
Versatile and Efficient Meta-Learning Architecture:
Knowledge Representation and Management

in Computational Intelligence
Krzysztof Grąbczewski and Norbert Jankowski

Department of Informatics
Nicolaus Copernicus University

Toruń, Poland
http://www.is.umk.pl/

{kgrabcze|norbert}@is.umk.pl

Abstract— There are many data mining systems derived from
machine learning, neural network, statistics and other fields.
Most of them are dedicated to some particular algorithms or
applications. Unfortunately, their architectures are still too naive
to provide satisfactory background for advanced meta-learning
problems.

In order to efficiently perform sophisticated meta-level analy-
sis, we need a very versatile, easily expandable system (in many
independent aspects), which uniformly deals with different kinds
of models and models with very complex structures of models
(not only committees but also much more hierarchic models).
Meta-level techniques must provide mechanisms facilitating op-
timization of computation time and memory consumption.

This article presents requirements and their motivations for
an advanced data mining system, efficient not only in model
construction for given data, but also in meta-learning. Some
particular solutions to significant problems are presented. The
newly proposed advanced meta-learning architecture has been
implemented in our new data analysis system.

I. INTRODUCTION

Learning from data is getting more and more important as
a way of knowledge discovery for many real world problems.
Today nearly everything is (or may be) represented in a
digital format, hence may be analyzed using computational
intelligence methods. Given a problem represented by a data
set D we look for a model which seems to be a good solution
to the problem. Such model can be seen as a function

fM : X → Y (1)

transforming the domain X into some target space Y . The
goal of finding attractive models may be achieved by adap-
tation of some free parameters (denoted by M). The task
may be defined in a number of different ways. Typical tasks
belong to groups like classification, approximation, clustering,
rule extraction, finding associations etc. For an introduction to
learning algorithms see [1], [2], [3], [4], [5], [6].

A learning method is a process of adaptation of free param-
eters. It can be controlled by a group of parameters called its
configuration and as a result gives a “final” model (regardless
of whether the learning was supervised or not). However the
model is “final” only from the point of view of given learning

method and its configuration. Using different configurations
and/or different learning methods, which solve the same kinds
of problems, for given data D , usually leads to solutions of
different quality and often of statistically significant difference.
Typically only a small subset of solutions is satisfactory and
we need special measures to compare solutions and select op-
timal or suboptimal ones. From the other hand, in compliance
with the conclusion of no free lunch theorem, we can not
expect that a single method may be optimal for every data
set. This means that to reliably solve problems, we can not
restrict our search to application of a single method.

The nature of a problem represented by data D does not
need to be very hard. It happens that a simple method may
solve a problem very well, nevertheless we have to discover
what the “simple method” is and what configuration of that
method is appropriate.

The problem is that thousands of articles were devoted
to learning methods in computational intelligence and their
modifications, while there is no simple answer to the questions
which method, how configured and why, we should use to
solve a given task. The knowledge presented in these papers
does not help us much, when we are faced with a new
problem (a new data set). Nontriviality of model selection is
evident when browsing the results of NIPS 2003 Challenge
in Feature Selection [7], [8] or WCCI Performance Prediction
Challenge [9] in 2006. These competitions show that in real
applications, optimal solutions must be composed as complex
models obtained in atypical ways. This is even more important
when solving more difficult problems in text mining or bioin-
formatics. Then, only when a good cooperation of submodels
in a complex one are obtained, we may hope for a reasonable
solution. This means that for example before classification we
have to prepare some transformation(-s) (and/or ensembles)
which play crucial role in further classification.

Some meta-learning approaches [10], [11], [12], [13] base
mainly on data characterization techniques (characteristics of
data like number of features/vectors/classes, features vari-
ances, information measures on features, also from decision
trees etc.) or on landmarking (methods are ranked on the

51

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

basis of simple methods performances before starting the
more power consuming ones). Although the projects are really
interesting, they still may be done in different ways or at least
may be extended in some aspects. The whole space of possible
and interesting models is not browsed so thoroughly by the
mentioned projects, thereby some types of solutions can not
be found with them.

In our approach the term meta-learning encompasses the
whole complex process of model construction including ad-
justment of training parameters for different parts of the
model hierarchy, construction of hierarchies, combining mis-
cellaneous data transformation methods and different adaptive
models, performing model validation and complexity analysis,
etc.

Currently such tasks are performed by humans. Our long-
range goal is to eliminate human interactivity in the processes
and obtain meta-learning algorithms which will outperform
human-constructed models. Here we present the framework
facilitating dealing with complex models in a simple and
efficient manner. Section II explains why currently available
systems are not eligible for such advanced meta-learning tasks
and section III presents different aspects of our new system.

II. WHY THE NEW ARCHITECTURE FOR META-LEARNING

IS INDISPENSABLE

Data mining software systems available today do not pro-
vide satisfactory tools for meta-level model manipulation.
Software packages like free Weka, Yale, commercial SPSS
Clementine, Ghostminer etc.—see [14], [15] for a compre-
hensive list—are designed to prepare and validate different
computational intelligence models, but they lack most of
the features listed below, which are substantial for effec-
tive meta-learning. Thereby these systems may be used like
calculators in computational intelligence rather than systems
which discover models in really automated and autonomous
way. Advanced systems for complex model construction and
analysis must provide:

• a unified view of most aspects of handling CI models,
(including complex model structures) like model con-
struction and a general input–output representation for
information exchange between models, which facilitates
common manner of models manipulation without much
information about the nature of each particular model
(e.g. a unified way of dealing with simple and complex
submodels must be provided at the level of the system
engine),

• easy and uniform access to model parameters; each model
must be assisted by its configuration class with a standard
way to adjust its fields and a possibility to describe the
characteristic of the fields (linear, exponential, etc.), the
scopes of sensible values, etc.,

• easy and uniform access to exhaustive browsing of results
of training; a repository of model results, providing uni-
form access to this information, independent of particular
models,

• tools for estimation of model relevance (according to the
goal, it may be accuracy, MSE, MAP or one of many
other measures [1], [2], [3], [16]) together with an anal-
ysis of reliability, complexity and statistical significance
of differences [17] to other, already found, solutions,

• tools for fast and easy on-line definition of some small
extensions of the system like new metrics, new feature
ranking algorithms etc.,

• model templates for configuration of complex model
structures with exchangeable parts, instantiated during
meta-learning,

• versatile time and memory management to guarantee
optimal usage of the resources (especially when dealing
with very complex model hierarchies), also when run
on a computer cluster; this includes model cache sys-
tems and unification framework preventing from repeated
calculations, which are very probable in massive meta-
level calculations (‘probable’ not because of chaotic meta-
search but same models can be used as parts of others
more complex systems),

• simple and highly versatile Software Development Kit
(SDK) for programming system extensions; SDK users
should define just the essential parts of their methods
with as little code as possible and with no system-specific
overhead.

All the ideas mentioned above confirm a strong need for
a new system designed for advanced meta-learning approaches
which must be very efficient and versatile in several ways and
at different levels of abstraction. The next section presents
some very important features of the new system which can
brake down the barriers of current systems.

III. VERSATILE AND EFFICIENT DATA MINING

FRAMEWORK

1) Versatility: In the case of a data mining system, versatil-
ity means that many different kinds of data sets can be easily
analyzed with many different kinds of tools. We would like to
analyze “tabular” data, text data, bioinformatic sequences or
microarrays, etc. Each data set needs miscellaneous transfor-
mations before the final knowledge extraction methods can be
applied. The transformations include standardization, feature
selection and aggregation, Principal Components Analysis,
multidimensional scaling and many others. Knowledge may
be extracted from data with different techniques derived from
statistics, machine learning, neural networks, etc. and solv-
ing different optimization problems (classification, regression,
clustering, etc.).

2) System components unification: In practice it is impos-
sible to extend the engine of the framework each time we
want to support a new type of data or model. Therefore we
need an abstract definition of a model, underlying the variety
of entities mentioned above. Before a successful data analysis
system is built a thorough analysis is necessary, aiming at
unifying the background of miscellaneous data and algorithms
representations.

52

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Such unification is necessary not only as a programming
technique justified by software engineering, but as a mean
leading to broad functionality of the engine, facilitating in-
formation interchange between entities of different levels of
abstraction and providing techniques for reduction of memory
and computational time consumption. Additional advantage of
the unified view is the possibility of exploration of the space of
models without deep knowledge about the particular elements
of the system, which is crucial in advanced meta-learning.

3) Common input–output scheme: One of the most sig-
nificant aspects of the unification is a general input–output
scheme. It is extremely important, that all the components of
the framework use the same general language to describe the
necessary inputs and available outputs. It allows to combine
the components at the user interaction level and releases their
authors from foreseeing all their possible applications. The
combinations reveal the same input–output facilities as single
components, so they may be managed the same way as simple
models.

Thanks to the rapid growth of computing power, today’s
personal computers are fast enough to perform quite complex
calculations in minutes. As a result of that, most of the data
sets, being currently used for model testing in numerous com-
putational intelligence articles, can be analyzed by multiple
tests and take advantage of statistical measures of significance
of the differences between different methods results. Despite
that, numerous publications miss such thorough analysis of the
results. A general data analysis framework must provide some
standard methods for statistical significance testing, and reveal
open infrastructure for further extensions. In combination with
the unified input–output scheme it facilitates effortless, reliable
testing and comparison of complex model structures.

4) Results repository: Each component of a data mining
project should present its most interesting gains to the system,
so that the interactive user or other models can take advantage
of them. It becomes especially important when meta-learning
algorithms are constructed, so it is worth to introduce a
special repository for this kind of information. A uniform
results repository makes analysis of model results model-
independent and facilitates very deep meta-level analysis with
simple means. We can not rely on the data contained within
the models, because sometimes it is worth to keep the results
available even when the model itself is no longer needed, for
example in multiple tests like cross-validation, the validated
models must usually be released to save memory, but keeping
the most important results allows for additional non-typical
analysis after the whole calculations are finished.

5) Software Development Kit (SDK): Successful data anal-
ysis framework must be assisted by easy to use tools sup-
porting the development of third-party components. The ex-
ternal developers should not be obliged to learn much of
the system internals. Defining the necessary stuff like model
configuration, its inputs, outputs and the results to be kept in
the repository must be as simple as possible, and obviously
clear examples, which can also serve as start points, must be
provided.

6) User interface: The ease of navigation within the system
can be obtained only if the parameters of the algorithms
in an intuitive way. Boxes with clearly marked inputs and
outputs, arrows displaying the flow of information and context-
dependent way of setting parameters seem to be very adequate
here.

7) Other ideas: There are plenty of other problems, which
must be solved to get a fully-functional framework, like
running under different operating systems, parallel calculations
on a group of computers with possibly different hardware
parameters and even operating systems, etc. In this article we
do not describe them, because we concentrate here on the
aspects of information exchange between the components and
the methods of saving time and memory.

A. Methods and models

In computational intelligence, the term method (or learning
method) is used to describe adaptive algorithms. A model
can be defined as the final result of application of a method.
In practice, the term model, often means a representation
of some fully-functional model performing approximation,
classification or other tasks (e.g. a neural network, a decision
tree, a k Nearest Neighbors model, etc.).

It is very popular to split knowledge acquisition process
into stages (including data preprocessing and final model
construction). So popular, that most data mining systems make
clear distinction between these stages. We observe that it
often leads to a misuse of learning strategies (for example a
supervised discretization is performed as a data preprocessing,
and then method capabilities are evaluated with a cross-
validation performed on the discretized data).

We propose a unified view of model without the distinction
of data preprocessing and proper model building, because in
fact, the border between data transformations and final model
is vague and gets completely ambiguous when we exploit
meta-learning techniques. In our approach the term model
encompasses a broader range of components, because from
the point of view of a general data analysis framework there is
no reason to differentiate between the algorithms for loading
the data, visualizing some aspects of data or other models,
testing classifiers or approximators, etc. For example a cross-
validation test can be treated as a model, because it also
performs some calculations to gather some information—in
this case the information about series of results obtained with
some adaptive processes. The output it generates can also be
an input for other models: for example some algorithms con-
trolling statistical significance of differences between different
methods results.

1) Models abstraction: In our approach, a model is a result
of application of an algorithm with some particular parameters
to particular input data. It is an information carrier—this
information may be passed to other models by means of
model outputs (see figure 1). Such abstract idea of model
fits different algorithms corresponding to different levels of
abstraction. In other words, the general definition encompasses

53

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

�

�

�

�

�

�

�

�

�

�

�

�

Inputs OutputsModel

(simple or complex)

Model
configuration

Fig. 1. Abstract view of a model.

not only components mentioned above (classifiers, data load-
ers, visualization techniques, tests like cross-validation, etc.),
but also any part of a complex algorithm. For example we can
split the SVM methodology into several stages: separate the
kernels calculations from quadratic programming tasks etc. In
this way we obtain a submodel of SVM, which calculates the
kernels—it is a proper model in the sense of our approach,
because it precisely defines the input data, kernels parameters,
and yields outputs in the form of a table of kernel values.
Such solution is very attractive from the point of view of
the efficiency of calculations. If we start another adaptive
process of the SVM, which does not differ from the first
one with respect to the kernels, then the kernel part may be
shared between the two SVM models and this way we obtain
significant savings in both memory and computational power
consumption. The unification of the kernel submodel can be
performed automatically by appropriate design of the project
management part of the system engine provided that the inputs
and parameters of models are also uniform, so can be handled
in the same manner on a high level of abstraction.

Also when we use the same data transformation technique
as a preprocessing stage for two different learning machines,
there is no reason to perform the transformation twice and
occupy twice as much memory. If the data transformation is
implemented as a separate model, then the model management
routines will notice the unification possibility and will use the
same transformation model for both algorithms.

Another spectacular example of memory and power savings
are the families of feature selection and vector selection
methods. We do not need to copy data, when we select a subset
of features or vectors. Thanks to submodels extraction we may
obtain the same submodel representing the whole data set for
each of the models, and the subsets may be defined by sets of
indices which usually occupy significantly less memory than
the corresponding data subset. Although the access to such
selected features or vectors must be a bit more expensive than
in the case of copied data, proper definition of the enumerators
makes the difference not too large, and savings which result
from not copying the data will usually compensate the loss.

2) Inputs vs parameters: One of the ideas mentioned above,
that require some additional comment is the distinction be-
tween inputs and parameters. Formally the function of inputs
is to provide means for exploiting outputs of other models,
while parameters do not interfere with external models but

Fig. 2. Decision tree model structure

specify how the adaptive process of the model will operate on
inputs to generate outputs and results.

3) Outputs vs results: The distinction between outputs and
results is subtler and concerns the way they can be used by
external models. Both are the effects of the adaptive process of
the model, but the results are deposited in a special repository,
which makes them available even after the model itself is
released. From the other side, outputs nature is to provide not
only static information about the results, but also methods,
to perform the task of the model (e.g. classification), while
results repository is rather predestined to contain objects with
sort of static information. Although the methods of the result
objects may also provide extended functionality, it is not
recommended to mix the solutions this way.

4) Model structure example: An example of the scenario
with inputs, parameters, outputs and results is shown in
figure 2. It shows a decision tree model with single input of
training data and some parameters of the adaptive process. The
model exhibits classification routine as its output and deposits
some numbers in the results repository. We can use the output
to classify other data sets. This operation makes sense only
while the decision tree model is fully available. When the
model is tested within a cross-validation, where in order to
save memory we do not keep in memory all the models built
in each fold, the classification routines of the released models
are not available, however it is still possible to analyze the
results in the repository, for example to check the numbers
of tree nodes obtained in each fold, calculate their averages,
standard deviations, etc.

B. Information exchange and complex model structures

The information exchange between models is a crucial
feature of an effective system. Indeed almost everything data
analysis systems do, is an information exchange or preparation
because of information exchange. Separate models are not
satisfactory even in the simplest cases. For example, when
planning a cross-validation we need some submodels to learn
and some others to perform the tests. There are many reasons,
for which the possibility of building complex structures of
models is obligatory for contemporary data analysis tools.

1) Modular structure: Any model may contain a number of
submodels of any type and any level of abstraction. Also a sin-
gle model may have submodels of different types (for example
few feature selection models and few vectors selection models
plus one simple committee). The submodels can be seen as
slaves of the parent model. The submodel does not need to be

54

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

of a simple type—it may also be a more or less complex model
(e.g. ensemble of complex models, meta-learning, testing
model, etc.). Such solution is important in many cases: some
typical applications are testing models (repeaters, monte carlo,
cross-validation), ensembles, meta-level methods and others.
The submodels can be called and used up to the needs of the
parent model—the parent model may for example create 1000
models and after that choose three of them and destroy the rest.
The important view of submodels cover also the unification
level for nontrivial models as it was already presented in
the previous subsection by the example of the SVM model
which may contain a submodel devoted to the management
of the kernels. Because of such definition, models become
clearer and much more effective. Such model splits should
be performed wherever the adaptive process consists of some
naturally separable parts.

2) Input–output interfaces: Models may be connected us-
ing input and output interfaces which play the role of plugs and
sockets. And as in the world of plugs and sockets they must
be compatible (in types and features). The connections are the
way of information exchange between models. Output types
define exact possibilities of the outputs. It may happen that a
single model will have a few different outputs and/or will need
a few inputs. Thanks to the inputs and outputs different types
of models may be connected to interact (for example clustering
model with data loader, classifier with transformer, tester with
approximator and data, etc.). Figure 3 presents an example.
Dependently on the type of connections, the first model may
understand the second one deeper or shallower (according to
the needs which always are declared in the specification of
inputs).

3) Scheme boxes: Another concept is derived from the
nature of flow diagrams. It arose from planning maximum ver-
satility and optimal usage of computational power. A scheme
box is a specialized type of model to deliver possibilities of
enclosing a variety of models and their connections using
DAG’s (directed acyclic graphs) at the same level of model
dependencies. Each pair of models in the scheme box are
regarded to be in sibling relation (in contrary to the submodel
concept described above, where models are in a parent–child
relation). A scheme box may be equipped with inputs and
outputs like any other model. Because of that, the scheme
may also play the role of a submodel while representing
some complex behavior. Scheme inputs may be connected
with appropriate model inputs inside the scheme and the same
concerns the outputs. The combination of the two concepts of
scheme box and submodels allows to build models of any
complexity with high efficiency (graphs of graph’s).

A good example of how to use the scheme boxes is a model
performing cross-validation of classifiers. In our system, it is
a specialization of a general model called repeater, which is
responsible for multiple running of (possibly complex) scenar-
ios. The repeater model is based on the concept of distribution
boards and distributors. This means that each repeater uses
an external distribution board model to generate inputs for
subsequent runs of the repeated procedure. A distribution

board is allowed to generate a number of input collections,
which are provided to other models by a number of instances
of a special model called a distributor. Each distribution board
defines what distributors may be used with it, so that the
repeater can do its job without compatibility clashes. The way,
a repeater operates is the following:

• a defined number of times it produces an instance of the
distribution board (according to its configuration),

• for each distribution board it generates a number of
distributors (according to the information supplied by the
board output,

• for each distributor, it constructs a hierarchy of models
defined by a scheme box with inputs collection compat-
ible with the distributor.

In the case of repeated CV test, we define the CV repeater
as a repeater with distribution board fixed to CV distribution
board, which appropriately generates a given number of pairs
of train-test datasets. Each pair of datasets is exhibited by a
distributor, and is used to perform a single CV fold.

At the configuration stage the CV model may look like
the one in figure 4. The dotted lines connecting the CV
Repeater with the CV Distr Board and the scenario scheme
box, show the parent–child relation between the models. The
CV distribution board has a single input defining the dataset
within which the CV is to be performed and a single output
providing information about the distribution board (how many
distributors are needed and how to create their outputs). The
proper scenario, which is to be repeated, is defined as a
scheme-box. In this case it uses two inputs (corresponding to
the training and test datasets respectively) and allows the user
to define its interior i.e. to put there required models and bind
their inputs and outputs. A complex structure of models can be
generated (including data transformations, classifiers etc.). The
example shown in the figure will train two classifiers (kNN
ans SVM) in parallel and test each of them in each fold of the
CV.

At runtime the CV model acts as standard repeater model
(described above). So, it creates given number of CV distri-
bution boards, a number of distributors (equal to the product
of the number of repetitions and the number of CV folds) and
for each distributor, instantiates the scenario defined within
the scheme box. Full view of twice repeated 2-fold CV of the
scenario defined in figure 4 is presented in figure 5. Again, the
dotted lines show the parent–child relation between the CV
Repeater and all of its submodels. Obviously the CV repeater
model may also control the results obtained with all of the
children, calculate statistics etc.

There are no limits on the types of models that may occur
within a scheme box. We can place there different transform-
ers, classifiers, approximators, ensembles, testers, help models,
data loaders, etc.

Another advantage of scheme boxes is that they can be used
to define templates at model configuration phase (a template of
a classifier or other type of model—remember that a scheme
with a classifier output may play the same role as other
classifiers while having possibility to consist of more than one

55

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

�
Data

� �

�Data transformation
� �
kNN

Fig. 3. Input and output interfaces. Circles on left and right sides of boxes represent inputs and outputs respectively.

�Dataset

CV Repeater

� �CV Distr Board

�

�

� �kNN

� �SVM

�

�

�

�

TestA

�

�

�

�

TestB

Fig. 4. Configuration of a CV Repeater for classification.

�Dataset

CV Repeater

� �CV Distr Board

� �CV Distr Board

� �

�

Distr �

�

� �kNN

� �SVM

�

�

�

�

TestA

�

�

�

�

TestB

� �

�

Distr �

�

� �kNN

� �SVM

�

�

�

�

TestA

�

�

�

�

TestB

� �

�

Distr �

�

� �kNN

� �SVM

�

�

�

�

TestA

�

�

�

�

TestB

� �

�

Distr �

�

� �kNN

� �SVM

�

�

�

�

TestA

�

�

�

�

TestB

R1/F1

R1/F2

R2/F1

R2/F2

Fig. 5. CV Repeater of figure 4 at runtime.

model). It is especially useful in meta-learning (see section III-
C.4 and figure 6).

4) Information exchange using inputs, outputs and results
repository: There is a natural correspondence between input
and output interfaces. They are responsible for information
exchange both in the time of learning and in the further life-
time of a model. The connections are determined within model
configuration (by the interactive user or enforced by parent
models). Models connected to others may open appropriate
inputs and read information from them. The structure of the
information depends only on the functionality of the input type
or more precisely on the source model output type properties

which are real objects of concrete types. The type indicates a
level of abstraction, for example consider two outputs: SVM-
classifier and classifier. The classifier output can be seen as
any classifier so it gives access to some general classification
routines, however in the lifetime it is a concrete classifier
(possibly SVM) but it is of no interest when used for example
by an ensemble of classifiers or cross-validation. For some
other models it may be very important to read information
which is accessible only from SVM-classifier output (such
output may express additional information related to SVM
models). It may be the case when a model has specialized
submodels for given purposes. A model may read information

56

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

from parent or sibling models via input–output connections. A
parent model may read from its child models through known
child’s outputs. Model outputs are also used by visualization
and reporting tools.

Interesting information may be found also in the results
repository. The main goal of this repository is to provide a
common way for commenting on models which is especially
useful for testers. There is no obligation for the models to
use the results repository. It is rather an opportunity to present
interesting information. Results repository collects information
from every model in the project. In fact the repository is
distributed according to the structure of the project and it can
be read and analyzed in different ways by a special query
system. The answers are special objects (with special output
types) available as any other outputs, so they may be analyzed
by other models (typically by testers, statistical significance
analysis methods and especially by meta-learning methods).
Results analyzed for example by one of meta-learning model
may be again a source of information for another level of
abstraction (may be after some pruning if necessary).

There are other levels of unifications in our system which
correspond to visualizers, reporting methods, data loading and
exporting or working with different types of data. We can not
present them all here, because of the space limit.

C. Models manipulation

1) Project manager: Full advantage of the models abstrac-
tion described in section III-A.1 can be taken only with ap-
propriate model management. Models are defined and trained
within the graph of models, which can be called a project.
Providing efficient mechanisms for adding new nodes to the
graph, defining input–output connections, etc. are the tasks of
a project manager.

In order to efficiently configure models, bind their inputs to
compatible outputs, etc. project manager should be equipped
with repositories of model types, their inputs, outputs, etc.

2) Models reuse: Supporting models configuration and
navigation within the project is an important part of a data
analysis system, however the most important part of the project
manager seems to be the module for model management,
which in particular is responsible for models unification and
multiple use of the same component. The repository of all the
models in the project augmented by configuration comparison
routines can do the job. It is easy to verify whether the inputs
of two models are the same. If apart from that each model
configuration provides a method to compare two configuration
objects, it is easy to recognize when a model can be reused. In
conjunction with the model abstraction ideas, which suggest
splitting complex models to several more specialized ones
(extracting kernels from SVM, building appropriate models for
data tables, etc.), the model manager will facilitate reuse of
models parts, and therefore will reduce the time and memory
consumption.

The model reuse may be much broader, when we supply
the system with model cache. The models released from

the project may be kept in the cache for some time, and
possibly be reused in the future. Different types of cache may
be implemented. The simplest one keeps models in memory
during a single session (obviously with additional conditions
determining when to finally release the model). Another cache
module may keep the models in a database stored on a disk,
which allows for models reuse among sessions. Yet another
cache system could be designed as a network server and
provide mechanisms for sharing models by many users of the
system. This would allow for reliable comparison of results
obtained with different models for popular data sets without
the need for recalculating results of all the models used in the
comparison.

3) Complex navigation with no consequences for SDK
users: It is very important to design the project management
module in a manner which does not burden SDK users with the
necessity of deep familiarity with the engine mechanisms. To
keep new model development as simple as possible, the cycle
of model life must be very simple: each model is configured
first and then its adaptive process is started. When the learning
is finished the model is fixed and will not change in the
future—there is no need to implement the ways of reaction
to the changes in other models. This is the point of view of a
programmer developing models. From the point of view of a
user, each model may be reconfigured and trained many times,
but in fact, each time a new model is constructed or reused.
Thus, it is very important to sensibly split complex models
into a set of smaller ones, because this will make submodels
reuse more frequent.

Appropriate design of the SDK and basic models available
in the system can “enforce” proper models construction by
SDK users. For example, in our system, the methods of feature
selection based on rankings of features are defined in such a
way, that the ranking is an output of a submodel. Adding new
ranking based selection to the system consists in creating just
the ranking submodel.

4) Template model structures: Especially for the purpose of
meta-learning, model schemes may contain abstract boxes—
placeholders which are filled with a concrete model or scheme
determined in the meta-search process. Figure 6 presents an
example of a meta-learning model configuration with such
a template. The meta-learning here will search for a trans-
formation (different transformations, which in particular may
be complex structures of transformations, will be tried in
place of the “Trans. template”) maximizing some measure
of quality of the collection of classifiers (the scheme output
is a multi-output i.e. a collection of classifiers—in this case
a collection of three classifiers: “Classifier 1”, “Classifier
2”, and “Decision module” which combines decisions of the
four classifiers). Please notice that transformations “Trans. 1”
and the template are shared in a very natural way, saving
computational time and memory (in meta-learning taking care
of as small complexity as possible is especially important).

57

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

�Dataset

� �

�
Meta
learning

Scheme input
training & test

Scheme output
classifiers

�

�

�

� �

�

Trans. 1

� �

�

Trans.

template

� �

�

Trans. 2 � �Classifier 2

� �Classifier 1

� �Classifier 4

� �Classifier 3

� �

Decision

Module

Fig. 6. An example of meta-learning model with transformation template.

IV. SUMMARY

The system, we present the part of here, is very general but
still highly effective. Thanks to its modular structure nothing
must be reimplemented or recalculated. The possibilities of
building models of any complexity facilitates any composi-
tions of known methods (and methods that will be available
in the future too).

Thanks to general and flexible engine, new models (also
the complex ones) can be implemented effectively with the
SDK. Moreover, by means of SDK any type of models can
be implemented (classifiers, approximators, testers, measures
and even models of completely new types already unknown).
Models in the project are connected using input and output
interfaces in a natural way giving the opportunity to efficiently
exchange information, and the results repository collects some
additional data (comments) about the models. The project may
contain any number of data sources, any number of simple
or complex models of any kinds, which can cooperate or
coexists in several ways. Such models may easily exchange
information on different levels of abstraction. The versatility
of the system predestines it to a broad range of applications
including the most sophisticated ones like advanced meta-
learning approaches. The riches of different models and their
types opens the gates to powerful exploration and explanation
of data and can not be compared to any already existing
system.

ACKNOWLEDGEMENT

The research is supported by the Polish Ministry of Science
with a grant for years 2005–2007.

REFERENCES

[1] N. Jankowski and K. Grąbczewski, “Learning machines,” in Feature ex-
traction, foundations and applications, I. Guyon, S. Gunn, M. Nikravesh,
and L. Zadeh, Eds. Springer, 2006, pp. 29–64.

[2] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
Wiley, 2001.

[3] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
University Press, 1995.

[4] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, ser. Springer Series
in Statistics. Springer, 2001.

[5] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge:
Cambridge University Press, 1996.

[6] B. Schölkopf and A. Smola, Learning with Kernels. Cambridge, MA:
MIT Press, 2002.

[7] I. Guyon, “Nips 2003 workshop on feature extraction,” http://www.-
clopinet.com/isabelle/Projects/NIPS2003/, Dec. 2003.

[8] I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Feature extraction,
foundations and applications. Springer, 2006.

[9] I. Guyon, “Performance prediction challenge,”
http://www.modelselect.inf.ethz.ch/, July 2006.

[10] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier, “Meta-learning
by landmarking various learning algorithms,” in Proceedings of the
Seventeenth International Conference on Machine Learning. Morgan
Kaufmann, June 2000, pp. 743–750.

[11] P. Brazdil, C. Soares, and J. P. da Costa, “Ranking learning algorithms:
Using IBL and meta-learning on accuracy and time results,” Machine
Learning, vol. 50, no. 3, pp. 251–277, 2003.

[12] H. Bensusan, C. Giraud-Carrier, and C. J. Kennedy, “A higher-order
approach to meta-learning,” in Proceedings of the Work-in-Progress
Track at the 10th International Conference on Inductive Logic
Programming, J. Cussens and A. Frisch, Eds., 2000, pp. 33–42. [Online].
Available: citeseer.ist.psu.edu/article/bensusan00higherorder.html

[13] Y.H., Peng, P. Falch, C. Soares, and P. Brazdil, “Improved dataset
characterisation for meta-learning,” in The 5th International Conference
on Discovery Science. Luebeck, Germany: Springer-Verlag, Jan. 2002,
pp. 141–152.

[14] W. Duch, “Software and datasets,”
http://www.phys.uni.torun.pl/˜duch/software.html, 2006.

[15] KDnuggets, “Software suites for Data Mining and Knowledge Discov-
ery,” http://www.kdnuggets.com/software/suites.html.

[16] T. Mitchell, Machine learning. McGraw Hill, 1997.
[17] R. Lowry, “Concepts and applications of inferential statistics,”

http://faculty.vassar.edu/lowry/webtext.html, Vassar College, Pough-
keepsie, NY, USA, 2005.

58

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

