Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Extracting Borderline Associations

Wei Kian Chen, Dustin Baumgartner and Ryan Millikin
Department of Electrical & Computer Engineering and Computer Science
T.J. Smull College of Engineering
Ohio Northern University
Ada, Ohio 45810
Email: w-chen@onu.edu, d-baumgartner @onu.edu, r-millikin@onu.edu

Abstract— In this paper, we present an extension of the well known
algorithm for association mining, Apriori. This extended algorithm,
ApriorBL, considers associations between items which occur together
— focusing solely on the borderline cases. These borderline cases
occur often enough to provide valuable information; however, there
are currently no algorithms that target them. We discuss how the
AprioriBL algorithm works and present a comparative analysis of
Apriori and AprioriBL.

I. INTRODUCTION

Data mining is a technique developed to look into large
datasets for implicit, previously unknown, and potentially useful
information [4]. Association mining is one of the many data
mining techniques where relationships within the data are the
extracted information. Most association mining techniques focus
on relationships that have a high frequency of occurrence. How-
ever, less obvious but valuable information may be lost along
the borderline between frequent and infrequent relationships. For
instance, frequent relationships among items at a grocery store
may already be utilized, but the less frequent relationships can
still be used to increase revenue. We developed an extension to the
Apriori algorithm, Apriori Borderline, AprioriBL, which targets
these relationships. In the following sections, we explain how the
Apriori and AprioriBL algorithms work, along with an illustration
of each. Next, sample applications of AprioriBL are given. Then,
we introduce the testing environment and explain the tests that
were run, followed by an analysis of two test cases that display
the various observed trends in our results.

II. BACKGROUND

In order to understand how to utilize association mining, the
terminologies used for the process must first be understood. These
terminologies are as follows [1]:

o I ={iy,ia,...,9n } represents the set of all items that appear
in the dataset.

o T = {t1,ts,...,t, }, which represents a set of transactions.
Each transaction ¢ is a set of items, such that ¢ C 1.

« D represents a dataset, which is the set of transactions, 7'.

« An itemset is a set of items occurring together on the same
transaction. A k-itemset refers to a set with k items.

o S represents the support, which is the lowest percentage
of transactions in the dataset on which an itemset must
occur. The user-specified support value for the system is the
minimum support threshold. Any itemset that satisfies the
minimum support threshold is known as a frequent k-itemset.

o L; represents a list, which is composed of frequent k-itemsets
and their supports.

1-4244-0705-2/07/$20.00 ©2007 IEEE

26

o () represents a candidate set, which is a list of k-itemsets
that may exist in the dataset. These k-itemsets are derived
from Lj_1.

A. Apriori

A classic algorithm commonly used for association mining is
Apriori. Led by Rakesh Agrawal, Apriori was developed in 1993
at the IBM Almaden Research Center as a fast way to mine
associations between items. This algorithm generates all possible
frequent itemsets through multiple passes over the data. The first
pass calculates the support for each individual item, which is
used to determine frequent l-itemsets, L;. Subsequent passes
start with Ly as a seed for generating new, potentially frequent
candidate itemsets, Ck,1. Each candidate itemset is a unique
combination of two itemsets in Lj. All k-subsets of an itemset
in Cj+1 must exist in Ly. The support for each candidate itemset
is calculated during the next pass over the data, resulting in all
frequent k + 1-itemsets, Lj1. This list is then used as a seed
for the next generation of frequent-itemsets, which continues until
no more candidate itemsets can be generated. Since each pass of
the algorithm depends on the frequency at which itemsets occur,
choosing a proper support value is essential. This support value
varies according to the dataset [2].

B. Apriori Algorithm

In this section the pseudocode for the Apriori algorithm is given
[2]. Initially, C; is populated with all unique 1-itemsets found
by passing through the dataset. Itemsets in C} are trimmed if
they have a frequency less than S. This trimmed set contains the
frequent itemsets, Ly, and is output. Before the next iteration,
Cr+1 is generated. The pseudocode of the algorithm is:

Cp = {1—itemsets };
for (k = 1; Cp Z¢; k++)
Ly = TrimUnsupported (Cy);

PrintApriori(Lg);
Cr4+1 = AprioriGen (Lg);

The TrimUnsupported function loops through all the trans-
actions in the dataset to count the frequency of the itemsets in
C. When an itemset is found, its counter is incremented. After
the traversal is complete, only those itemsets whose frequency is
greater than or equal to S are added to Lj. The pseudocode for
TrimUnsupported is:

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

// Loop through transactions
foreach transaction t€ D
// Loop through candidate
foreach itemset ¢ € Cy
if (¢Ct) then
i.count+4+4;
Ly = {i€Cg|i.count > S}

itemsets

The AprioriGen function checks each itemset in L for other
itemsets that differ only by the last item. The itemsets found
are joined together to form candidate itemsets. After the pass
through Ly is finished, the possible candidate sets are pruned.
The pseudocode for AprioriGen is:

// Loop through seed itemsets
foreach itemset i€ Ly
// Loop through subsequent seed itemsets
foreach itemset j € L, where
¢.item; = j.itemqp, ...,
i.itemyg_o = j.itemg_o,
i.itemy_q < j.itemg_1
add itemset 4.itemyp, ..., ¢.itemp_1,
j.itemg_q1 to Cryr;
PruneCombinations (Cgx41);

The PruneCombinations function removes unfeasible item-
sets from the possible candidates, Cx11. An itemset is unfeasible
when any of its k-subsets does not exist in L. If a subset is
not found in Ly, then that subset has a frequency less than S.
Therefore, any of its supersets will not have the proper support.
The pseudocode for PruneCombinations is:

// Loop through possible candidate itemsets
foreach itemset i€ Ciyq
// Loop through subsets of the itemset

foreach k—subset s of ¢
if s¢ Ly then
remove ¢ from Cpyq;

C. Apriori Illustration

Let us consider the following example in Fig. 1 to illustrate the
Apriori algorithm. Assume there are four items available in a store:
milk, bread, butter, and cheese. For simplicity of illustration, these
items are represented numerically as 1, 2, 3, and 4, respectively.
Assume that the dataset is composed of five transactions occurring
over a short period of time. Also, let the minimum support
threshold, S, be 60%. Since this is a rather small example, the
minimum support is expressed as the exact count, which is 3.

All frequent 1-itemsets are generated based on the support value
when Apriori makes its first pass over the dataset. All items, except
for item 3, satisfy the minimum support threshold; therefore, L, is
{{1}, {2}, {4}}. C; consists of all possible candidate 2-itemsets
and their supports. None of the candidate 2-itemsets are removed
because all the 1-subsets exist in L;. However, the trimming of
infrequent 2-itemsets removes the candidate 2-itemset {2, 4} based
on its support. The result is Ls. The only possible candidate 3-
itemset is {1, 2, 4}; however, the subset {2, 4} does not exist in
Ls. Therefore, {1, 2, 4} is unfeasible and Cj5 is not generated.
Since C3 = ¢, the algorithm terminates.

27

Dataset |}
Transaction Items Ttemset Support
100 1234 11}]
200 12 12} 3
300 124 14} 3
400 14
500 1
Ca L
Itemset Support Itemset Support
{1,2} 3 {1,2} 3
11, 4} 3 11, 4} 3
12, 4} 2

Fig. 1. Illustration of Apriori using five transactions.

ITII. APRIORIBL

There are itemsets that occur at the borderline of the minimum
support threshold. As subsequent iterations of Apriori are per-
formed, these itemsets are unlikely to provide combinations that
will have sufficient support for continued generation; however, they
could still provide useful information. Borderline itemsets have
various business applications in which revenue can be increased
[3]. These itemsets are the focus of our algorithm, AprioriBL. In
contrast to Apriori, only itemsets with frequency within a specified
range are reported. The range, R, is defined as S + 6, where 0 is
the maximum deviation from the user-specified support value. All
k itemsets with a frequency S — 6, the minimum support threshold
for AprioriBL, or greater are placed in a seeding pool, P. P is
used for the next candidate itemset generation. P is similar to the
L of Apriori, except that its minimum support threshold is S — 6
rather than S. Since each pass of the algorithm depends on the
frequency at which itemsets occur, choosing a proper support and
range is essential. These values vary according to the dataset.

A. AprioriBL Algorithm

To implement AprioriBL, two changes to the Apriori algorithm
provided in Section II-B are required. The first change converts
Print Apriori to Print AprioriBL. Itemsets from P} that occur
between S — 6 and S+ 6 times are output, rather than the itemsets
which occur more often than or equal to S times. The second
modification effects the TrimUnsupported function. Once the
frequency for all itemsets in C, is obtained, only itemsets whose
frequency is greater than or equal to S — 6 are added to Py. The
resulting pseudocode for TrimUnsupported is:

// Loop through transactions
foreach transaction ¢
// Loop through candidate
foreach itemset i€ Cg
if (¢ Ct) then
i.count++;
P, = {t€Cy|i.count > S —0}

itemsets

B. AprioriBL Illustration

The same example dataset used to illustrate Apriori in Fig. 1
is used again to illustrate AprioriBL in Fig. 2. Let us assume that
S =60% (3) and 0 = 20% (1).

On the first pass through the dataset, all 1-itemsets that satisfy
the minimum support threshold, S — 6, are generated and placed
into P1, {{1}, {2}, {4}}. All of these itemsets that fall within the
range, 3+1, are reported as AprioriBLy, {{2}, {4}}. The itemset

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Dataset P AproriBLy
Tranzaction | Ttems Itemset | Support Itemset Support
100 1234 11} 5 12} 3
200 112 12} 3 {4} 3
300 124 {4} 3
400 14
00 1
Ca Pa AptionBLy
Ttemaet Support Ttemset | Suppott Itemset Support
11, 2} 3 11, 2} 3 11, 2} 3
11, 41 3 11, 41 3 11, 41 3
12, 41 2 12, 41 2 12, 4} 2
s Pz AprioriBLs
Ttemset Support Itemset Support Itemset Support
i1, 2,4} 2 i, 2,4) 11,2, 4} 2
Fig. 2. Tllustration of AprioriBL with the dataset used for the Apriori.

{1} does not appear in AprioriBLy; however, it is used to seed Cs
because it is in P;. Notice that none of the candidate 2-itemsets are
removed because all the 1-subsets exist in P;. All these itemsets
satisfy the minimum support threshold and are within the range,
so they appear in Py and AprioriBLs. For Cs, the itemset {I,
2, 4} is generated because all of its 2-subsets exist in P,. This
itemset appears in both P; and AprioriBLs because it occurs
as often as the minimum support threshold; however, the regular
Apriori algorithm disregarded this potentially useful information.
There is only one itemset in P3, so Cy cannot be generated and
the algorithm is complete.

C. Apriori vs. AprioriBL

AprioriBL is an extension of Apriori that extracts borderline
associations. Itemsets generated by AprioriBL can be equivalently
obtained by performing exclusive disjunction on two iterations of
Apriori using minimum support thresholds of S — 6 and S + 6.
However, this approach is much more costly in terms of execution
time. Not only is executing Apriori twice not desirable, but another
algorithm would also have to be created to find the exclusive
disjunction. Thus, the ability to extract the borderline associations
with one run is a more reasonable approach.

IV. APPLICATIONS

Since AprioriBL provides a different view of a dataset than
Apriori, it can be used to further improve the profit of a business.
In the following sections, several applications of AprioriBL are
discussed [3].

A. Grocery Store

A common application of association mining is evaluating
the sales at a grocery store. Each customer purchases a set of
items, which is added to the dataset as a transaction. Finding
associations between items commonly purchased together would
prove a valuable marketing tool for increasing sales. For example,
let an itemset be {milk, bread, butter} and assume its support
is 25%. These three items have a strong association; therefore,
they can be used to increase revenue. Placing displays of bread
and butter near milk or discounting one of the items may further
increase the occurrence of this itemset, in effect increasing overall
sales.

28

Typical association mining looks for itemsets that satisfy the
minimum support threshold, most of which are known by an
experienced grocer. However, the itemsets at the borderline may
not be known but could still be useful. AprioriBL is designed in
this manner, to offer alternatives that help a grocer improve sales.
Another application closely related to this example is a virtual
shopping cart used for e-commerce. When a customer adds an
item to their cart, other associated items can be suggested for
purchase. Targeting the pricing and marketing of borderline cases
as an alternative to strictly highly associated itemsets will help to
further increase sales.

B. Risk Assessment

Insurance companies use risk assessment for determining which
customers they should provide coverage to and for calculating
those customers’ premiums. A lower risk customer will usually
be charged a lower premium because they are less likely to file a
claim. Car insurance customer characteristics such as age, driving
history, and the type of car are associated with the amount of risk
involved in providing coverage. Typical association mining can be
used to target customers below a certain amount of risk, giving
the insurance company favorable customers. If the borderline cases
are considered, more precise characteristics can be obtained and
the risk of customers can be better defined. This would allow
an insurance company to improve their computational methods
for premiums of customers with moderate risk who may not
have normally been insured. With these additional customers, the
company will be able to generate more revenue.

V. EXPERIMENT ENVIRONMENT
A. Platform

We developed the Apriori and AprioriBL algorithms using C++.
The testing platform was a Linux environment with the 2.6.18-
1.2200.fc5 kernel, a Pentium D 3.20 GHz dual core processor,
and 4 GB of primary memory.

B. Quest Data Generator

The Quest data generator was used for creating test cases. Quest
was developed by Agrawal and the IBM group and is a widely
used and accepted tool for simulating real world datasets. Data
generation is based on two phenomena that commonly occur in
real datasets. First, different frequent itemsets often have items in
common, which is caused by the existence of higher order itemsets
that may or may not have proper support. Secondly, not all items
from a frequent itemset will always occur together; for example,
some people may only buy two items from a 3-itemset because
they do not need the third item [2].

Data generation using Quest is based on several parameters,
which are defined in Table I. The standard naming convention
for Quest generated datasets is Ta.NSK.DyK.dat, where the
values of 3 and 7 are in thousands. For example, a dataset

TABLE 1
DIFFERENT VARIABLES USED IN THE QUEST DATA GENERATOR.

Variable | Meaning Default Values
T Average number of items per transaction | 10
N Number of items 100
D Number of transactions 1,000

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

T20.N20K.D10K : Support = 0.35%
2500 : : . : : :

Apriori
——g— AprioriBL F{‘
—4— AprioriBL R, |

2000

1500 - 1

Itemset Count

1000 - 1

500 1

ol i i i i i
1 2 3 4 5 6 7 8 9

Size of itemset (k)

3

Fig. 3. Graphical illustrations of the results from Apriori and AprioriBL.

created with the default values listed in Table I would be named
T10.NO.1K.D1K.dat.

VI. TEST AND ANALYSIS
A. Datasets and Parameters

Three datasets were created to test the usefulness of the Apri-
oriBL algorithm. All have a T value of 20, because grocery stores
commonly use this number as a break point between express
lanes and regular lanes. One dataset, T20.N10K.D10K, is dense
such that the transaction to item ratio is one. The other datasets,
T20.N10K.D5K and T20.N20K.D10K, are sparse with a lower
transaction to item ratio. The Apriori algorithm processed these
datasets with multiple support values. AprioriBL. was executed
using corresponding support values and various ranges. The fol-
lowing section provides an analysis of the T20.N20K.D10K dataset
using a minimum support threshold S = 0.35% and maximum
deviations 07 = 0.05% and 05 = 0.10%. This yields ranges of R
=0.35% £ 0.05% and Ry = 0.35% =+ 0.10%, respectively. All the
test cases show similar dynamics governing the change of itemset
count as k increases; however, this particular set of cases displays
the various observed trends.

B. Analysis

The graph in Fig. 3 depicts the results of Apriori and AprioriBL.
The graph’s independent axis displays the size of the itemsets, &,
and the dependent axis displays the itemset count. There are two
interesting points to note on the graph.

The first, most obvious, observation is the drastic drop in
count from I-itemsets to 2-itemsets. Many single items occur
more frequently than the minimum support threshold; however,
combinations of these, the 2-itemsets, have a much lower proba-
bility of occurring. Thus, many itemsets will not have sufficient
support. In general, as k increases the itemset count decreases.
However, the itemset counts actually increase for each case from
2-itemsets to 3-itemsets. This second observation is quite apparent
in AprioriBL Rs. Here, the increase could be caused by 2-itemsets
that were above the range producing 3-itemsets that fall into the

{12134} — {{1.21{1.31.{1.4},{2.3}.{24}.{34}}

Fig. 4. Four l-itemsets can create six 2-itemsets if each has proper support.

29

TABLE II
RESULTS OF ALGORITHMS: S = 0.35% AND 6 = 0.05% (APRIORIBL Rj).

k-itemset | Apriori | Intersection | AprioriBL
1 1287 549 571
2 72 183 355
3 29 227 315
4 8 256 228
5 1 209 184
6 0 100 164
7 0 20 112
8 0 0 46
9 0 0 10
10 0 0 1

range. AprioriBL R; did not show such a drastic increase, which
may be caused by its smaller range. The 2-itemsets above R
could produce 3-itemsets which are within Ry but below R;. This
“trickle down” effect can be used explain the moderate increase
in the itemset counts for AprioriBL R; and the larger increase
for AprioriBL R,; however, this is not the case with Apriori. The
subtle increase shown in Apriori can only be attributed to the
combinatorial nature of the algorithm. Fig. 4 displays an example
where 1-itemsets generate a larger number of 2-itemsets, assuming
at least five of the 2-itemsets are properly supported.

Another representation of the data is given in Table II for
AprioriBL R; and Table III for AprioriBL Ry. The four columns
on the tables are k-itemset, Apriori, Intersection, and AprioriBL.
The k-itemset column contains the size of the itemsets for each
row. The remaining columns contain the quantity of itemsets which
belong to only Apriori, both Apriori and AprioriBL, and only
AprioriBL, respectively. For example, of all the 3-itemsets in
Table III, 8 are unique to Apriori, 248 satisfy both Apriori and
AprioriBL, and 1205 are unique to AprioriBL.

This tabular view of the data gives an alternative perspective.
Each column indicates a different set of characteristics for its
itemsets, as shown in Table IV. These columns can be compared
relative to each other. Apriori is frequent and has high support, the
intersection is frequent but has moderate support, and AprioriBL
is infrequent but has moderate support.

Table III shows that there are very few highly supported 2-
itemsets and 3-itemsets that are uniquely generated by the Apriori
algorithm. There are significantly more moderately supported
itemsets from the intersection and AprioriBL. Furthermore, of
these moderately supported itemsets, many more are infrequent

TABLE IIT
RESULTS OF ALGORITHMS: S = 0.35% AND 6 = 0.10% (APRIORIBL R2).

k-itemset | Apriori | Intersection | AprioriBL
1 982 854 1303
2 30 225 1077
3 8 248 1205
4 0 264 1119
5 0 210 887
6 0 100 587
7 0 20 301
8 0 0 104
9 0 0 21
10 0 0 2

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

TABLE 1V
CLASSIFICATION OF ITEMSETS BASED ON FREQUENCY.

Apriori S+60tol
Intersection StoS+6
AprioriBL S—60toS

Low Support | 0to S —6

than frequent. Although infrequent itemsets are not as tightly
associated as frequent itemsets, this large increase allows more
options and alternatives to be explored by users of the data.
Since AprioriBL produces a large number of small itemsets, this
allows for an increased possibility of higher order itemsets to be
generated.

Table II shows that there are no frequent itemsets past k = 7, but
there are moderately supported itemsets generated by AprioriBL
up to the order of & = 10. These higher order itemsets show the
relationship between the lower order itemsets more clearly. For
example, at a grocery store a subset of 2-itemsets could be {milk,
bread} and {bread, butter}, while a 3-itemset could be {milk,
bread, butter}. Although the 3-itemset may not have a frequency
above the minimum support threshold, it is still useful to know
that this extended relationship exists.

VII. CONCLUSION

The Apriori algorithm generates all frequent itemsets that sat-
isfy the minimum support threshold; however, itemsets with a
frequency close to the minimum support threshold are generally
not contained in higher order itemsets. AprioriBL targets these
borderline itemsets — providing potentially advantageous informa-
tion about the data that may have been overlooked. We explained
how the Apriori and AprioriBL algorithms work, and offered
several business related applications of AprioriBL. We ran tests
and compared the results of Apriori and AprioriBL on the dataset

30

T20.N20K.D10K. We discussed two possible reasons for the
increase in itemset count as k increases. The “trickle down” effect
can cause this increase in AprioriBL, though the combinatorial
nature of the algorithms can cause this in both Apriori and Apri-
oriBL. Finally, we discussed how infrequent borderline itemsets
can yield useful information that is not given by the more frequent
itemsets of Apriori.

VIII. FUTURE WORK

Our current implementation of AprioriBL is on the same order
of efficiency as Apriori; however, in our future work we plan
to significantly increase the performance. This will be done by
trimming itemsets outside of the range S + 6, which yields a
seeding pool only containing those itemsets. We expect this to
have a dramatic increase in performance at the cost of accuracy. We
will complete a comparative analysis of Apriori, AprioriBL, and
the new algorithm. Performance and accuracy will be measured
relative to each algorithm, which will determine how useful each
algorithm is in specific situations.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami, “Database mining: A performance
perspective,” IEEE Transactions on Knowledge and Data Engineering,
Special Issue on Learning and Discovery in Knowledge-Based Databases,
vol. 5, no. 6, pp. 914-925, December 1993. [Online]. Available:
http://www.almaden.ibm.com/cs/people/ragrawal/pubs.html

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in Proceedings of the 20th International Conference on Very
Large Databases, VLDB °'94, J. B. Bocca, M. Jarke, and C. Zaniolo,
Eds., Santiago, Chile, September 1994, pp. 487-499, expanded version
available as IBM Research Report RJ 9389, June 1994. [Online]. Available:
http://www.almaden.ibm.com/cs/people/ragrawal/pubs.html

[3] W. K. Chen, D. Baumgartner, and R. Millikin, “Improving business appli-
cations with borderline associations,” in Proceedings of the International
Conference for Business IT, Kuala Lumpur Malaysia, August 2006.

[4] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus, “Knowledge dis-
covery in databases: An overview,” in Knowledge Discovery in Databases,
G. Piatetsky-Shapiro and W. J. Frawley, Eds. Menlo Park, California: AAAI
Press, 1991, pp. 1-27.

