In the second case,
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either (1) a grid consisting of a finite number of cells is
formed on the region and the probability of each cell is
estimated by sampling, or (2) sampling is done on the region
so that more samples appear in areas of higher density. Then,
again, the weighted average of the distances is calculated. As
discussed above, this method to calculate the expected distance
is expensive between it involves a large number of distance
calculations which increases quadratically to the number of
possible locations or grid cells or samples.

Therefore, we have investigated into the problem of effi-
cient computation of expected distances in various aspects.
First, we derived analytic solutions for some cases such as
the expected distance between point/line/circle/sphere objects
in uniform/Gaussian probability density functions. We then
proposed a general method Approximation by Single Gaussian
(ASG) for arbitrary probabilistic objects, which significantly
reduces the computational cost. Experimental results show that
ASG can obtain accuracy very close to the calculation methods
used by recent research work while the execution time can be
significantly reduced.

Note that ASG can be applied to any general arbitrary
uncertain objects, even a certain object, which is a special
case of an uncertain object with its uncertainty domain (range
of possible locations) equal to its exact location. ASG can
represent a certain object by a single Gaussian distribution
with its mean equal to the exact location and its variance
equal to zero. As a result, ASG can calculate the distance
between two uncertain objects, between an uncertain object
and a certain object, as well as between two certain objects.

The rest of this paper is organized as follows. In Section II
we discuss some related work on data mining metrics and
uncertain data applications. In Section III we formally define
the distance between uncertain objects, derive the results for
some special cases and propose ASG for all general cases.
In that section we also describe four other distance calcula-
tion methods for comparison. We state and prove a theorem
showing that the results of two of the four methods above are
equivalent to the result of ASG (given the same sample set).
This shows that high accuracy can be maintained with a much
lower cost. In Section IV, we demonstrate the effectiveness and
efficiency of ASG from the results of four experiments where
uniform, Gaussian mixture, and totally arbitrary distributions
are used. In Section V we conclude the paper.

II. RELATED WORKS

Researches on probabilistic databases began in 1980s. An
earlier attempt was done to incorporate probabilities on dis-
joint events (tuples) [4] or attributes [5] into the relational
data model. [5]’s algebra and independence assumption among
attributes were extended respectively by [6] with new oper-
ations and by [7] with different probabilistic strategies and
interval probabilities. Aggregate operations were then con-
sidered in [8]. The research on uncertain data management
was further extended to other kinds of databases such as
temporal databases [9] and object-oriented databases [10].
The semi-structured (XML) databases were also extended

with independence assumption [11], arbitrary probabilistic
distributions among children with a formal theory and algebra
[12] as well as interval probabilities [13]. While there has been
a great deal of work on supporting uncertainty in databases,
there is little work on updating or proposing new measurement
definitions for uncertain objects. Traditional data mining pro-
cesses often use distance as a metric to measure how different
two objects are. Different distance measures, like city-block
distance or Minkowski-distance, have been used in measuring
the similarity between interval data [14], but the pdfs of the
intervals are not taken into account in most of the metrics. [15]
proposes to use probabilistic distance functions to measure the
similarity between uncertain objects. Each uncertain data item
is modeled as a set of sampling points over the uncertainty
region, and the Monte-Carlo method is used to retrieve the
data. While the paper says that the probabilistic similarity join
can be used to develop clustering methods for uncertain data, it
is not clear how this can be done. [2] probably first exploits the
expected distance to improve the efficiency of their clustering
algorithm. However, their expected distance calculations are
very expensive since they have to compute pair-wise distances
between all pairs of possible locations or grid cells or samples.
In this paper, we will propose a much more efficient method
to calculate the expected distance.

III. DISTANCE MEASURE BETWEEN UNCERTAIN OBJECTS

In this section we provide a formal definition of expected
distance used in this paper and other recent research papers [2].
We will then present theoretical results of analytic solutions
for special cases like uniform and Gaussian distributions for
spheres in multidimensional spaces. A method to calculate
the expected distance in general cases is then proposed with
some other methods. These methods will be compared in the
experimental section.

A. Problem Definition

If we view an attribute as a dimension, then the union
of the domains of all attributes produces a multidimensional
space where a certain object is represented as a point. Due
to the uncertain nature or actual system limitation in the data
collection phase, the imperfect data quality leads to uncertain
attribute values of an object. Therefore an uncertain object
can be represented as a set of points, each of which is a
possible location of the object. A PDF (probability distribution
function) is used to represent the distribution of the proba-
bilities of the possible locations. Alternatively, an uncertain
object can also be represented as a (finite or infinite) region,
which covers the possible locations of the object (especially
the number of possible locations is not finite). We call this
region the uncertainty domain of object oi, denoted as UD(oi).
A pdf (probability density function), pi, is used to indicate the
probability density of each possible location within the region,
i.e.,

∫
UD(oi)

pi(x) dx = 1.
Consider two objects oi, oj , whose pdfs are pi(xi),pj(xj),

where xi and xj are locations of oi and oj . UD(oi) and
UD(oj) are the uncertainty domains of oi and oj . D(xi,xj)
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is the distance between xi and xj . The following gives the
expected distance and the pdf of the distance between oi and
oj .

E(D(oi, oj)) =
∫

UD(oi)

∫

UD(oj)

D(xi,xj)pi(xi)pj(xj) dxi dxj

(1)
We can define a pdf Di,j which returns the probability of

a distance value as follows:

Di,j(s) =
∫

UD(oi)

∫

UD(oj)

F (D(xi,xj), s)pi(xi)pj(xj) dxi dxj

(2)
where s is a non-negative real number; F (x, y) = 1 if x = y;
F (x, y) = 0 otherwise. In the other words, Di,j(s) returns the
probability that the distance between objects oi, oj is actually
s.

We can represent the expected distance between oi and oj

in terms of Di,j(s):

E(D(oi, oj)) =
∫ ∞

0

Di,j(s)s ds (3)

When PDFs (e.g. Pi) are used instead of pdfs (e.g.,pi),∫
UD(oi)

∫
UD(oj)

pi(xi)pj(xj) dxi dxj is changed to∑
UD(oi)

∑
UD(oj)

Pi(xi)Pj(xj).
We choose squared Euclidean distance as the distance

function D in this paper because of its easier integration
compared with Euclidean distance or Manhattan distance. The
following section presents the analytic solutions of expected
distance of some special cases.

Note that for certain objects, the uncertain domains in the
above formulae become their exact locations.

B. Analytic Solutions for Uniform and Gaussian Distributions
(AS)

In this section, we have chosen to report the analytic
solutions of spherical objects in different dimensions with uni-
form/Gaussian distribution with the following reasons. First,
in practice, uniform distribution will be assumed if we have
no information of the probability distribution of an uncertain
object. Second, a pdf that is a step function can also be
decomposed into several overlapping regions with uniform
distribution. Third, Gaussian distribution can well approximate
a variety of psychological test scores and physical phenomena
in the behavioural and natural sciences. Fourth, Gaussian
distribution maximizes information entropy among all distri-
butions with known mean and variance, which is naturally
chosen as the underlying distribution where we can just store
the mean and variance of the samples of an uncertain object
[16]. Fifth, arbitrary distributions could be approximated by a
mixture of Gaussian distributions.

As shown in Figure 1, for uniform distribution, the expected
squared distance EDAS(oi, oj) between a point object oi and
an uncertain object oj whose uncertainty domain is (1) a line
is c2 + (a2 − ab + b2)/3; (2) a circle is c2 + r2/2; (3) a
sphere is c2 + 3r2/5. The expected squared distance between

Fig. 1. Special Cases of Probabilistic Objects

(4) two arbitrary lines is c2 + (r2
1 + r2

2)/3; (5) two circles is
c2 + (r2

1 + r2
2)/2; (6) two spheres is c2 + 3(r2

1 + r2
2)/5; (7) a

circle and a sphere is c2 + r2
1/2 + +3r2

2/5.
Assume objects oi follow Gaussian distribution N(µi,Σi)

where µi is a d × 1 mean vector, Σi is a d × d covariance
matrix. The expected distance between objects oi, oj is

EDAS(oi, oj) = ‖µi − µj‖2 + trace(Σi) + trace(Σj) (4)

where trace(Σi) is sum of all diagonal elements in Σi.
Due to the page limitation, the details of the deriva-

tion are not included here but they can be found at
http://www.comp.polyu.edu.hk/∼csehung/paper/epdist-tech.ps

C. Approximation Methods for General Cases

Since it is usually difficult or impossible to derive an-
alytic solutions for pdf other than uniform and Gaussian
distributions, we have considered several methods to calculate
the expected distance between uncertain objects in arbitrary
distributions.

1) Distance between Means (DM): Just like the distance
between certain data in traditional data mining applications,
the expected distance between two uncertain objects oi, oj is
calculated from the squared Euclidean distance between their
means:

EDDM (oi, oj) = ‖µi − µj‖2 (5)

where µi and µj are the means of the object oi and oj . The
mean of an uncertain object can be derived from the pdf or by
taking average of the samples. For objects in d dimensions,
the computation cost takes only O((ni +nj)d), where ni and
nj are number of samples of object oi and oj . However, this
method does not consider the probability distributions of the
uncertain data objects and naturally leads to low accuracy.

2) Pair-wise between Random Samples (PRS): This method
takes random samples according to the pdf so that more
samples appear in areas with higher probability density. All
samples carry identical weights and the expected distance
can be calculated by taking the average of the distances of
all possible pair-wise combinations of samples of the two
uncertain objects as follows:
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EDPRS(oi, oj) =
1
ni

1
nj

ni∑
u=1

nj∑
v=1

||xi,u − xj,v||2

=
1
ni

1
nj

ni∑
u=1

nj∑
v=1

d∑
w=1

(xi,u,w − xj,v,w)2 (6)

where xi,u,w is the value of the wth attribute of uth sample
of object oi.

The time complexity of calculation of the pair-wise distance
is O(ninjd) where d is the number of dimensions, ni and nj

are sample numbers from object oi and object oj respectively.
3) Grid Approximation and Pair-wise between Samples

(GAPS): This method divides the uncertainty domain of an
uncertain object into a number of grid cells. The probability
of each cell is approximated by multiplying the area of the cell
and the probability density at the center of the cell. Another
method of approximating the probability of a cell is by random
sampling so that the probability of a cell is determined based
on the number of samples in it. The first experiment we
will report in the experimental section is based on the first
method. (Note the first method described above is a very slight
modification of that from [2].)

We use an example of 2-dimensional object to illustrate
this method. Suppose we use a grid of

√
s×√s cells and s

samples (one sample at the center of each cell) to approximate
the probability density function. The probability for each cell
of the grid is the cell area multiplied by its center’s probability
density. The cell probabilities are then normalized so that they
sum up to 1. The expected distance is calculated by the sum of
the distances between all pairs of cells (samples) from the two
uncertain objects, weighted by the corresponding probability
densities of cells as shown in Figure 2.

EDGAPS(oi, oj) =
∑
u,v

∑

u′,v′
Pi(xu,v)Pj(xu′,v′)‖xu,v−xu′,v′‖2

(7)
For simplicity, we denote xu,v and Pi(xu,v) as the center and
the center’s probability of the grid cell of uth row and vth
column of object oi; similarly are defined for object oj .

The time complexity is O(s2d) where d is the number of
dimensions and s is the number of grid cells. The time com-
plexity does not include the preprocessing time of estimating
the probabilities of grid cells.

Fig. 2. Grid approximation and pair-wise between samples

4) Pair-wise between Gaussian Mixture (PGM): In this
method, after random sampling in an uncertain object as
described in PRS, we use K-means clustering to classify
samples into a few clusters. Each cluster is approximated as
a Gaussian distribution. As a result, an uncertain object is
approximated by a mixture of Gaussian distributions in the
form of

∑Ci

u Ai,uN(µi,u,Σi,u) where Ci is the number of
clusters in object oi, µi,u and Σi,u are a d × 1 mean vector
and a d× d covariance matrix of the uth cluster of object oi.
Ai,u = nki

ni
is the weight of the uth cluster, where ni is the

total number of samples in oi, nki is the number of samples
in the uth cluster of object oi. Note that

∑Ci

u=1 Ai,u = 1.
Then, instead of pair-wisely calculating distances between

samples of two objects, we pair-wisely calculate distances
between clusters within two objects. The expected distance
between two Gaussian distributions (clusters) from two objects
can be obtained by Equation 4. The final expected distance
between two uncertain objects can be obtained by taking an
average of the distances above, each of which is weighted by
the products of the weights of the two clusters, i.e.,

EDPGM (oi, oj)

=
Ci∑

u=1

Cj∑
v=1

Ai,uAj,v

(‖µi,u − µj,v‖2 + trace(Σi,u) + trace(Σj,v)) (8)

However, K-means clustering is very time consuming.
In the coming section, we will find that the result has no
relationships with K in K-means, which gives light to improve
the calculation efficiency.

5) Approximation by Single Gaussian (ASG): Theoretically
as we are going to show in the next section, and experimentally
as in the experimental section, this last method ASG is the
lowest in computational cost compared with all other methods
(except method DM), which still gains the same accuracy as
the previous method PGM and PRS.

Similar to PGM and PRS, we do random sampling in an
uncertain object. We then approximate the object by a single
Gaussian distribution N(µi, Σi) where µi and Σi are the mean
and the covariance of the samples. The expected distance
between two objects can be obtained by Equation 4, i.e.,

EDASG(oi, oj) = ‖µi − µj‖2 + trace(Σi) + trace(Σj) (9)

where trace(Σi) is sum of all diagonal elements in Σi.
The time complexities of ASG to compute the two mean

vectors, the two variances and Equation 9 are O((ni + nj)d),
O((ni + nj)d), and O(d) respectively. Thus, the total com-
plexity is O((ni + nj)d).

D. Equivalence of PRS, PGM and ASG

The theorem below states that the results of PRS, PGM and
ASG are equivalent to each other, given the same sample set.

Theorem 1: Given any uncertain objects oi, oj and their
samples xi,1, . . . ,xi,ni , xj,1, . . . ,xj,nj , EDPRS(oi, oj) =
EDPGM (oi, oj) = EDASG(oi, oj).
Proof of Theorem 1:
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(i) The following well-known lemma in statistics will be used
in our proof.

Lemma 1: Suppose we have taken n samples of a value
a, and the samples are a1, . . . , an, then 1

n

∑n
u=1 a2

u = ā2 +
1
n

∑n
u=1(au − ā)2 where ā is the sample mean, i.e., ā =

1
n

∑n
u=1 au.

This lemma is a sample-based reflection of the following
theorem:

E(a2) = (E(a))2 + V ar(a) (10)

where a is a random variable.
This lemma can be proved easily as follow:

1
n

n∑
u=1

a2
u =

1
n

n∑
u=1

(au − ā + ā)2

=
1
n

n∑
u=1

(
(au − ā)2 + ā2 − 2(au − ā)ā

)
(11)

and

n∑

i=1

(au − ā)ā =

(
n∑

u=1

au − nā

)
ā = (nā− nā)ā = 0 (12)

Combine Eq.(11) and Eq.(12), we can readily obtain that

1
n

n∑
u=1

a2
u = ā2 +

1
n

n∑
u=1

(au − ā)2. (13)

Thus the proof of the lemma is completed.
(ii) Proof of EDPRS(oi, oj) = EDASG(oi, oj):

From Equation 6, we have

EDPRS(oi, oj) =
1
ni

1
nj

ni∑
u=1

nj∑
v=1

||xi,u − xj,v||2

=
1
ni

1
nj

ni∑
u=1

nj∑
v=1

d∑
w=1

(xi,u,w − xj,v,w)2

We can easily see that the computation of EDPRS can
be decomposed into a superposition of the EDPRS in each
dimension.

EDPRS(oi, oj) =
d∑

w=1

(
1
ni

1
nj

ni∑
u=1

nj∑
v=1

(xi,u,w − xj,v,w)2)

=
d∑

w=1

EDw(oi, oj) (14)

where

EDw(oi, oj) =
1
ni

1
nj

ni∑
u=1

nj∑
v=1

(xi,u,w − xj,v,w)2

=
1
ni

1
nj

ni∑
u=1

nj∑
v=1

x2
i,u,w +

1
ni

1
nj

ni∑
u=1

nj∑
v=1

x2
j,v,w

−2
1
ni

1
nj

ni∑
u=1

nj∑
v=1

xi,u,wxj,v,w

=
1
ni

ni∑
u=1

x2
i,u,w +

1
nj

nj∑
v=1

x2
j,v,w

−2
1
ni

ni∑
u=1

xi,u,w
1
nj

nj∑
v=1

xj,v,w (15)

Based on Lemma 1, Equation 15 can be written as

EDw(oi, oj) = m2
i,w + s2

i,w + m2
j,w + s2

j,w − 2mi,wmj,w

= (mi,w −mj,w)2 + s2
i,w + s2

j,w (16)

Here mi,w and mj,w are the sample means of the wth scalars
(i.e., values of wth dimension) of oi and oj ; and si,w and sj,w

are the sample variances:

mi,w =
1
ni

ni∑
u=1

xi,u,w, mj,w =
1
nj

nj∑
v=1

xj,v,w

si,w =
1
ni

ni∑
u=1

(xi,u,w−mi,w)2, sj,w =
1
nj

nj∑
v=1

(xj,v,w−mj,w)2

By substituting Equation 16 to Equation 14, we have

EDPRS(oi, oj) =
d∑

w=1

(
(mi,w −mj,w)2 + s2

i,w + s2
j,w

)

= ||mi −mj ||2 +
d∑

w=1

s2
i,w +

d∑
w=1

s2
j,w

= ‖µi − µj‖2 + trace(Σi) + trace(Σj)
= EDASG(oi, oj) (17)

(iii) Proof of EDPRS(oi, oj) = EDPGM (oi, oj):
From Equation 14, we have

EDw(oi, oj) =
1
ni

1
nj

ni∑
u=1

nj∑
v=1

(xi,u,w − xj,v,w)2

=
1
ni

1
nj

Ci∑

ki=1

Cj∑

kj=1

nki∑
uki=1

nkj∑
vkj

=1

(xi,uki
,w − xj,vkj

,w)2

=
Ci∑

ki=1

Cj∑

kj=1

nki

ni

nkj

nj

nki∑
uki

=1

nkj∑
vkj

=1

(xi,uki
,w − xj,vkj

,w)2 (18)

where Ci, Cj are the numbers of clusters (i.e., Gaussian
distributions) for oi and oj respectively, nki and nkj are the
numbers of samples in kith cluster in object oi and in kj th
cluster in object oj .

∑Ci

ki=1 nki = ni,
∑Cj

kj=1 nkj = nj .
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From Equations 1,16 and 17,

EDPRS(oi, oj) =
Ci∑

ki=1

Cj∑

kj=1

nki

ni

nkj

nj

d∑
w=1

nki∑
uki

=1

nkj∑
vkj

=1

(xi,uki
,w − xj,vkj

,w)2

=
Ci∑

ki=1

Cj∑

kj=1

nki

ni

nkj

nj
(‖µi,uki

− µj,vkj
‖2

+trace(Σi,uki
) + trace(Σj,vkj

)) (19)

Recall Ai,ki is the weight of the kith cluster in oi so that∑Ci

ki=1 Ai,ki = 1, Aj,kj is the weight of the kj th cluster in oj

so that
∑Cj

kj
Aj,kj

= 1. Therefore,

EDPRS(oi, oj) =
Ci∑

ki=1

Cj∑

kj=1

Ai,ki
Aj,kj

(‖µi,uki
− µj,vkj

‖2
+trace(Σi,uki

) + trace(Σj,vkj
))

= EDPGM (oi, oj) (20)

The whole proof is completed.
This theorem shows that the results of PRS, PGM and

ASG are the same. Therefore, we can use the much faster
method ASG, which computes the means and variances of the
uncertain objects and applies Equation 9 to obtain the result
which has the same accuracy as PRS and PGM.

IV. PERFORMANCE STUDY

We have done experiments by simulations in Matlab using a
PC with 1.5 GHz Intel Pentium 4 CPU, and 512MB RAM. We
found that the ASG method is much faster and more accurate
than other methods. Note that the sample number of GAPS
refers to its number of grid cells. K in K-means clustering in
PGM is randomly set in [3, 5] for each object.

A. Experiment 1 (Scalability w.r.t. Number of Samples)

In the first experiment, 100 uncertain objects are generated
with the mean of every uncertain object located in a 100×100
2D space as shown in Figure 3. The pdf of each object is a
superposition of four Gaussian distributions. The variance of
any Gaussian distribution and the distance between any two
Gaussian distributions’ means are uniformly distributed within
[1, 10]. The correct expected distance between two uncertain
objects are calculated by the analytic solution (Equation 4) we
proposed in Section III-B, using the actual means and vari-
ances of the Gaussian mixture generated. This value will be
used to compare with the values calculated by approximation
methods proposed in Section III-C. We will compare all the
five methods for the execution time. However, only DM, GAPS
and ASG will be compared with the accuracy of the expected
distance calculated because we have proved that the results of
PRS, PGM and ASG are equivalent.

Figure 4 shows that the accuracy of ASG is always higher
than GAPS and DM. The accuracy of a method is obtained by
one minus the average relative error of the expected distances
of all different pairs of the uncertain objects. DM’s accuracy
is not high (0.856 to 0.874) because it does not count the
variances of the objects. The accuracy of ASG increases from
0.977 to 0.990 with more samples while that of GAPS is from
0.946 to 0.957.

Although ASG is only about 3% to 4% more accurate than
GAPS, the execution time of ASG is much shorter than that
of GAPS, as shown in Figure 5. GAPS is the slowest. PRS
is also time consuming while the execution time of ASG is
always less than 0.02ms.

GAPS is much slower because it takes two more multi-
plication operations of the probabilities of a grid cell from
each object. Note that the execution time in Figure 5 does not
include the preprocessing time of GAPS, which estimates the
probability of each grid cell. The preprocessing time of GAPS
is shown in Figure 6.

B. Experiment 2 (ASG’s Performance on Data Generated as
in [2])

In the second experiment, data are generated in the way
similar to that in [2]. All 100 uncertain objects are located in
a 100×100 2D space. Each object is represented by an MBR
(minimum bounding rectangle), which is simply randomly
positioned inside the space. Each MBR is divided into 14×14
grid cells. Each grid cell has a probability randomly generated
so that the sum of the probabilities of all cells equal to one.

Let k be the sample number, i.e., a total of k points are
randomly located at the centers of some grid cells according
to the probabilities of the grid cells. In the other words, it
is likely that more samples are located at cells with higher
probability. GAPS provides the correct answers because the
grid probabilities completely capture the pdf of the object.
Therefore we would compare the results of ASG with that of
GAPS to see how accurate ASG can be.

Figure 7 shows that the accuracy of ASG increases from
0.988 to 0.997 when the sample number varies between 64
and 324.

Figure 8 shows that ASG performs much faster than GAPS.
The results here show that even the pdfs of uncertain objects

are so arbitrary, ASG can still perform very well. A distance
calculation method very similar to GAPS was used in [2].
The high accuracy of ASG suggests that ASG can replace the
method used in [2] and significantly improves the execution
time of their results. Note that the execution time of distance
calculation reported in [2] is much shorter than our GAPS
because they computed the distance between an uncertain
object and a cluster centroid which is a certain point. However,
GAPS here computes distance between two uncertain objects,
which involves much more distance calculations.

C. Experiment 3 (ASG’s Performance on Objects with Uni-
form pdf)

In this experiment, the uncertain objects are generated as
circles with uniform distribution. We would like to see whether
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Fig. 3. Data setting in Experiment 1

Fig. 4. Comparison of accuracy of ASG, GAPS and DM in Experiment 1

Fig. 5. Execution time of DM,PRS,GAPS,PGM and ASG in Experiment 1

Fig. 6. Processing time of GAPS in Experiment 1

ASG, which approximates a pdf using a single Gaussian
distribution, can also approximate uniform distribution well
or not.

10 uncertain objects, each with radius randomly in [1,5], are
randomly located in 100×100 2D space. As shown in Figure 1
(case (5)) and Section III-B, the correct expected distance can
be calculated and used to compare with the answers given
by ASG. ASG takes 100 samples on each object. We repeated
ASG for 6 times and found that in the worst case the accuracy
is over 0.98 and the average accuracy is over 0.99.

D. Experiment 4 (Scalability w.r.t. Number of Dimensions)

In this experiment, we would like to see how scalable DM,
PRS, GAPS and ASG are with respect to the dimensionality.
We generated 10 uncertain objects similarly as in Experiment
1. The number of samples or grid cells for two, three and four
dimensional spaces are 256, 216, 256 respectively. As shown
in Figure 9, we find that the accuracy of ASG is very high:
from 0.97 to 0.99. GAPS’s accuracy is also not low: from 0.93
to 0.96. Their accuracy decreases slightly when the number of
dimensions increases because the space becomes much larger
but the sample number does not change much.

Figure 10 shows that the execution time of GAPS and PRS
increases almost linearly to the number of dimensions. This
is probably because the number of terms in the distance cal-
culation is directly proportional to the number of dimensions.
The execution time of ASG, PGM and DM does not change
much.

Among all methods, GAPS is the most time consuming and
ASG is very close to the fastest method DM.

V. CONCLUSION

We have described the importance of expected distance
calculation in queries and data mining applications on un-
certain data. We provided the analytic solutions of special
cases (uniform and Gaussian distributions) and proposed five
approximation methods for general cases (arbitrary distribu-
tions). We have shown theoretically and experimentally that
ASG, in a very short execution time, can obtain results of very
high accuracy (compared with other existing methods that use
sampling). This strongly suggests that ASG can replace the
calculation method (similar to GAPS) used in recent research
work for answering queries as well as data mining applications
on uncertain data.
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Fig. 7. Accuracy of ASG in Experiment 2

Fig. 8. Execution time of GAPS and ASG in Experiment 2

Fig. 9. Accuracy of DM, PRS, GAPS and ASG with varying dimensionality
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