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Abstract— The association rule mining task identifies all the
intrinsic associations among the items contained in data and
leads to only specialized knowledge. To overcome this problem
the generalized association rules appeared. This type of rule
associates not only the items contained in data, but also some
items encoded into a given taxonomy. Therefore, the techniques
used to obtain generalized association rules are very useful since
they provide a more general view of the domain. However, a
problem found when using these techniques is how to identify the
most useful rules to avoid overload the user with a huge amount
of patterns. Nowadays, the researches use objective evaluation
measures to evaluate and select the most interesting knowledge
to the user. Despite the fact these measures have been studied by
many researches to evaluate many types of rules (for example,
classification and traditional association rules), it is important
to study these measures in the context of generalized rules.
Thus, this paper presents an analytical evaluation to understand
the behavior of some objective measures when applied in a set
of generalized rules. Many relations were obtained to express
the behavior of these measures, what represents a meaningful
contribution to the post-processing data mining area.

I. INTRODUCTION

One of the tasks in data mining is the association rule
mining, which was introduced in [1] as follows. Consider D a
database composed by a set of items I = {i1, ..., im} and by
a set of transactions T = {t1, ..., tn}, where each transaction
ti ∈ T is composed by a set of items (itemset), where ti ⊆ I . A
transaction ti ∈ T supports an itemset A ⊂ I if A ⊂ T holds.
The fraction of transactions T supporting an itemset A with
respect to database D is called the support of A, and is defined
as sup(A) = |{T∈D;A⊂T}|

|D| [2]. The support can be interpreted
as the probability P (EA), where EA is an event representing
“itemset A occurs.” An association rule is an implication of
the form A ⇒ B, where A ⊂ I , B ⊂ I , A ∩ B = ∅.
Two measures always appear with an association rule: support
and confidence. The support of a rule A ⇒ B is defined as
sup(A ⇒ B) = sup(A ∪ B) [2], and can be interpreted as
the probability P (EA ∩ EB). The confidence of a rule, that
can be understood as the conditional probability P (EB |EA), is
defined as conf(A ⇒ B) = |{T∈D;A∪B⊂T}|

|{T∈D;A⊂T}| [2]. The problem
of discovering all association rules is decomposed into two
problems [1]: (a) find all large itemsets; (b) use these large

itemsets to generate the rules. A large itemset is a set of items
that has a support value no less than a user-specified minimum
support (minsup). According to the rule generation step (item
b), a rule will be generated, based on a given itemset, if the
rule has a minimum user-specified confidence (minconf ).

The use of a background knowledge in the data mining
process allows the discovery of a more abstract, compact and,
sometimes, interesting knowledge. An example of background
knowledge can be a concept hierarchy, that is, a structure
in which high level abstraction concepts (generalizations of
low level concepts) are hierarchically organized by a domain
expert or by an automatic process. An example of a simple
concept hierarchy is taxonomy. Since the association rule
mining technique generates all possible rules considering only
the items contained in the data set, which leads to specialized
knowledge, the generalized association rules, which are rules
composed by items contained in any level of a given taxonomy,
were introduced by [3]. Taxonomies reflect arbitrary individual
or collective views according to which the set of items is
hierarchically organized [4]. In the context of generalized
association rules, a set of taxonomies is represented by a
directed acyclic graph τ on the transactions items, where an
edge in τ represents an is-a relationship.

Considering the same assumptions made in the traditional
association rules, a generalized association rule is an implica-
tion of the form A ⇒ B, where A ⊂ I , B ⊂ I , A ∩ B = ∅
and no item in B is an ancestor of any item in A [3]. In
this case, the support and confidence measures are also used
and there are some important relations that holds for those
measures: (a) sup(A ⇒ B̂) > sup(A ⇒ B); (b) sup(Â ⇒
B) > sup(A ⇒ B); (c) sup(Â ⇒ B̂) > sup(A ⇒ B); (d)
conf(A ⇒ B̂) > conf(A ⇒ B) [4], where Â indicates that
Â is an ancestor of A and B̂ indicates that B̂ is an ancestor
of B.

Taxonomies can be used in the different steps of the
data mining process. Nowadays, many researches propose the
obtaining of generalized association rules in the mining step
([3], [5], [6], [7], [8], [9], [10]) and in the pre-processing step
([11]). There are also some researches that apply taxonomies
in the post-processing step ([12], [13], [14], [15]). In some
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of those researches a generalized rule can be associated with
a specialized rule. Let A ⇒ B be a rule. The notation
Â ⇒ B (resp., Ã ⇒ B) represents new rules that derive from
A ⇒ B by replacing one or several items by its ancestors
(resp., descendants) in τ . The new rules are said to be
generalizations (resp., specializations) of A ⇒ B [4]. Note
that Â ⇒ B (resp., Ã ⇒ B) stands for either A ⇒ B̂, Â ⇒ B̂,
or Â ⇒ B (resp., A ⇒ B̃, Ã ⇒ B̃, or Ã ⇒ B) [4]. Observe
that the rule A ⇒ B can be considered a specialized rule of
the rule Â ⇒ B.

It is known that a problem found in the data mining
process is related to the huge quantity of patterns obtained,
which complicates the user interpretation. To overcome this
problem, many researchers use a variety of objective measures
to evaluate the extracted knowledge to assist the user to
understand and apply this knowledge ([16], [17], [18], [19],
[20], [21], [22], [23], [24]). Thus, it is necessary to realize a
study of the use of these measures in the knowledge evaluation
considering the generalized rules context. Therefore, this paper
realizes an analytical evaluation of some objective measures
when applied in generalized association rules. It is important to
do such evaluation since we can know beforehand the value of
a measure in a generalized rule and if this value will be greater
or less the value of the same measure in its specialized rules
(see Section II). Thus, many relations were obtained among a
generalized rule and its specialized rules in order to learn the
behavior of some objective measures in the generalized rules
context.

The paper is organized as follows. Section II presents
an approach to obtain a generalized rules set in the post-
processing step. This approach is presented once the analytical
evaluation was realized considering that a generalized rule is
obtained by grouping some specialized rules through taxo-
nomies. Section III presents the analytical evaluation of the
objective measures behavior when applied with generalized
rules. Section IV presents a discussion of the obtained results.
Finally, in Section V are the paper conclusions.

II. THE GENERALIZED ASSOCIATION RULE

POST-PROCESSING APPROACH (GARPA)

This paper considers the post-processing approach proposed
by us in [15] to obtain a set of generalized association rules.
Since there is an association rules set, obtained a priori with
a traditional mining algorithm, the GARPA main idea, shown
in Fig. 1, consists in generalizing this set based on a given
domain taxonomy. The process obtains a generalized rules set
composed by some rules that could not be generalized (for
example, rule R40 shown in Fig. 1) and by some generalized
rules obtained by grouping some rules (at least two rules)
using the taxonomy set (for example, rule R35 shown in
Fig. 1 – rule obtained by grouping the rules milka ⇒ bread
(R3), milkb ⇒ bread (R4) and milkc ⇒ bread (R7)). The
generalization can be done in one side of the rule (antecedent
(lhs: left hand side) or consequent (rhs: right hand side))
or in both sides (lrhs: left right hand side). Observe that a
generalized item in a generalized rule is composed by the

union of two or more specialized items contained in the
taxonomy. Considering the notation previously presented, the
input rules are here considered the specialized rules and the
new rules, which contains a generalized item, the generalized
rules.

Fig. 1. The idea of GARPA approach.

III. THE OBJECTIVE MEASURES ANALYTICAL

EVALUATION

As mentioned before, the objective of this analytical evalua-
tion is to study the objective measures behavior when applied
in a generalized rule. To do such evaluation, for each of the
measures considered in the study a relation was made among
a generalized rule and its specialized rules, that is, the rules
that were grouped by taxonomy to obtain the generalized rule
(see Section II). As a generalized item can occur in both sides
(lrhs) or in one side (lhs or rhs), the found relations were
divided by side and are followed presented. The evaluation
was made for some of the measures discussed in [21] and
presented in Table I. A brief description of the measures
meaning, including its references, can be found in [21]. It is
important to mention that the measures shown in Table I were
chosen due to its easy equation interpretation.

A. Measures Behavior in the LHS Generalization

In order to find the measures behavior in a generalized rule,
considering a generalized item in the lhs side, the following
assumption was done. Consider the rule G ⇒ A, obtained
from the rules B ⇒ A and C ⇒ A, where G is a generalized
item formed by the grouping of the specialized items B and
C. Thus, the event EG is such that EG = EB ∪ EC . Based
on this assumption, an analytical relation was found for each
of the measures considered, which are followed presented.
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TABLE I

OBJECTIVE MEASURES FOR AN ASSOCIATION PATTERN A ⇒ B [21].

Measure Definition Symmetric
Added Value (AV) P (EB |EA)− P (EB) No

Certainty Factor (CF) P (EB |EA)−P (EB)
1−P (EB)

No

Confidence (Conf) P (EB |EA) No

Conviction (Conv) P (EA)P (EB)

P (EA∩EB)
No

Laplace (L) |D|P (EA∩EB)+1
|D|P (EA)+2

No

Interest (I) P (EA∩EB)
P (EA)P (EB)

Yes

Jaccard (ζ) P (EA∩EB)
P (EA)+P (EB)−P (EA∩EB)

Yes

Piatetsky-Shapiro’s (PS) P (EA ∩ EB)− P (EA)P (EB) Yes

Support (Sup) P (EA ∩ EB) Yes

1) Added Value: Applying the Added Value measure to the
rule G ⇒ A, the following relation is obtained.

AVG,A = P (EA|EG)− P (EA)

= P (EA|EB ∪ EC)− P (EA)

=
P [EA ∩ (EB ∪ EC)]

P (EB ∪ EC)
− P (EA)

=
P [(EA ∩ EB) ∪ (EA ∩ EC)]

P (EB ∪ EC)
− P (EA)

=
P (EA ∩ EB) + P (EA ∩ EC)− P (EA ∩ EB ∩ EC)

P (EB ∪ EC)
− P (EA)

= [
P (EA ∩ EB)

P (EB ∪ EC)
− P (EA)] + [

P (EA ∩ EC)

P (EB ∪ EC)
− P (EA)]

− [
P (EA ∩ EB ∩ EC)

P (EB ∪ EC)
− P (EA)]

6 AVB,A + AVC,A − [
P (EA ∩ EB ∩ EC)

P (EB ∪ EC)
− P (EA)] (1)

2) Certainty Factor: Applying the Certainty Factor mea-
sure to the rule G ⇒ A, the following relation is obtained.

CFG,A =
P (EA|EG)− P (EA)

1− P (EA)

=
P (EA|EB ∪ EC)− P (EA)

1− P (EA)

=

P [EA∩(EB∪EC )]
P (EB∪EC ) − P (EA)

1− P (EA)

=

P (EA∩EB)+P (EA∩EC )−P (EA∩EB∩EC )
P (EB∪EC ) − P (EA)

1− P (EA)

= [

P (EA∩EB)
P (EB∪EC ) − P (EA)

1− P (EA)
] + [

P (EA∩EC )
P (EB∪EC ) − P (EA)

1− P (EA)
]

− [

P (EA∩EB∩EC )
P (EB∪EC ) − P (EA)

1− P (EA)
]

6 CFB,A + CFC,A − [
P (EA ∩ EB ∩ EC)

P (EB ∪ EC)P (EA)
−

P (EA)

P (EA)
] (2)

3) Confidence: Applying the Confidence measure to the
rule G ⇒ A, the following relation is obtained.

ConfG,A = P (EA|EG)

= P (EA|EB ∪ EC)

=
P [EA ∩ (EB ∪ EC)]

P (EG)

=
P (EA ∩ EB)

P (EG)
+

P (EA ∩ EC)

P (EG)
−

P (EA ∩ EB ∩ EC)

P (EG)

=
P (EB)

P (EG)
× ConfB,A +

P (EC)

P (EG)
× ConfC,A

−
P (EB ∩ EC)

P (EG)
× ConfB∩C,A

6 ConfB,A + ConfC,A −
P (EB ∩ EC)

P (EB ∪ EC)
× ConfB∩C,A (3)

4) Conviction: Applying the Conviction measure to the rule
G ⇒ A, the following relation is obtained.

ConvG,A =
P (EG)P (EA)

P (EG ∩ EA)

=
P (EB ∪ EC)P (EA)

P (EG ∩ EA)

=
P (EB)P (EA)

P (EG ∩ EA)
+

P (EC)P (EA)

P (EG ∩ EA)
−

P (EB ∩ EC)P (EA)

P (EG ∩ EA)

=
P (EB ∩ EA)

P (EG ∩ EA)
× ConvB,A +

P (EC ∩ EA)

P (EG ∩ EA)
× ConvC,A

−
P (EB ∩ EC ∩ EA)

P (EG ∩ EA)
× ConvB∩C,A

6 ConvB,A + ConvC,A

−
P (EB ∩ EC ∩ EA)

P [(EB ∪ EC) ∩ EA]
× ConvB∩C,A (4)

5) Laplace: Applying the Laplace measure to the rule G ⇒
A, the following relation is obtained.
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LG,A =
|D|P (EG ∩ EA) + 1

|D|P (EG) + 2

=
|D|P [(EB ∪ EC) ∩ EA] + 1

|D|P (EG) + 2

=
|D|P (EB ∩ EA) + 1

|D|P (EG) + 2
+
|D|P (EC ∩ EA) + 1

|D|P (EG) + 2

−
|D|P (EB ∩ EC ∩ EA) + 1

|D|P (EG) + 2

=
|D|P (EB) + 2

|D|P (EG) + 2
× LB,A +

|D|P (EC) + 2

|D|P (EG) + 2
× LC,A

−
|D|P (EB ∩ EC) + 2

|D|P (EG) + 2
× LB∩C,A

6 LB,A + LC,A −
|D|P (EB ∩ EC) + 2

|D|P (EB ∪ EC) + 2
× LB∩C,A (5)

6) Interest: Applying the Interest measure to the rule G ⇒
A, the following relation is obtained.

IG,A =
P (EG ∩ EA)

P (EG)P (EA)

=
P [(EB ∪ EC) ∩ EA]

P (EG)P (EA)

=
P (EB ∩ EA)

P (EG)P (EA)
+

P (EC ∩ EA)

P (EG)P (EA)
−

P (EB ∩ EC ∩ EA)

P (EG)P (EA)

=
P (EB)P (EA)

P (EG)P (EA)
× IB,A +

P (EC)P (EA)

P (EG)P (EA)
× IC,A

−
P (EB ∩ EC)P (EA)

P (EG)P (EA)
× IB∩C,A

6 IB,A + IC,A −
P (EB ∩ EC)

P (EB ∪ EC)
× IB∩C,A (6)

7) Jaccard: Applying the Jaccard measure to the rule G ⇒
A, the following relation is obtained.

ζG,A =
P (EG ∩ EA)

P (EG) + P (EA)− P (EG ∩ EA)

=
P (EG ∩ EA)

P (EG ∪ EA)

=
P [(EB ∪ EC) ∩ EA]

P (EG ∪ EA)

=
P (EB ∩ EA)

P (EG ∪ EA)
+

P (EC ∩ EA)

P (EG ∪ EA)
−

P (EB ∩ EC ∩ EA)

P (EG ∪ EA)

=
P (EB ∪ EA)

P (EG ∪ EA)
× ζB,A +

P (EC ∪ EA)

P (EG ∪ EA)
× ζC,A

−
P [(EB ∩ EC) ∪ EA]

P (EG ∪ EA)
× ζB∩C,A

6 ζB,A + ζC,A −
P [(EB ∩ EC) ∪ EA]

P (EB ∪ EC ∪ EA)
× ζB∩C,A (7)

8) Piatetsky-Shapiro’s: Applying the Piatetsky-Shapiro’s
measure to the rule G ⇒ A, the following relation is obtained.

PSG,A = P (EG ∩ EA)− P (EG)P (EA)

= P [(EB ∪ EC) ∩ EA]− P (EB ∪ EC)P (EA)

= P [(EB ∩ EA) ∪ (EC ∩ EA)]

− [P (EB) + P (EC)− P (EB ∩ EC)]P (EA)

= [P (EB ∩ EA) + P (EC ∩ EA)− P (EB ∩ EC ∩ EA)]

− [P (EB)P (EA) + P (EC)P (EA)− P (EB ∩ EC)P (EA)]

= P (EB ∩ EA)− P (EB)P (EA) + P (EC ∩ EA)− P (EC)P (EA)

− P (EB ∩ EC ∩ EA) + P (EB ∩ EC)P (EA)

= PSB,A + PSC,A − PSB∩C,A (8)

9) Support: Applying the Support measure to the rule G ⇒
A, the following relation is obtained.

SupG,A = P (EG ∩ EA)

= P [(EB ∪ EC) ∩ EA]

= P [(EB ∩ EA) ∪ (EC ∩ EA)]

= P (EB ∩ EA) + P (EC ∩ EA)− P (EB ∩ EC ∩ EA)

= SupB,A + SupC,A − SupB∩C,A

Since

SupB,A > SupB∩C,A;

SupC,A > SupB∩C,A

⇒ SupG,A > max{SupB,A; SupC,A} (9)

B. Measures Behavior in the RHS Generalization

In order to find the measures behavior in a generalized rule,
considering a generalized item in the rhs side, the following
assumption was done. Consider the rule A ⇒ G, obtained
from the rules A ⇒ B and A ⇒ C, where G is a generalized
item formed by the grouping of the specialized items B and
C. Thus, the event EG is such that EG = EB ∪ EC . Based
on this assumption, an analytical relation was found for each
of the measures considered, which are followed presented.

1) Added Value: Applying the Added Value measure to the
rule A ⇒ G, the following relation is obtained.

AVA,G = P (EG|EA)− P (EG)

= P (EB ∪ EC |EA)− P (EB ∪ EC)

= [P (EB |EA) + P (EC |EA)− P (EB ∩ EC |EA)]

− [P (EB) + P (EC)− P (EB ∩ EC)]

= [P (EB |EA)− P (EB)] + [P (EC |EA)− P (EC)]

− [P (EB ∩ EC |EA)− P (EB ∩ EC)]

= AVA,B + AVA,C − AVA,B∩C (10)

2) Certainty Factor: Applying the Certainty Factor mea-
sure to the rule A ⇒ G, the following relation is obtained.

CFA,G =
P (EG|EA)− P (EG)

1− P (EG)

=
P (EB ∪ EC |EA)− P (EB ∪ EC)

1− P (EG)

=
P (EB |EA)

P (EG)
+

P (EC |EA)

P (EG)
−

P (EB ∩ EC |EA)

P (EG)

−
P (EB)

P (EG)
−

P (EC)

P (EG)
+

P (EB ∩ EC)

P (EG)

=
P (EB)

P (EG)
× CFA,B +

P (EC)

P (EG)
× CFA,C

−
P (EB ∪ EC)

P (EG)
× CFA,B∩C

> CFA,B + CFA,C −
P (EB ∪ EC)

P (EB ∩ EC)
× CFA,B∩C (11)

3) Confidence: Applying the Confidence measure to the
rule A ⇒ G, the following relation is obtained.
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ConfA,G = P (EG|EA)

= P (EB ∪ EC |EA)

= P (EB |EA) + P (EC |EA)− P (EB ∩ EC |EA)

= ConfA,B + ConfA,C − ConfA,B∩C

Since

ConfA,B > ConfA,B∩C ;

ConfA,C > ConfA,B∩C

⇒ ConfA,G > max{ConfA,B ; ConfA,C} (12)

4) Conviction: Applying the Conviction measure to the rule
A ⇒ G, the following relation is obtained.

ConvA,G =
P (EA)P (EG)

P (EA ∩ EG)

=
P (EA)P (EB ∪ EC)

P [EA ∩ (EB ∪ EC)]

=
P (EA)P (EB ∩ EC)

P (EA ∩ EB ∩ EC)

Since

P (EA)P (EB ∩ EC)

P (EA ∩ EB ∩ EC)
>

P (EA)P (EB ∩ EC)

P (EA ∩ EB)
;

P (EA)P (EB ∩ EC)

P (EA ∩ EB ∩ EC)
>

P (EA)P (EB ∩ EC)

P (EA ∩ EC)

⇒ ConvA,G >
P (EB ∩ EC)

P (EB)
× ConvA,B ;

ConvA,G >
P (EB ∩ EC)

P (EC)
× ConvA,C (13)

5) Laplace: Applying the Laplace measure to the rule A ⇒
G, the following relation is obtained.

LA,G =
|D|P (EA ∩ EG) + 1

|D|P (EA) + 2

=
|D|P [EA ∩ (EB ∪ EC)] + 1

|D|P (EA) + 2

=
|D|P [(EA ∩ EB) ∪ (EA ∩ EC)] + 1

|D|P (EA) + 2

=
|D|[P (EA ∩ EB) + P (EA ∩ EC)− P (EA ∩ EB ∩ EC)] + 1

|D|P (EA) + 2

=
|D|P (EA ∩ EB) + 1

|D|P (EA) + 2
+
|D|P (EA ∩ EC) + 1

|D|P (EA) + 2

−
|D|P (EA ∩ EB ∩ EC) + 1

|D|P (EA) + 2

= LA,B + LA,C − LA,B∩C

Since

LA,B > LA,B∩C ;

LA,C > LA,B∩C

⇒ LA,G > max{LA,B ; LA,C} (14)

6) Interest: Since the Interest measure is symmetric, only
the obtained relation to the rule A ⇒ G is shown.

IA,G 6 IA,B + IA,C −
P (EB ∩ EC)

P (EB ∪ EC)
× IA,B∩C (15)

7) Jaccard: Since the Jaccard measure is symmetric, only
the obtained relation to the rule A ⇒ G is shown.

ζA,G 6 ζA,B + ζA,C −
P [EA ∪ (EB ∩ EC)]

P (EA ∪ EB ∪ EC)
× ζA,B∩C (16)

8) Piatetsky-Shapiro’s: Since the Piatetsky-Shapiro’s mea-
sure is symmetric, only the obtained relation to the rule
A ⇒ G is shown.

PSA,G = PSA,B + PSA,C − PSA,B∩C (17)

9) Support: Since the Support measure is symmetric, only
the obtained relation to the rule A ⇒ G is shown.

SupA,G > max{SupA,B ; SupA,C} (18)

C. Measures Behavior in the LRHS Generalization

In order to find the measures behavior in a generalized
rule, considering generalized items in both sides, the following
assumption was done. Consider the rule G1 ⇒ G2, obtained
from the rules A ⇒ C and B ⇒ D, where G1 is a generalized
item formed by the grouping of the specialized items A and
B and G2 a generalized item formed by the grouping of the
specialized items C and D. Thus, the event EG1 is such that
EG1 = EA∪EB and EG2 is such that EG2 = EC∪ED. Based
on this assumption, an analytical relation was found for each
of the measures considered, which are followed presented.

1) Added Value: In order to obtain the G1 ⇒ G2 relation
to the Added Value measure, we apply (1) in the current rule.

AVG1,G2 6 AVA,C∪D + AVB,C∪D

− [
P [(EC ∪ ED) ∩ EA ∩ EB ]

P (EA ∪ EB)
− P (EC ∪ ED)] (19)

Now, applying (10) in (19) we have:

AVG1,G2 6 AVA,C + AVA,D − AVA,C∩D

+ AVB,C + AVB,D − AVB,C∩D

− [
P [(EC ∪ ED) ∩ EA ∩ EB ]

P (EA ∪ EB)
− P (EC ∪ ED)] (20)

Since the same idea is used to obtain all the others measures
relations in the lrhs generalization, the mathematics deduc-
tions are not shown.

IV. DISCUSSION OF THE EVALUATION RESULTS

Tables II, III, and IV show the objective measures behaviors
through the relations found for each of the measures in each
side. These relations represent the existing connection among
the value of a measure in one generalized rule and the values
of the same measure in its specialized rules.

In order to demonstrate how to interpret the found rela-
tions, consider the Support measure. One of the relations
found to this measure is SupG,A > max{SupB,A;SupC,A},
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TABLE II

OBJECTIVE MEASURES RELATIONS IN THE LHS GENERALIZATION.

Measure G ⇒ A (G = B ∪ C)

Added Value (AV) AVG,A 6 AVB,A + AVC,A − [
P (EA∩EB∩EC)

P (EB∪EC)
− P (EA)]

Certainty Factor (CF) CFG,A 6 CFB,A + CFC,A − [
P (EA∩EB∩EC)

P (EB∪EC)P (EA)
− P (EA)

P (EA)
]

Confidence (Conf) ConfG,A 6 ConfB,A + ConfC,A − P (EB∩EC)
P (EB∪EC)

× ConfB∩C,A

Conviction (Conv) ConvG,A 6 ConvB,A + ConvC,A − P (EB∩EC∩EA)

P [(EB∪EC)∩EA]
× ConvB∩C,A

Laplace (L) LG,A 6 LB,A + LC,A − |D|P (EB∩EC)+2
|D|P (EB∪EC)+2

× LB∩C,A

Interest (I) IG,A 6 IB,A + IC,A − P (EB∩EC)
P (EB∪EC)

× IB∩C,A

Jaccard (ζ) ζG,A 6 ζB,A + ζC,A − P [(EB∩EC)∪EA]
P (EB∪EC∪EA)

× ζB∩C,A

Piatetsky-Shapiro’s (PS) PSG,A = PSB,A + PSC,A − PSB∩C,A

Support (Sup) SupG,A > max{SupB,A; SupC,A}

TABLE III

OBJECTIVE MEASURES RELATIONS IN THE RHS GENERALIZATION.

Measure A ⇒ G (G = B ∪ C)
Added Value (AV) AVA,G = AVA,B + AVA,C −AVA,B∩C

Certainty Factor (CF) CFA,G > CFA,B + CFA,C − P (EB∪EC)

P (EB∩EC)
× CFA,B∩C

Confidence (Conf) ConfA,G > max{ConfA,B ; ConfA,C}

Conviction (Conv) ConvA,G > P (EB∩EC)

P (EB)
× ConvA,B ; P (EB∩EC)

P (EC)
× ConvA,C

Laplace (L) LA,G > max{LA,B ; LA,C}

Interest (I) IA,G 6 IA,B + IA,C − P (EB∩EC)
P (EB∪EC)

× IA,B∩C

Jaccard (ζ) ζA,G 6 ζA,B + ζA,C − P [EA∪(EB∩EC)]
P (EA∪EB∪EC)

× ζA,B∩C

Piatetsky-Shapiro’s (PS) PSA,G = PSA,B + PSA,C − PSA,B∩C

Support (Sup) SupA,G > max{SupA,B ; SupA,C}

which means that the support value of a generalized rule
(SupG,A), containing a generalized item in the lhs side, is
greater or equal to the maximum Sup value of its specialized
rules (SupB,A and SupC,A). Considering another measure,
Piatetsky-Shapiro’s, for example, we can find the following
relation: PSA,G = PSA,B+PSA,C−PSA,B∩C , which means
that the PS value of a generalized rule (PSA,G), containing a
generalized item in the rhs side, is equal to the sum of the
PS values of its specialized rules (PSA,B and PSA,C) minus
the PS value considering the intersection of the specialized
items used to form the generalized item (PSA,B∩C). The
interpretation of the rest of the measures follows the same
idea. In relation to the lrhs, observe in Table IV that we did
not arrive at a conclusion for some measures (CF, Conf, Conv,

and L), since the behavior in all of these measures in the lhs
presented a 6 inequality relation and in the rhs a > inequality
relation.

From Tables II, III and IV it can be observed that some
measures are written by an inequality to express the value
of a generalized rule. This inequality represents the measure
behavior in relation to the specialized items used to form the
generalized item. So, depending on the inequality direction
it can be concluded that the behavior of a measure in a
generalized rule will be equal or better in relation to the
behavior of its specialized items (> inequality) or that the
behavior of a measure in a generalized rule will be equal or
worse in relation to the behavior of its specialized items (6
inequality). So, it is suitable to use a measure that presents
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TABLE IV

OBJECTIVE MEASURES RELATIONS IN THE LRHS GENERALIZATION.

Measure G1 ⇒ G2 (G1 = A ∪B ; G2 = C ∪D)
Added Value (AV) AVG1,G2 6 AVA,C + AVA,D −AVA,C∩D + AVB,C + AVB,D −AVB,C∩D

−[
P [(EC∪ED)∩EA∩EB ]

P (EA∪EB)
− P (EC ∪ ED)]

Certainty Factor (CF) No Conclusion
Confidence (Conf) No Conclusion
Conviction (Conv) No Conclusion
Laplace (L) No Conclusion

Interest (I) IG1,G2 6 IA,C + IA,D − P (EC∩ED)
P (EC∪ED)

× IA,C∩D + IB,C + IB,D − P (EC∩ED)
P (EC∪ED)

× IB,C∩D

−P (EA∩EB)
P (EA∪EB)

[IA∩B,C + IA∩B,D − P (EC∩ED)
P (EC∪ED)

× IA∩B,C∩D]

Jaccard (ζ) ζG1,G2 6 ζA,C + ζA,D − P [EA∪(EC∩ED)]
P (EA∪EC∪ED)

× ζA,C∩D + ζB,C + ζB,D − P [EB∪(EC∩ED)]
P (EB∪EC∪ED)

× ζB,C∩D

−P [(EA∩EB)∪EC∪ED ]
P (EA∪EB∪EC∪ED)

[ζA∩B,C + ζA∩B,D − P [(EA∩EB)∪(EC∩ED)]
P [(EA∩EB)∪EC∪ED ]

× ζA∩B,C∩D]

Piatetsky-Shapiro’s (PS) PSG1,G2 = PSA,C + PSA,D − PSA,C∩D + PSB,C + PSB,D − PSB,C∩D

−PSA∩B,C − PSA∩B,D + PSA∩B,C∩D

Support (Sup) SupG1,G2 > max{SupA,C ; SupA,D; SupB,C ; SupB,D}

an improvement in its behavior compared to its specialized
items in order to select the most interesting rules to the user.
Therefore, note that are some measures that are better to be
used in the selection of rules that contain a generalized item
in one specific side, as CF, Conf, Conv and L, that presents a
better behavior when applied in the rhs side.

It is also interesting to note that analyzing Table I the
following relations can be obtained: CF = AV

1−P (EB) , Conf =

AV + P (EB), I = AV
P (EB) + 1 and Conv = P (EB)

1−Conf . This
means that when we are analyzing a generalized rule that
contains a generalized item in the lhs, the CF, Conf, I and
Conv measures present the same behavior, since they are
expressed in terms of AV.

Finally, it can be noted that the Support and the Confidence
measures presented an expected behavior (Section I). On
despite of this, an analysis of the other measures behavior,
when applied to generalized rules, has not been found, which
represents a relevant contribution. So, the main advantages of
this analytical evaluation are:

[a] to know beforehand the behavior of an objective measure
when applied in a generalized rule;

[b] to compute more easily the objective measures values for
a generalized rule since we can use the found relations
to obtain these values;

[c] to provide an overview of the objective measures be-
havior to the data mining community when applied in a
generalized rule.

It is important to bounce that this analytical evaluation
is valid, independent of the data mining step where the
generalized rules are obtained, to any generalized rules that
contains a generalized item that can be viewed as the union of
two or more specialized items contained in a given taxonomy.

V. CONCLUSION

Generalized association rules are rules that contain some
background knowledge giving a more general view of the
domain. This knowledge is commonly codified by a taxonomy
set over the data set items. Many researches use taxonomies
in different data mining steps to obtain generalized rules.
However, a problem identified with the techniques used to
obtain these types of patterns is the amount of rules obtained,
since the objective of the data mining process is to obtain
a useful and interesting knowledge to support the user’s
decisions. To help the users to the select these pieces of
knowledge there are many objective measures. These measures
have been studied in many types of rules. However, an analysis
of the behavior of these measures, when applied to evaluate
generalized association rules, has not been found. In this
context, this paper presents an analytical evaluation over the
behavior of some objective measures to verify the existing
relation among an objective measure value in a generalized
rule and an objective measure value in its specialized rules.

Tables II, III, and IV present all the valid relations found
for each of the measures analyzed considering a generalized
item in both of the sides of a rule and in a specific side of a
rule. It is important to highlight that these relations represent
the behavior of each of these measures in the context of a
generalized rule, which is a meaningful contribution of this
paper. As a continuation of this work, other objective measures
not considered in the analytical evaluation will be studied with
the purpose of understanding its behavior in the generalized
association rules context.

It is important to mention that in [25] an experimental
evaluation of the presented measures was done and a grouping
measure was generated according to the generalization side.
These measure groups are useful to help the specialists to
choose an appropriate measure to evaluate their generalized
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rules. So, this current work is, in fact, a complementary study
of [25]. As a future research of these works, an analysis with
an expert domain will be done to verify if the measure groups
are, in fact, able to select the most interesting generalized rules
depending on the generalization side.
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