
 
 

 

  

Abstract—Locally Linear Embedding (LLE) is an effective 
nonlinear dimensionality reduction method for exploring the 
intrinsic characteristics of high dimensional data. This paper 
mainly proposes a hierarchical framework manifold learning 
method, based on LLE and Growing Neural Gas (GNG), named 
Growing Locally Linear Embedding (GLLE). First, we address 
the major limitations of the original LLE: intrinsic 
dimensionality estimation, neighborhood number selection and 
computational complexity. Then by embedding the topology 
learning mechanism in GNG, the proposed GLLE algorithm is 
able to preserve the global topological structures and hold the 
geometric characteristics of the input patterns, which make the 
projections more stable and robust. Theoretical analysis and 
experimental simulations show that GLLE with global topology 
preservation tackles the three limitations, gives faster learning 
procedure and lower reconstruction error, and stimulates the 
wide applications of manifold learning. 

I. INTRODUCTION 
central problem in machine learning and data mining 
involves the development of appropriate representations 

of complex data. Most real data lies on a low dimensional 
manifold embedded in a high dimensional space. High 
dimensional data contain redundancies and correlations that 
hide important relationships. Data analysis can be used to 
eliminate these redundancies and reduce data complexities. A 
dimensionality reduction algorithm maps high dimensional 
data into a low dimensional space, revealing the underlying 
structure in the data. Dimensionality reduction, including 
linear and nonlinear methods, is a useful operation of data 
visualization and feature extraction in clustering and pattern 
recognition. Typically, Principle Component Analysis (PCA) 
[1], Multi-Dimensional Scaling [2], Linear Discriminant 
Analysis (LDA) [3], and etc. are linear dimensionality 
reduction methods, while Isometric Maps (ISOMAP) [4], 
Locally linear Embedding (LLE) [5], Laplician Eigenmaps 
[6], Self-Organizing Maps [7], and etc. are nonlinear 
dimensionality reduction methods. All of those operations 
can reduce the redundancies and retain the primary 
characteristics. Of these, LLE is an effective nonlinear 
dimensionality reduction algorithm, proposed first by Roweis 
in 2000 [8]. Compared with others, the notable advantages of 
LLE are: i) only 2 parameters have to be defined; ii) it can 
reach global minimization of the reconstruction error while 
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avoiding plunging into a local extremum.  
Although the LLE algorithm was demonstrated on a 

number of artificial and real-world data sets, several 
limitations restrict its wide application. The two parameters 
that have to be set are the intrinsic dimension d and the 
neighborhood number K, which greatly influence the results 
obtained. On the one hand, for the intrinsic dimension d, a 
high value magnifies noise effects, while a low value leads to 
overlaps in mapping results (excessively reduced). On the 
other hand, for the neighborhood number K, a lower 
neighborhood number cannot make reconstructions reveal the 
global characters of original data, while a larger 
neighborhood number causes a manifold to lose a nonlinear 
feature and to behave like traditional PCA [9]. Furthermore, it 
is found in our research that LLE is sensitive to initial data 
amount [24]. A lack of data cannot cover the support fields of 
manifold when local characteristics are lost, while excessive 
data will lead to incomplete reconstruction (also relative to 
the neighborhood number) and heavy computational 
assumption. 

Previous researchers have proposed a few improved LLE 
algorithms. One algorithm gives the selection of the optimal 
parameter K value [10], one gives a supervised algorithm 
SLLE [11], [12], and another gives a substitute algorithm 
HLLE based on Hessian Eigenmaps [13]. These algorithms 
do reduce the learning time, enhance the space partition 
ability, and reduce reconstruction error but cannot make LLE 
an adaptively optimal map, and are also restricted when a 
manifold is noised. 

We propose an algorithm called Growing Locally Linear 
Embedding (GLLE), which embeds the global topology 
learning mechanism in Growing Neural Gas (GNG) network 
and Competitive Hebbian Learning (CHL) rule. When 
topology learning is introduced, the improved GNG 
algorithm can not only map the probability distribution of the 
input manifold, but also reveal its intrinsic dimensionality 
[15]. What’s more, the number of neural nodes in neural 
network is fewer than that of the input pattern. That is to say, 
our proposed GLLE algorithm is capable of identifying the 
two parameters adaptively, reducing the time consumption by 
decreasing the samples reasonably and preserving the global 
topological and geometrical structures. It can be said that 
GLLE has greatly improved the applicability of LLE in 
nonlinear dimensionality reduction. The nonlinear 
dimensionality reduction method, unifying a differential 
geometric operator and topology learning, can keep the local 
features and preserve the global topology at the same time. 
On the same way, a linear transformation on spectrum matrix 
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M I M= −  makes the selection of the lowest eigenvectors 
become the selection of highest ones with the same 
eigenvalues, which makes the algorithm more stable and 
robust.  

Our research addresses the three limitations of LLE: 
intrinsic dimensionality estimation, selection of neighbors, 
and time consumption. Aiming at the limitations, the most 
contributions of this paper are to define the two parameters 
adaptively, decrease the computational complexity, preserve 
the global topology when locally embedding, and improve 
the robustness of the nonlinear dimensionality reduction 
algorithm.  

The remainder of this paper is organized as follows. 
Section 2 reviews the original LLE and the topological 
version of GNG briefly. In Section 3 we analyze the three 
limitations of LLE and present the improved manifold 
learning algorithm GLLE. Section 4 provides the 
performance analysis of LLE and GLLE by comparison. 
Section 5 presents experimental results of handwritten digits 
and multi-pose faces. Finally, Section 6 offers our 
conclusions and discussions. 

II. REVIEW OF THE LLE AND GNG 

A. The LLE Algorithm 
Locally Linear Embedding (LLE) was first proposed by 

Roweis and Saul in Science in 2000, and its primary idea is to 
reconstruct a nonlinear manifold by embedding a local linear 
hyperplane [8]. The major characteristics are that LLE is an 
unsupervised learning algorithm, can preserve the 
relationships between neighbors in manifold data and map the 
high dimensional data in low dimensional Euclidean space. 
LLE maps a data set 1 2={ ,  ,  ... ,  }, ∈ D

N iX X X X X R  

globally to a low dimensional set 1 2{ , ,..., },= ∈ d
N iY Y Y Y Y R , 

obeys d<D. The algorithm can be described in three steps: 
⑴  Find local neighbors of each point Xi using k-nearest 
neighbors.  
⑵  Compute constrained weights Wij that best linearly 
reconstruct Xi from its neighbors. Reconstruction errors are 
measured by the cost function: 

2
( )ε = −∑ ∑i ij ijj

i
W X W X                        (1) 

⑶ Compute low dimensional embedding vectors d
iY ∈R  

best reconstructed by Wij minimizing equation 
2

( )φ = −∑ ∑i ij ijj
i

Y Y W Y         (2) 

under the constraints 0iiY =∑  and  1 T
i iiY Y I

N
=∑ . The 

projecting cost function can be revised as  
2 2( ) ( ) tr( )φ = − = − =∑ ∑ ∑ T

i ij ij ij
i i

Y Y W Y I W Y Y MY  (3) 

where ×∈ N NM R  and ( ) ( )TM I W I W= − − . Now the LLE 
embedding problems are transformed to compute the bottom 
d non-zero eigenvalues of matrix M, in order to obtain the 
homoeomorphism maps covering the manifold data in high 
dimensional space [9]. 

B. GNG and its Improvement 
B. Fritzke [14], [16] proposed Growing Neural Gas (GNG) 

in 1995. As an unsupervised non-topology preservation 
self-organizing neural network, it initializes with random 
node numbers and little aprior information. By the dynamic 
node growing and dying mechanism, GNG can cluster and 
partition the input space satisfactorily. On the other hand, 
GNG can merely reflect the probability distribution of the 
input patterns, but cannot reveal the topological structure of 
the embedding manifold. Considering the properties of the 
original LLE, traditional GNG is improved on the topology 
preservation, which was inspired by Bruske et al [26]. 
Besides the growing mechanism in GNG, Competitive 
Hebbian Learning (CHL) rule [17] and edge-aging 
mechanism [15], similar to the Rival Penalized Competitive 
Learning [25], are introduced to model the constitution and 
update the topological structure. The improved GNG can 
preserve the geometric characteristics, and reveal the intrinsic 
topology and dimensional properties of the manifold data 
when those mechanisms are introduced [15], [22]. 

The improved GNG introduces the CHL rule and an 
edge-aging mechanism to preserve the formation of topology 
and form a relationship between the two nearest nodes to the 
current input. The comparison of the original GNG and the 
improved GNG with topological structure is shown in Fig. 1. 

III. GROWING LLE ALGORITHM 
Only two parameters, intrinsic dimension and 

neighborhood number, have to be pre-set in the original LLE, 
but the parameters can be identified only through 
experimental estimation or by reconstructing error. Because 
LLE computes an embedding for the training points obtained 
from the principal eigenvectors of a symmetric matrix, it can 
hardly project embedding manifold into affine subspace 
without distortion. These limitations, as well as the time 
complexity, restrict the applications of LLE [18], [19]. In this 
paper, the improved GNG with topological connections is 

  
Fig. 1: Mapping results of GNG and the topological GNG. (a) mapping 
result of the traditional GNG with no links; (b) mapping result of the 
improved GNG with topological connections. 
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introduced into the original LLE method, and a novel 
algorithm named GLLE is proposed. This section will 
expatiate the improvement in GLLE, including the two 
parameters selection, comparison of the time consumption 
and analysis of reconstruction error of GLLE. In the 
following analysis, it can be seen that the proposed algorithm 
can not only identify the two parameters adaptively, but also 
reduce the time consumption and memory usage, analyzed in 
this section. It can be said that GLLE improves the algorithm 
on adaptability and application.  

The proposed GLLE, an unsupervised nonlinear manifold 
learning method introducing topological learning theory, can 
be cast in the following framework firstly. 
 

Algorithm: GLLE algorithm 
Input: Data matrix X={X1, X2, … , XN}with N samples on the 
manifold. 
Output: Reduced data matrix YL and topological link matrix 
DL 
1. Compute the topological structure in the training of data 

matrix X by the improved topological GNG; give the 
reduced samples XL and topological distance matrix DL, 
where DL defines parameter K and d used in LLE 
adaptively. // by self-organizing the input samples a new 
topological structure will be formed, with reduced 
samples XL and edges between them, covering the 
manifold with their Vorinoi field.  

2. Compute the weights ijW ′  that best reconstruct each data 

point XL from the linked neighbors as DL gives, with 
reconstruction errors are measured by the cost function: 

2
( )ε ′ ′= −∑ ∑L L

i ij ijj
i

W X W X . 

3. Compute the vectors YL best reconstructed by the weights 

W’, minimizing equation 
2

( )φ ′= −∑ ∑L L L
i ij ijj

i
Y Y W Y . 

As in (3) ( ) ( )φ ′=
TL L LY tr Y M Y , where matrix 

M ×′ ∈R w wN N  is ( ) ( )′ ′ ′= − −TM I W I W . Nw=rank(XL), 
means the number of reduced samples. 

4. With the constraints, it is possible to show that this 
minimization problem reduces to finding 

arg min
T

L

TL L

L L

Y
Y Y NI

Y M Y
=

′         (4) 

Using Lagrange Multiplier Method, where the Lagrange 
function now has the form 

2( , ) ( ) ( )
T TL L L L LY tr Y MY tr Y Y N Iλ = + Λ − ×L  (5) 

where the matrix Λ  contains the Lagrange multipliers as 
its diagonal elements. According to the other constraint 

0=∑ L
iiY , we discard eigenvector with the smallest 

eigenvalue. 
5. Construct a symmetric matrix ′= −M I M , with 

′ ′ ′ ′= + − ∑ij ij ji ki kjkM W W W W . Then the selections of 

bottom d non-zero eigenvalues and eigenvectors of M’ 
are transformed into the selection of top d non-one ones 
of M .  

6. Compute the d-dimensional projection data matrix YL 
with minimizing the embedding error. 

 

A. Estimation of Intrinsic Dimensionality 
The estimation of intrinsic dimensionality is a precondition 

problem that dimensionality reduction should envisage. The 
estimation of intrinsic dimensionality has been studied for 
years and some results have been presented, using maximum 
likelihood estimator, eigenvalues of the covariance matrix, et 
al [27], [28]. However, those proposed methods basically are 
experimental or identifying the residential variance curves 
after redundant computation [10], [20], which are just 
preprocessing procedures, and not suitable for nonlinear 
dimensionality reduction. 
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(c) 

Fig. 2: Estimation of the intrinsic dimensionality by topological connection. 
(a) One-dimensional mapping of two-dimension. (b) Two-dimensional 
mapping of three-dimension. (c) Statistical analysis of the relationship 
between connections (y-axis) and intrinsic dimensionality (x-axis). 
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In GLLE, the intrinsic dimensionality can be estimated by 
the formed stable topological structure. Because CHL rule is 
introduced, GNG is not only capable of revealing the 
probability distribution, but also mapping the geometric 
features, furthermore, forming an optimal topological 
structure [17]. With Monte-Carlo experiments, we can 
obviously find the relationship between connection and 
dimension. On an average each node connects to other 2 
nodes in 1-dimensional space, while connects to 4 nodes in 
2-dimensional space (GridTop). Analogically there are 
similar results in other integer dimensional spaces.  

We conducted many virtual manifold data experiments 
with the intrinsic dimensionality 0<d<40. From the 
Monte-Carlo statistical analysis results shown in Fig. 2, it can 
be obviously seen that topological structures are truly capable 
of estimating the dimensionality. The difference of 
connecting edges is much different from other 
dimensionalities, as shown in Fig. 2(a) and 2(b), and in the 
same dimensional space, the variance of connecting edges is 
small enough. It is practical to deduce the intrinsic 
dimensionality of the input manifold data by formed topology. 
Points in Fig. 2(c) mean the average values of the network 
edges in various dimensionalities, while the variance bar of 
each point is also shown. After self-organizing the manifold 
data, GNG can expediently estimate its intrinsic 
dimensionality, which can identify the parameter of 
embedding dimensionality. Thus it can be said the intrinsic 
dimensionality can be estimated by computing the average 
connections of each node in the topology.  

B. Dynamic Selection of Neighborhood Numbers 
Like the parameter of the dimension d, the selection of the 

neighborhood number K is also important to the original LLE. 
If the neighborhood number K is larger, the algorithm will 
ignore even lose the local nonlinear features on the manifold, 
just as the traditional PCA performs. In contrast, if the 
neighborhood number K is defined smaller, LLE will split the 
continuous manifold into detached locality pieces, because 
the global characteristics are lost. The selection of K value is 
another key of dimensionality reduction, and there have been 
a lot of papers giving various identifying methods [10], [21]. 
But these papers explain only the relationship of 
neighborhood number and embedding dimensionality: K>d, 
rather than give the optimal selection of K value, including 
the analysis of interior and edges of the manifold, according 
to the input topological spaces. Under CHL rule [17], the 
proposed GLLE algorithm defines the optimal neighborhood 
of each node to optimizing the local linearity. 

For a uniform distribution of input, the optimal value of the 
parameter K should minimize the residential variance:  

2
opt arg min(1 )

X YD DK
K ρ= −                        (6) 

where DX and DY are the Euclidean distance (between pairs of 
points) matrix of X and Y separately, and ρ is the standard 
linearly relative coefficient. Theoretically, less residential 
variance leads to better embedding effect. Because the 

Euclidean distance is irresponsible, the reconstruction errors 
go up and down along with K value. For example, there is a 
global minimal value of parameter K when K<5 in face 
dataset, which is because when K is little, all of its neighbors 
is in the vicinity. The K value increases, the error decreases, 
so Kopt is not in K<5. Until K=22 the optimal neighborhood 
nodes are affirmed [10], as shown in Fig. 3. 

By computations and statistical experiments the parameter 
K value of the topological neighbors in the proposed 
algorithm is according to the Kopt basically; moreover, for the 
adaptability of neighborhood selection, GLLE works with 
less error than fixed Kopt. 
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Fig. 3. Neighbor-error curve and the value Kopt 
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Fig. 4. Comparison of the time consumptions 

C. Reduce the Complexity of Algorithm 
The original LLE needs to computer all the distances 

between a couple of nodes. Because the input space needs to 
be cover wholly, the initializing sample points should be 
created to distribute uniformly. Thus it will consume 
considerable memorizing space and time, lowering its 
adaptability. After self-organization of GNG, the improved 
algorithm covers the support field of the manifold with fewer 
reference vectors, preserves the most properties and reduces 
time and space consumptions greatly. 
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i. Time complexity of the original LLE [10]. Parameter N is 
the number of the initializing samples, D is the 
dimensionality of the high dimensional space, and K is the 
neighborhood value. Thus the time consumption is described 
as follows. 

 Searching for neighbors：O(DN2) 
 Computing the reconstruction weights: O(DNK4) 
 Computing the minimal eigenvalues: O(KdN3) 

ii. Time complexity of the GLLE. Parameter Nw is the node 
number after self-organizing, Kmean is the mean of the 
dynamic neighbors, and TN is the training times, with TN≤10 
generally. 

 Self-organizing time consumption of GNG, 
concluding training time, searching for nearest 
neighbors and updating the weights: TN×O(Nw㏒ Nw) + 
O(DNw

2) 
 Computing the reconstruction weights: O(DNwKmean

4) 
 Computing the minimal eigenvalues：O(KmeandNw

2) 
Comparing the time consumption between the LLE and the 
proposed GLLE, because wN N  and mean optK K≈ , the 

time consumption of GLLE is much less than that of LLE. 
The time consumption of the original LLE algorithm ascends 
polynomially with the increasing of the initializing samples, 
while that of GLLE ascends linearly. The comparison of the 
time consumption between the two algorithms is shown in 
Fig. 4, with abscissa meaning initializing samples and y-axis 
meaning time (s), under the condition of CPU: Athlon XP 
2500+, Matlab 6.5 in Windows XP sp2. 

IV. PERFORMANCE ANALYSIS OF GLLE 
This section will show some performance analyses on LLE 

and GLLE. Some typical manifold data like Swiss Roll and 
S-curve [8], [19] are applied in the analyses. We will observe 
the difference between the nonlinear dimensionality 
reduction methods while topology preservation and Hessian 
operator are introduced. What’s more, a manifold of 
multi-pose and multi-expression faces is analyzed. 

A. Dimensionality Reduction with Topology Preservation 
In the performance analyses the unraveling objects is 

smooth sub-manifolds of Swiss Roll and S-curve embedding 
in 3-dimensional space. The unraveling results of the original 
LLE can be seen in reference [8], [19]. It can be seen that the 
manifolds are unfolded flat, but some parts are compressed 
overmuch. While GLLE covers the support fields of the 
manifolds by self-organizing learning, and the results without 
any contractive instances are much better than the original 
LLE, as shown in Fig. 5 with the training times TN=5. 

 
(a) 

 
(b) 

Fig. 5: Unraveling results of GLLE with the simulations of Swiss Roll and 
S-curve. Obviously seen that the results are much regular and plain in 2-D 
observed space. (a) Unraveling results of Swiss Roll by GLLE; (b) 
Unraveling results of S-curve by GLLE 

There are topological connections in the network after 
self-organizing learning, and the nodes cover the entire 
manifold with their Voronoi fields, as shown in Fig. 6. That is 
to say, the manifold can be described as the neural nodes 
spatially. 

 
(a) 

 
(b) 

Fig. 6: The unraveling topological structure in 2-D observed space. (a) the 
Voronoi region of the GLLE nodes; (b) covering the support field of the 
whole Swiss Roll manifold in the Fig. 5 (a). 

B. Visualization of High-dimensional Data 
These years some manifold learning methods like LLE 

have been applied in multi-pose face recognition and 
video-based face track, and some satisfactory results are 
achieved [23]. However, there are still some problems never 
solved. For example, the original LLE is hard to deal with 
non-convex manifolds and mass irregular appearance 
manifolds. In fact, it is impossible that multi-pose face 
sequences distribute on a manifold uniformly, for some holes 
and noises existing. The GLLE algorithm has solved this 
problem. In the following experiments it is obviously seen 
that GLLE preserves the arranging directions, while LLE 
cannot unfold the face sequences completely and some 
superposition appears. 

In the following experiment the Frey Face dataset 
(available at http://www.cs.toronto.edu/~roweis/data.html) 
has been chosen, with 1965 images in it. Each image is a gray 
picture of 20×28 pixels. Some typical faces are shown in Fig. 
7. Setting each image to a high-dimensional vector D=560, 
the face sequences are transformed to matrix X. then the 
simulation results mapped by LLE and GLLE are shown in 
Fig. 8 separately. The result of the original LLE is hardly 
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satisfying for its superposition and holes, with some different 
faces mapped into vicinity. On the right side, the result of 
GLLE is satisfying with the multi-pose face changing 
directions shown in the figure clearly. As can be seen, the 
face images are mapped covering the whole field, with 
partition of the open mouth faces and the closed mouth faces. 
The results of GLLE can reflect the intrinsic properties, i.e. 
pose and expression, better than LLE. The mapping result of 
all 1965 face images by LLE is shown in Fig. 8(a).  

 
Fig. 7: Typical images in Frey Face dataset 

Supposing the embedding error 0ε →  in GLLE, then the 
reconstruction face is obtained as follows: 

i ij ijjY W Y= ∑                    (7) 

It is noted that, because the proposed algorithm reflects the 
probability distribution, the reconstruction faces may not be 
the exactly true faces. That is to say, we reconstruct the faces 
linearly with the nearest neighbors in this experiment. Results 
are shown in Fig. 8(b). 

 
(a) 

 
(b)  

Fig. 8: Simulation results of Frey Face dataset by LLE and GLLE separately. 
(a) simulation results of LLE; (b) simulation results of GLLE 

V. SIMULATION RESULTS 
In this section, the datasets comprise of some commonly 

used datasets, the MNIST dataset and the ORL face dataset, 
and the simulation results are presented. The accuracies and 

time consumptions on these datasets are compared with the 
PCA [1], LLE, LDA [3] and PCA+LDA, which are classic 
and familiar algorithms. Different pattern classifiers have 
been applied for face recognition, including nearest-neighbor 
[30], Bayesian [31], Support Vector Machine [32], etc. In this 
paper, without loss of generality, we use the k-Nearest- 
Neighbor (k-NN) algorithm [30] as the classifier. 

A. Applied in Pattern Classification of MNIST Digits 
The MNIST database of handwritten digits has a training 

set of 60,000 examples, and a test set of 10,000 examples. It is 
a subset of a larger set available from NIST. The digits have 
been size-normalized and centered in 28×28 pixels gray- 
scale images. The data set are comprised of handwriting digit 
0~9 with its category information. Samples from the dataset 
are shown in Fig. 9. It is a challenge in these experiments to 
select the digits 4, 7, 9 as the input samples because of the 
small distinctions between them. In experiments, the training 
sets are randomly selected from the training set with each 
digit 1000 images, while the test sets are all images of digits 4, 
7, and 9 in testing set. K-Nearest-Neighbor (K-NN) algorithm 
is used as the classifier in common, with various K values of 1, 
3, 5, 11, and 17. 

 
Fig. 9: Digit samples in MNIST data set. In this experiment we only use digit 
4, 7 and 9. 

  
(a)                                            (b) 

 
(c)                                         (d) 

Fig. 10: The classification results of digit 4, 7, 9 in MNIST dataset by the 5 
algorithms and K-NN classifier. (a) PCA; (b) LLE; (c) PCA+LDA; (d) GLLE 

In experiments each algorithm is performed on the data set 10 
times, and the mean accuracies with stds in brackets are 
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shown in Table 1.  

Table I. Classification Accuracies (%) 

K-N
N PCA LLE PCA+LD

A GLLE

1 49.447 82.577 89.346 93.004
3 51.423 85.426 91.024 94.505
5 53.423 86.982 91.602 94.823

11 55.593 87.568 92.032 95.134
17 55.933 87.822 92.222 95.280

From the results it is obviously seen that GLLE performs 
excellently on this data set. In theoretical analyzing, the 
reason is supposed the data set has a character of large 
without-class variation and small within-class variation in 
initial high dimensional space. Thus mapping node weight 
links of within-class samples are stronger and denser than 
those of without-class samples. Also it can be seen that the 
accuracy of PCA+LDA is also high. The reason is that the 
LDA algorithm has used the category information of data, 
while others merely extract features based on statistical 
information.  

In the experiment we also find that the time consumption of 
LLE is larger than those of others, while the time 
consumption of GLLE in dimensionality reduction is as much 
as those linear algorithms. It can be said that our proposed 
GLLE outperforms LLE completely. 

VI. CONCLUSIONS AND DISCUSSIONS 
With various improving methods presented, the LLE 

algorithm can perform the dimensionality reduction better 
and better, and its applications are wider and wider in the 
visualization of high dimensional data and pattern 
recognitions [10], [11]. This paper proposed an improved 
Growing Locally Linear Embedding algorithm (GLLE), by 
introducing the CHL rule to preserve the topological 
structures in self-organizing learning, based on the traditional 
LLE and GNG. The proposed algorithm compresses the 
redundant information in manifolds and preserves most 
intrinsic properties at the same time. It is conformed that our 
proposed GLLE has overcome the 3 primary shortcomings 
[10] of the original algorithm, stimulating the applications of 
LLE. In manifold learning, it is supposed that the input 
samples are lying on a smooth convex manifold, and then the 
current LLE is applied. If the manifold is not smooth, or there 
are some out-of-sample inputs [29], the results will face the 
probability of collapse. GLLE has avoided this limitation by 
giving a judgment before unraveling by global topology 
preservation. Furthermore, the highlight of global 
preservation can also illuminate ISOMAP [4] as the selection 
of landmarks. 

Because the bottom minimal eigenvalues have been 
selected in numerical computations, LLE is sometimes not 
stable. In numerical computations, because the selected 
minimal eigenvalues are very close to 0, it is easy to induce 
singular eigenvalues and eigenvectors, which may introduce 

disturbances in the embedding processes and lead to 
deformed unraveling of a few samples or a sparse matrix. 
When the new matrix of selection the largest eigenvalues is 
introduced, the proposed GLLE can solve this problem 
satisfactorily, and increase the robustness of the algorithm. 
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