
K2GA: Heuristically Guided Evolution of Bayesian
Network Structures from Data

Eli Faulkner
Quantum Leap Innovations

3 Innovation Way, Suite 100
Newark DE, 19711
etf@quantumleap.us

Abstract— We present K2GA, an algorithm for learning
Bayesian network structures from data. K2GA uses a genetic
algorithm to perform stochastic search, while employing a mod-
ified version of the K2 heuristic to score proposed networks and
improve future generations. We show each component of K2GA,
a combination of these components to form the basic algorithm,
extensions to the algorithm for improved accuracy, and numerical
results.

I. INTRODUCTION

A Bayesian Belief Network (BBN) is a structure which
efficiently encodes a joint probability distribution, and allows
probabilistic inferences to be made among the variables which
it encodes. During the 1980’s and 1990’s, many researchers
developed a large number of algorithms intended on allowing
decision makers to use Bayesian Belief Networks as a tool.
Developing BBNs manually is often impractical and inherently
not scalable. To make tools which used BBNs practical,
techniques to learn Bayesian networks from data needed to
be developed. While great advances have been made on
this problem, it has also been shown to be NP hard and
improvements are still being made.

Two main approaches have been developed to efficiently
learn the best Bayesian network structures given a data set.
One class of approaches are the constraint based methods
[1] developed at Carnegie Mellon University. Constraint based
methods learn conditional independence relationships among
the variables, and use these independence’s to determine the
network structure. The second class of approaches are the
model selection approaches [2], [3] developed at Stanford
University. Model selection methods are optimization based
methods which search the space of causal structures and
determine the structures ability to describe the data set as
a model score. Model selection methods can be generally
broken down into stochastic search methods and heuristic
search methods.

We present K2GA; a model selection method which pro-
vides several advantages over current techniques by a novel
combination of genetic algorithms and the K2 heuristic.

Section II provides necessary background knowledge and
definitions on Genetic algorithms, Bayesian Networks, and
Bayesian network structure learning. Section III shows the

This work was funded in part by the United States Office of Naval Research
under Contract N00014-02-C-0320

K2GA algorithm and each of its components. Section IV
shows extensions and improvements to the basic algorithm.
Section V gives numerical results for the algorithm. Section
VI compares K2GA to other existing model selection methods.

II. BACKGROUND

The work presented in this paper uses ideas from Genetic
Algorithms, Bayesian Belief Networks, and Bayesian Belief
Network learning algorithms.

A. Genetic Algorithms

In this work we use an elitist genetic algorithm. The genetic
algorithm framework is straightforward and similar to those
found in undergraduate textbooks [4]. Our genetic algorithm
implementation works by defining four components.

• A representation for members of the population. Each
member represents one point in our search space.

• A crossover operator for taking two members of a pop-
ulation as parents and creating a new member, or child,
which inherits traits from its parents.

• A mutation operator for making small changes to a
member of the population.

• A fitness function for evaluating the quality of each
member in the population.

Using these components, we can find optimal members by
following the loop shown in Figure 1. We begin by creating
an initial population of some predefined number of members.
We then enter the cycle by scoring each member using the
fitness function. When each member is scored we allow some
percentage of the highest scoring members to enter the next
population. From these surviving members, we will randomly
pick pairs of members and perform the crossover operation
on them until the culled population is returned to its original
size. Finally, we apply the mutation operation to invoke local
changes on some percentage of the new population. At this
point we can return to the scoring stage.

Each cycle through this genetic algorithm is called a gen-
eration. As we run through the generations the members
which represent the top scoring points in the search space
are recorded. After some number of cycles we return the top
scoring member or members which were found during the
search.

18

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

Fig. 1. A Genetic Algorithm Main Loop

B. Bayesian Belief Networks

We will forgo detailed definitions of BBNs and recommend
that interested readers familiarize themselves with the work of
Pearl [5] and of Sprites, Gylmour and, and Scheines [1]. We
will, however, give some basic definitions which will assist
the reader.

Definition Given a set of random variables X =
{X1, ..., XN}, a Bayesian Belief Network is a structure
which efficiently encodes the joint distribution by exploiting
conditional independence’s among the variables. A BBN is
represented by B = (G,Θ), where G is a Directed Acyclic
Graph (DAG), and Θ = {Θ1, ...,ΘN} represents conditional
probabilities for P (Xi|Πi) , where Πi are the parents of Xi

in G. Using this representation we have P (X1, ..., Xn) =∏N
i=1 P (Xi|Πi)

Throughout this paper we will assume that each variable
in our BBN is discrete. We will also assume the following
definition.

Definition A Topological Ordering ≺ of a set of nodes
{Xi}N

i=1 in a network is an ordering such that ∀i, j, if Xj ∈
Anc(Xi), Xj ≺ Xi, where Anc(X) are the ancestors of X .

C. Learning Bayesian Network Structures from Data

The work described in this paper is a model selection
method grounded in the work of Cooper and Herskovits [2],
and of Heckerman [3]. Given a data set D containing cases
describing the variables X1, ..., XN , we wish to find a DAG
structure which most likely represents the true conditional
independence relationships among the variables.

In a model selection approach to structure learning we will
search the space of all DAGS and score each DAG against
the data set D using a fitness measure. The most commonly
used fitness measure [2], [3], which can be interpreted as the
probability of the data set D given some proposed model
structure G, is shown in (1) with its parameters shown in Table
I.

ri The number of states of variable Xi

qi The number of potential parent configurations of Xi

Nijk The number of cases in D where Xi is in its jth state
and its parents are in their kth state

Nij
Pri

k=1 Nijk

S An equivalent sample size
aijk

S
riqi

aij
S
qi

TABLE I
THE PARAMETERS TO THE BAYESIAN SCORING FUNCTION SHOWN IN (1)

P (D|G) =
n∏

i=1

qi∏
j=1

Γ(aij)
Γ(aij + Nij)

ri∏
k=1

Γ(aijk + Nijk)
Γ(aijk)

(1)

An important feature of equation 1 is the fact that if we
take the log of the score, then the equation reduces to the sum
of the local score at each node. This leads to the concept of
a decomposable scoring function [6].

Definition A scoring criteria S for a DAG G is decomposable
iff S(G) =

∑N
i=1 s(Xi,Πi). Each term in this sum will be

referred to as the local score of the node. Each node and its
parents will be referred to as a local structure.

There have been several model selection methods which
approached the problem of learning a Bayesian Network
structure from data. Methods relevant to this paper include
the K2 heuristic and other genetic algorithm based searches.

1) The K2 Heuristic : The K2 Heuristic described in [2]
takes a data set D and a node ordering ≺, and repeatedly
attempts to add edges oriented in the direction defined by
≺ which will increase the Bayes score. The K2 algorithm
is shown in Algorithm 1.

Algorithm 1 The K2 Algorithm
Require: N > 0, ≺ an ordering of the nodes, D a data set,

M the maximum indegree of a node
for i = 1 to N do

πi = ∅
Pold = score(D,Xi, πi)
oktoProceed = true
while okToProceed && |πi| < M do

let Xj be the node such that Xj ≺ Xi, and Xj 6∈ πi

that maximizes score(D,Xi, πi ∪Xj)
Pnew = score(D,Xi, πi ∪Xj)
if Pnew > Pold then

Pold = Pnew

πi = πi ∪Xj

else
okToProceed = false

end if
end while

end for

19

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

We can see that the K2 Algorithm builds the network score
as the sum of local scores. The K2 algorithm also introduces
another common model selection parameter M , the maximum
number of parents which a node can have. Limiting the number
of parents for each node is a typical approach in modeling
with BBNs. The K2 Algorithm is very powerful if one can
determine the topological ordering of the nodes. Unfortunately,
this is not usually possible.

2) Genetic Algorithm Search: To alleviate the problem of
needing to know the variable ordering in K2, one could apply
a search technique to the space of variable orderings and run
the K2 algorithm repeatedly on each ordering. This technique
was described by Hsu et al. [7].

An alternative approach to model selection using genetic
algorithms is given by Larrañaga et al. [8]. They present two
approaches to model selection. Both approaches search the
space of adjacency matrices. Their first approach assumes a
fixed ordering of the nodes to ensure that each proposed DAG
is acyclic. As in the case of the K2 algorithm, the proper
node ordering can not always be found. Their second approach
searches directed graphs, and uses a repair operator when a
directed graph with a cycle is encountered.

III. K2GA

We now present the K2GA algorithm. K2GA is a genetic
algorithm search which uses a modified version of the K2
heuristic to improve search efficiency. In this section we
present the four components needed to define the genetic
algorithm: member representation, a crossover operator, a
mutation operator, and a fitness function.

A. Member Representation

A member in K2GA is a representation of a DAG structure.
We will use the following representation for DAG Struc-

tures. Let X = {X1, ..., XN} be a set of variables. Let
Θ = {Θ1, ...,ΘN} be a set of real numbers such that ∀i,Θi ∈
[0, 1] and ∀i, j Θi 6= Θ. Let B ∈ {0, 1}N×N be a binary
adjacency matrix such that Bij = 1 iff Xi and Xj have a
parent/child relationship in either order in the DAG. Note that
B is symmetric.

Using the definition of topological ordering, and ≺ to define
that ordering, we let Θi < Θj iff Xi ≺ Xj . Then using Θ and
B, we can define a DAG as G = (B,Θ). Then for G = (B,Θ),
Xi is a parent of Xj iff Θi < Θj and Bij = 1.

Using G = (B,Θ) we can represent any DAG structure, and
∀(B,Θ) it must be true that G = (B,Θ) represents a correct
DAG structure with no cycles.

B. Crossover

Breeding two members G(0) and G(1) to create a child G(c)

involves breeding the Θ’s and the B’s. Since we are breeding
members which have been scored, we can use the score of
graph G, call it σ(G), in this operation.

Since the Θ vectors have been normalized, and are on the
same scale, we can compute the Θ vector for the child as the

weighted average of the parents Θ vectors.

Θ(c)
i =

σ(G(0))Θ(0)
i + σ(G(1))Θ(1)

i

σ(G(0)) + σ(G(1))
(2)

To compute B(c), we will let p = σi(G(0))
σi(G(0))+σi(G(1))

and use
Equation (3) to determine B(c), where Bi is the ith row of the
adjacency matrix. We then must fill B to symmetry.

B(c)
i =

{
B(0)

i if random(0, 1) ≤ p

B(1)
i if random(0, 1) > p

(3)

During the execution of Algorithm 5 we can create the
breedMembers(P, size) routine by repeatedly selecting 2
members from the initial population, and applying Equations
(2) and (3) to create children until the size of the initial
population and the new children equals the size parameter.

C. Mutation

There are 2 steps to mutating a DAG G = (B,Θ). First we
mutate Θ, then we mutate B.

The mutation operation in K2GA has a very important and
interesting parameter, the connection probability matrix. The
connection probability matrix is an N×N matrix C where Cij

represents the belief that Xj is a good parent/child connection
for Xi. We restrict C such that

∑N
j=1 Cij = 1.

The most basic C which one could use is shown in (4).
In this case each node has an equal probability of undirected
connection to each other node.

Cij =
{

1
N−1 if i 6= j

0 if i = j
(4)

We will use this C to perform mutation on B through
a weighted roulette wheel approach. Using our connection
probability matrix C, where Cij is a probability that Xj will
be added to B when we are connecting nodes to nodes Xi,
Algorithm 2 can be used to make local changes to B. As we
will see when discussing the scoring function, our mutation
operation only needs to add edges to B.

Algorithm 2 The mutate operator for B
Require: B the initial adjacency matrix, and C the connection

probability matrix, and maxNewConnections the maxi-
mum number of connections that any node can have.
for i = 1 to N do

numConnections = randomInt(0, maxNewConnections)
for k = 1 to numConnections and B contains at least
one 0 in a non-diagonal do

pick a j using weighted roulette wheel and ignoring
all j where Cij = 1.
Bij = Bji = 1

end for
end for

Our mutate operator for Θ is easy, we will make local
changes in each Θi, as shown in Algorithm 3.

20

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Algorithm 3 The mutate operator for Θ
Require: L ∈ (0, 1) a bound on the magnitude of the move.

for all Θi ∈ Θ do
s = L

|Θ|
Θi = Θi + random(−.5, .5) ∗ s

end for

This function will make local changes in each Θi, therefore
changing the topological order of the variables when they cross
values.

Applying these operations guarantees that we can reach any
DAG as long as ∀i, j ≤ N,Cij 6= 0. If we wish to restrict
some nodes Xi and Xj from being connected (either by
preprocessing or by user input), then we simply make Cij = 0
and ensure that no member of the initial population has that
connection.

During the execution of Algorithm 5 we can create the
mutateMembers(P, prob, C) routine by selecting each mem-
ber of the population with probability mutateProbability,
and applying Algorithms 2 and 3 to the selected members.

D. Fitness

The final component to our genetic algorithm is the fitness
function. To compute the fitness of a member we will use a
modified version of the K2 algorithm. Given a node ordering,
the K2 algorithm [2] finds a DAG which maximizes the score
in Equation 1 by attempting to add edges in the direction
given by the ordering and only keeping edges which cause a
increase in the score. Our modified K2 algorithm, shown in
Algorithm 4, begins with a DAG pattern and applies the K2
process to find an optimal sub-DAG while only attempting to
add edges which exist in the original DAG. Thus the result of
the algorithm is a DAG which contains a subset of the edges
from the original DAG, and a score for this new sub-DAG.

Using the modified K2 Algorithm to score members, a
member can modify its state to increase its score. This presents
an interesting twist over other algorithms. After scoring, the
members new “self-optimized” representation is the one used
in future generations!

E. K2GA as a Genetic Algorithm

Using the components described above, we use Algorithm
5 as our final model selection algorithm. This algorithm
describes the GA process shown in Figure 1.

IV. K2GA ENHANCEMENTS

Beyond the basic K2GA algorithm, there are some optional
enhancements to decrease solve time or increase model quality.

A. Local Score Caching

Due to the modified K2 algorithm’s use of a decomposable
scoring function, model scores are sums of local scores. Local
structures which produce high scores will occur frequently in
our search, especially in later generations. In our implemen-
tation we keep a cache of local scores. At the end of each

Algorithm 4 The Modified K2 Algorithm
Require: N > 0, ≺ an ordering of the nodes, B an adjacency

matrix such that Bi,j = 1 iff Xi can be connected to Xj ,
D a dataset, M the maximum indegree of a node
for i = 1 to N do

πi = ∅
Pold = score(D,Xi, πi)
oktoProceed = true
while okToProceed && |πi| < M do

let Xj be the node such that Bi,j = 1, Xj ≺ Xi, and
Xj 6∈ πi that maximizes score(D,Xi, πi ∪Xj)
Pnew = score(D,Xi, πi ∪Xj)
if Pnew > Pold then

Pold = Pnew

πi = πi ∪Xj

else
okToProceed = false

end if
end while
for all Xi such that Bi,j = 1, Xj ≺ Xi, and Xi 6∈ πi

do
Bi,j = 0

end for
end for

Algorithm 5 The K2GA algorithm
Require: D the data set of cases to build from,

numGenerations > 0, populationSize > 0,
cullrate ∈ (0, 1), mutateProbaility ∈ (0, 1), M
the maximum indegree of a node
C = makeConnectionProbMatrix(D)
P0 = ∅
for k = 1 to populationSize do

P0 = P0 ∪makeNewRandomMember()
end for
for gen = 1 to numGenerations do

scorePopulation(D,Pgen,M)
Pgen+1 = cullGeneration(Pgen, cullRate)
Pgen+1 = breedMembers(Pgen+1, populationSize)
Pgen+1 = mutateMembers(Pgen+1,mutateprobability, C)

end for

generation, we can pass through the cache and remove cached
scored which did not occur frequently. Reading the scores from
a cache is much faster than computing Equation 1, since we
need to pass through the data each time we compute this score.

B. Heuristic Connection Probability Matrix

It is possible to use a heuristic method for setting the
connection probability weights. One useful heuristic is to com-
pute Mutual Information [9] scores between the variables and
normalize the results. Using this as a preprocessing step will
search more structures with highly informative connections.

Other methods to initialize this matrix could come from
the work of Friedman and Koller [10] and expanded upon

21

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

by Koivisto and Sood [11], who have developed methods to
compute the probability that a given feature (i.e. edge) would
be present in a BBN based on a data set.

C. Adaptive Connection Probability Matrix

In each generation, many structures are considered and
scored. In order to use this as feedback to help guide our
search, we can use this information to help adapt our connec-
tion probability matrix for the next generation. If two edges
were connected in a DAG which received a high score, the
probability of them being connected in future structures should
be increased, and alternatively edges in low scoring local
structures should be punished.

Algorithm 6 can be added at the end of the member scoring
step to perform this update.

Algorithm 6 The algorithm to adapt the connection probability
matrices
Require: Initial learning rate ν0, final learning rate νMAX ,

connection probability matrix for the last generation C(k),
the maximum number of generations kMAX

for i = 1 to N do
for j = 1 to N do

Âij = sum of member scores where Xi and Xj were adjacent
number of terms in this sum

end for
end for
for i = 1 to N do

for j = 1 to N do
Aij = ÂijPN

j=1 Âij

end for
end for
ν(k) = ν0(νMAX

ν0)(
k

kMAX
)

for i = 1 to N do
for j = 1 to N do

Ĉ
(k+1)
ij = C

(k)
ij ∗ (1− ν(k)) + Aij ∗ ν(k)

end for
end for
for i = 1 to N do

for j = 1 to N do
C

(k+1)
ij =

Ĉ
(k+1)
ijPN

j=1 Ĉ
(k+1)
ij

end for
end for

V. NUMERICAL RESULTS

In this section we will evaluate the performance of K2GA
using four standard data sets: two generated from the well
known Asia and Alarm networks and two available from the
UCI machine learning repository [12].

• 10000 cases generated from the Alarm network, a 37
node network from the health care domain used for
monitoring patients in intensive care which was used as
a benchmark by Cooper and Herskovits [2].

• 10000 cases from the Asia Network, and 8 node network
used by Lauritzen and Spiegelhalter to demonstrate their
inference algorithm [13].

• The mushroom data set from the UCI machine learning
repository [12]. This dataset consists of 23 variables
and 8124 cases. The data set consists of 22 features of
mushrooms and 1 variable determining if the mushroom
is poisonous or not.

• The Microsoft anonymous web access data set from
UCI contains 292 variables and 32711 cases [12]. Each
variable represents a vroot on the Microsoft web site,
and each case recorded the vroots that a user visited in
a session on the site. We use the variant also used by
Chickering [6], which consists of all of the cases and the
50 most active variables.

For each data set, we will apply K2GA ten times, five using
an adaptive connection probability matrix and five without
adaptation. We will show the Bayes Score (1) over time for
each data set, and discuss the convergence. For the generated
data sets where a ground truth is known, we will analyze the
graph errors in the learned structures. We will also show the
benefit of caching local scores and demonstrate the use of an
adaptive connection probability matrix.

For each of the runs we will hold fixed the following
parameters: 200 GA members, 50 generations, 50% of mem-
bers culled each generation, 40% of members mutated per
generation, 3 maximum parents per node, .05 initial learning
rate, .1 final learning rate. We will also use the standard initial
connection probability matrix shown in (4).

A. Convergence

Figures 2 and 3 show how the Bayes score converges
over generations with and without an adaptive connection
probability matrix. For a smaller network like Asia the scores
converged to that of the gold standard network quickly with or
without adaptation. In contrast, the worst score for the Alarm
network with adaptation was better than the best score for the
Alarm network without adaptation.

Table II shows the graph errors for the two networks where
a ground truth network was known for each of the five adaptive
runs. The score of the Asia network which had one edge error
reversed was within machine precision of the score of the
true network. The alarm network has 37! node orderings and
an exponential number of skeletons, therefore the number of
graph errors shown in Table II is very small in comparison.

B. Adaptation

Table III shows an example of the final connection prob-
ability matrix for a run of K2GA in the Asia data set. The
bold face numbers represent edges which exist in the original
generating network, shown in Figure 4. This supports our
claim that the nodes which are truly connected in the net-
work have larger probabilities of being connected during the
search, while ensuring that any two nodes have a reasonable
probability of being connected. Using adaptation no potential

22

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

(a) Asia (b) Alarm

(c) Microsoft (d) Mushroom

Fig. 2. The Bayes Scores over time for 5 runs of the example data sets without an adaptive connection probability matrix

(a) Asia (b) Alarm

(c) Microsoft (d) Mushroom

Fig. 3. The Bayes Scores over time for 5 runs of the example data sets with an adaptive connection probability matrix

23

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Visit Asia Tuberculosis Smoking Cancer TbOrCa XRay Bronchitis Dyspnea
Visit Asia .871 .0103 .0818 .00164 .0155 .0114 .00816

Tuberculosis .424 .0581 .167 .113 .154 .0108 .0737
Smoking .0051 .0596 .320 .0512 .0699 .3 .195
Cancer .0397 .175 .312 .166 .13 .11 .0671
TbOrCa .00068 .107 .0422 .149 .366 .14 .195
XRay .00775 .173 .0685 .138 .443 .0704 .0989

Bronchitis .00556 .0114 .293 .111 .171 .0654 .343
Dyspnea .00394 .0776 .188 .0662 .234 .0937 .336

TABLE III
THE FINAL CONNECTION PROBABILITY MATRIX FOR AN ADAPTIVE SOLVE OF THE ASIA DATA SET

Fig. 4. The true structure of the Asia network

Asia
trial # reversed # missing # extra

1 0 0 0
2 1 0 0
3 0 0 0
4 1 0 0
5 1 0 0

Alarm
trial # reversed # missing # extra

1 7 31 19
2 4 33 29
3 7 32 26
4 5 31 24
5 6 33 29

TABLE II
EDGE GRAPH ERRORS FOR ASIA AND ALARM ON EACH RUN

graph structures are eliminated from the search, but the search
is guided towards the best structures.

C. Caching

Table IV shows the benefit of caching local scores. While
caching has no effect on the search algorithm, it does have
a significant effect on running time. While scoring the Alarm
network, 97.3% of the local scores were pulled from the cache.
While scoring the Mushroom network, 97.8% of the local
scores were pulled from the cache. This represents a huge
speed increase over recomputing those local scores, at the cost
of a relatively small amount of memory.

Alarm
trial # local scores # from cache

1 1361356 1325017
2 1374649 1337228
3 1379371 1341223
4 1382948 1346861
5 1367617 1330671

Mushroom
trial # local scores # from cache

1 1063521 1041366
2 1066981 1045066
3 1066239 1043945
4 1072192 1048232
5 1070833 1046588

TABLE IV
COMPARING THE NUMBER OF LOCAL SCORES VERSUS THE NUMBER

PULLED FROM THE SCORE CACHE

VI. COMPARISON TO RELATED METHODS

We are now able to summarize the key differences between
K2GA and other common model selection techniques.

Although genetic algorithms for model selection have been
used in the past, K2GA presents several advantages over
previous methods. The work of Hsu [7] searches topological
orderings of variable and applies a full K2 algorithm at each
ordering. A full K2 search is much less efficient than the
modified K2 algorithm. The genetic algorithm of Larrañaga
[8] searches both orderings and skeletons, but does so in

24

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

a way that can allow illegal structures requiring a repair
operator before scoring. K2GA’s member representation, use
of a modified K2 algorithm, and score guided breeding and
mutation represents a significant improvement over these pre-
vious genetic algorithms.

Hill climbing searches are a common technique for learning
the structure of Bayesian networks [14]. A hill climbing
search begins with a Bayesian network structure Gk, and
performs a series of edge additions, deletions, and typically
some edge reversals to find the neighbors of Gk, then applies
the operation which resulted in the highest scoring neighbor to
produce Gk+1. This is continued until no neighbors produce
a higher score. These methods are very simple but often get
trapped in local optima.

Christopher Meek’s 1997 thesis [15] addressed some of
the problems with greedy search. Meek presented a 2 stage
search algorithm, the first consisting of a sequence of edge
additions and removals, and the second consisting of a series
of edge deletions, each of which were chosen in such a way
to avoid local optima. K2GA can be seen as a parallel to
this idea where each generation performs a series of additions
and reversals, then deletions. Each crossover and mutation
adds and reverses edges. Each time a structure is scored the
modified K2 algorithm removes edges.

Max Chickering’s extension of the work of Meek [6], [16]
provides a major improvement to Meek’s greedy search algo-
rithm. Chickering presents GES, an algorithm which searches
the space of Markov equivalence classes of Bayesian networks
rather than the space of all DAG’s.

The work of Meek and Chickering represents a significant
contribution to model selection. Future extensions of K2GA
will extend many of the concepts developed by Meek and
Chickering in our genetic algorithms based framework.

VII. CONCLUSIONS

The algorithm which we have presented makes several new
contributions to automated model selection.

• K2GA searches the topological ordering and adjacency
matrix simultaneously

• Since K2GA members cannot contain cycles, no repair
operator is needed

• The breeding function is guided by structure score
• The self optimized members are used in future genera-

tions
• A heuristic connection probability matrix can be used to

guide the search
• An adaptive connection probability matrix can be used to

decrease time to convergence

These new concepts make K2GA both a viable model
selection algorithm and an important extension to current
research.

REFERENCES

[1] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction,
and Search, Second Edition (Adaptive Computation and
Machine Learning). The MIT Press, 2001. [Online]. Available:
http://www.amazon.fr/exec/obidos/ASIN/0262194406/citeulike04-21

[2] E. Herskovits and G. Cooper, “Kutató: An entropy-driven system for
construction of probabilistic expert systems from databases,” in Pro-
ceedings of the 6th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-91). New York, NY: Elsevier Science Publishing
Company, Inc., 1991.

[3] D. Heckerman, “A tutorial on learning with bayesian
networks,” Microsoft Research, Redmond, Washington, Tech.
Rep., 1995, revised June 96. [Online]. Available: cite-
seer.ist.psu.edu/article/heckerman96tutorial.html

[4] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Pretince Hall, 1995.

[5] J. Pearl, Causality. Cambridge Universtiy Press, 2000.
[6] D. M. Chickering, “Learning equivalence classes of bayesian-network

structures.” Journal of Machine Learning Research, vol. 2, pp. 445–498,
2002.

[7] W. H. Hsu, H. Guo, B. B. Perry, and J. A. Stilson, “A permutation
genetic algorithm for variable ordering in learning bayesian networks
from data,” in GECCO ’02: Proceedings of the Genetic and Evolutionary
Computation Conference. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2002, pp. 383–390.

[8] P. Larrañaga and M. Poza, “Structure learning of bayesian
networks by genetic algorithms: A performance analysis of
control parameters,” IEEE Journal on Pattern Analysis and Machine
Intelligence, vol. 18, no. 9, pp. 912–926, 1996. [Online]. Available:
citeseer.ist.psu.edu/larranaga94structure.html

[9] C. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, 1948.

[10] N. Friedman and D. Koller, “Being bayesian about network structure,” in
Proceedings of the 16th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-00). San Francisco, CA: Morgan Kaufmann, 2000,
pp. 201–2.

[11] M. Koivisto and K. Sood, “Exact Bayesian structure
discovery in Bayesian networks,” Journal of Machine Learning
Research, vol. 5, pp. 549–573, 2004. [Online]. Available:
citeseer.ist.psu.edu/koivisto04exact.html

[12] C. B. D.J. Newman, S. Hettich and C. Merz, “UCI repository
of machine learning databases,” 1998. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[13] S. Lauritzen and D. Spiegelhalter, “Local computation with probabilities
in graphical structures and their applications to expert systems,” Journal
of the Royal Statistical Society, 1988.

[14] R. E. Neapolitan, Learning Bayesian Networks. Prentice Hall, 2004.
[15] C. Meek, “Graphical models: selecting causal and statistical models,”

Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, PA, 1997.
[16] D. M. Chickering, “Optimal structure identification with greedy search,”

Journal of Machine Learning Research, vol. 3, pp. 507–554, 2002.

25

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

