
A Novel Complex-Valued Counterpropagation
Network

Prem K. Kalra, Deepak Mishra & Kanishka Tyagi
Department of Electrical Engineering

Indian Institute of Technology Kanpur, India
E-mail: dkmishra@iitk.ac.in, kanishkaugee@gmail.com, kalra@iitk.ac.in

Abstract— The Counterpropagation network is a combination
of competitive network (Kohonen layer) and Grossberg outstar
structure. In this paper we have proposed a complex valued
representation on conventional forward only counterpropagation
network. Many researchers have investigated the computational
capabilities of neuron models for real values only. The novel
part of the paper is, while considering the complex values equal
weightage is given to both the real and imaginary parts. A
vectored approach is taken to compute the complex numbers
while implementing it with complex valued counterpropagation
network (CVCPN). The proposed network is tested on bench-
mark problem (two spiral problem), Julia’s set, rotational trans-
formations and color image compression. The complex valued
counterpropagation network (CVCPN) exhibits less percentage
of misclassification and error rate is considerably smaller when
compared to the equivalent model in Backpropagation network.
The learning of intermediate forms of vector classes, manipula-
tion with complex numbers, criterion for winning neuron, and
the results of the proposed network with various benchmark and
classification problems are discussed.

I. INTRODUCTION

Till now complex valued neural network was actively
used in backpropagation algorithm with complex weights and
complex valued neuron-activation functions, but this network
suffers with many limitations like it is slow with a large set of
data, lack of bounded and analytic complex nonlinear activa-
tion functions in complex plane[1]. Several approaches have
been suggested to process the complex data using backpropa-
gation algorithm [2]. Due to strong power of generalization
and simplicity in calculations, Counterpropagation network
has an advantage over backpropagation network.

Here the complex number theory is successfully applied on
forward only Counterpropagation network. Instead of linear
reduction in kohonen layer’s learning rate a new approach
of exponentially reducing the learning rate have been used.
Many algorithms have been developed in recent years that
works on neural computations techniques with complex values
[3]. Many of them have applied complex values on backprop-
agation algorithm using multilayer or multiplicative neurons
[2]. The processing of complex numbers with Counterpropa-
gation network is another plausible approach, which we have
explored in this paper.

Section II, describes the topology, training rules of the
Counterpropagation network. Section III, describes the mathe-
matical approach for sthe complex-valued Counterpropagation
network (CVCPN) and the algorithm used. Section IV, shows

the experimental results obtained from the proposed network.
Section V, summarizes on the proposed model as well as the
possible future work.

II. BACKGROUND

A. Forward-Only Counterpropagation Network

The network was introduced by Hecht-Nielson(1987,88)[4].
It is a combination of Kohonen network which clusters training
vectors by the adaptive vector quantization and approximates
the centroid of each vector class in a self organizing fashion
[5][6] and Grossberg outstar network which adapt the associ-
ated vectors through a supervised training method [4][7]. m,
the output vector y of the Kohonen layer becomes

[y1,y2...ym]=[0 0 ...1]

Such a response is generated as a result of lateral inhibitions
within the layer which needs to be activated during recall
mode [8]. The second layer is called Grossberg layer due to its
outstar learning mode (Grossberg 1974,1982). The Grossberg
layer with weights vij , functions in the following manner:

z= Γ(Vy)

With diagonal elements of the operator Γ being a sgn
function operating component wise on entries of the vector
Vy. The supervised learning rule for this layer is similar to
outstar learning rule.

B. Weight Updation Rules

Kohonen weight updation: When an input vector x is
applied to the input layer, the unit which has the closest
weight vector to the input vector is defined as the winner
unit. Generally euclidean distance is used as the criterion
for deciding the winner unit. For a particular ith hidden
neuron,given a set of input value presented to input layer,
nethi is calculated as follow:

nethi =
n∑

m=1

‖xm − wim‖ (1)

where ‖..‖ is the euclidean distance between two points. n is
the total number of input neurons. Let the winning unit in the

81

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

Fig. 1. Counterpropagation Network

hidden layer be the jth neuron then the weight vector of the
winner unit is updated by the following rule:

wj(t + 1) = wj(t) + α(x− wj(t)) (2)

where α is the learning rate which decreases with the number
of iterations The Kohonen weights are adjusted till stable
clusters are formed. The set of input vectors are thus classified
by this learning [9].

Grossberg weight updation: After the above Kohonen
weight updation, the weight vector wj is kept fixed and the
Grossberg weight vector vj between competitive layer and
output layer are adjusted by again applying the input vector
to the input layer. For ith hidden neuron, nethi is again
calculated using

nethi =
n∑

m=1

‖xm − wim‖ (3)

n is the total number of input neurons.When all X have been
fed into input layer then winner is decided using minimum
distance criterion.
Update vj for only those which are connected to the winning
neuron and the output, according to

vj(t + 1) = vj(t) + β(y − vj(t)) (4)

Here y is the desired output, j is the winning hidden neuron.
β is increased with the number of iterations.
Above steps are repeated till desired convergence criterion is
met.

III. THE PROPOSED MODEL

In its simplest version, CPN is able to perform vector to
vector mapping similar to heteroassociative memory networks.
This actually gave us the clue to treat complex numbers in

vectored manner and give real and imaginary part equal sig-
nificance thus following a real-valued approach. The weights
used in the network are also taken in complex form.

A. Network Architecture

The input layer contain n cells for distributing training
vector x, Kohonen layer with k cells produces output neth. This
neth being a real number is compared with other k-1 cells and
minimum neth is declare as winner. A fan-in structure, from
all input cells is thus created to the winning cell in Kohonen
layer. During training stage each complex value is fed into
Kohonen network for the self organizing classification. The
classification is done separately on real and imaginary part
of input values by a defined algorithm(described in the next
sub-section).

B. Training of input vector in Kohonen layer

We assume that wr(t) and wi(t) are the real and imaginary
components of Kohonen layer weight vector. After updation
they become wr(t + 1) and wi(t + 1) respectively. Then,

wr(t + 1) = wr(t) + α(xr − wr(t)) (5)

wi(t + 1) = wi(t) + α(xi − wi(t)) (6)

The network is trained until there is no significant change in
the updated weight and the old weight i.e

wr(t + 1) = wr(t) (7)

wi(t + 1) = wi(t) (8)

In that case the real and imaginary value of the input vector
is copied on to its corresponding weight vector. When this sit-
uation arises the training is said to be completed and this is the
stopping condition for the network. The weight vectors have
now settled near the centroid of each cluster. These clusters are
different for real and imaginary parts. The architecture of the
proposed model is similar to the conventional CPN network.
The criterion for deciding the winning element is an important
factor and needs an explanation here.

In competitive stage two other criterion for finding neth in
Kohonen layer were tested:
1) Selecting by dot product

nethi = min[
n∑

k=1

(xkwki)] (9)

2) Converting Cartesian into Polar coordinates. We convert the
cartesian form of xk=(xk

r,xk
i) into polar form (r1,Θ1) and

similarly for wkj=(wkj
r,wkj

i) into polar form (r2,Θ2).neth is
calculated as:

nethi = min[
√

r2
1 + r2

2 − 2r1r2cos(Θ1 −Θ2)] (10)

where r1,r2,Θ1,Θ2 are the polar coordinates of the input

82

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

complex number and the connected weight between hidden
unit and the input neuron.

Out of the above the dot product does not give satisfactory
results with non-binary values, converting cartesian to polar
coordinates does give results with non binary values but
requires large training time and number of hidden neuron.
Therefore Euclidean distance method or the nearest neighbor
method is found to be most suitable. The reason for taking the
minimum distance (and not the maximum) is that the distance
which is minimum is closest to a particular cluster, we then
update the weights in such a manner so as to bring it more
closer to the cluster thus moving that value to the centroid
of the cluster. We know that if x1 and x2 are two complex
vectors, then the Euclidean distance between them is given by

|x1 − x2| =
√

(x1
r − x2

r)2 + (x1
i − x2

i)2 (11)

Fig. 2. Forward-Only Complex-Valued Counterpropagation Network

If n be the total input neurons and k be the total number
of hidden layer neurons, then let x1,x2...xn are the complex
input given in the Instar layer. wr

11,wr
12...wr

1k are the real
and wi

11,wi
12...wi

1kbe the imaginary components of the weights
connecting the input x1 and the k

′th neurons of Kohonen layer,
similarly other weights are connecting input neuron and the
hidden layer. The Euclidean distance between x1 and w11them
is :

x1=xr
1+ixi

1

w11=wr
11+iwi

11

x1-w11=(xr
1-wr

11)+i(xi
1-wi

11)
|x1 − w11|=

√
(xr

1 − wr
11)2 + (xi

1 − wi
11)2

This is the Euclidean distance between any two points in a
complex plane. For a particular set of values of input vec-
tors x1,x2,x3...xu...xn we calculate the following real valued
quantity,

neth1 =
n∑

u=1

√
[(xr

u − wr
u1)2 + (xi

u − wi
u1)2] (12)

Similarly,

neth2 =
n∑

u=1

√
[(xr

u − wr
u2)2 + (xi

u − wi
u2)2] (13)

Generalizing it we get;

nethk =
n∑

u=1

√
[(xr

u − wr
uk)2 + (xi

u − wi
uk)2] (14)

The minimum of all neth (neth1,neth2....nethk) is calculated
and is considered as winner for that set of values of x. Figure

Fig. 3. Clustering process for real part of Input vectors

3 gives a pictorial representation of how the clustering process
take place after the complete training of network. For the sake
of simplicity we have shown clustering only for the real part of
input vectors, similar clustering takes place for the imaginary
part also. Here A,B...E are the input vectors (real numbers) and
WrA,WrB ...WrE are the real components of weight vectors. It
is only after the training that these weight vectors are oriented
at the center of the circle. This is what we mean when we say
that the weights are adjusted to the centroid of the cluster. The
bold line from origin to each cluster is the weight vector and
is the mean of all values of the vectors coming in that circle.
Observe that cluster 3 is not properly clustered as orientation
of vector D (which should be in cluster 2) is into this cluster.
Same is the case with cluster 4 where vector C is wrongly
directing towards cluster 4. This is a practical situation and is
the cause of error and misclassification. This can be removed
by either with more training or proper selection of α and β.

An important point to be noted here is that the disperancies
as whether the number will lie in 1,2,3,4 quadrants are
removed. That is to say that we’ll get a unique Euclidean
distance even if the magnitude of number is same. Therefore
we have spread out the clusters and now they are not confined
in a single quadrant. This is the advantage of using a vectored
approach, that we have implemented in our paper.

83

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

C. Training the Outstar Layer

Once the training in Kohonen layer is completed and all the
input vector have been clustered (both real and imaginary) the
vector x now makes a fan out connection from Kohonen layer
to the Grossberg layer and only weights in the Grossberg layer
are updated which are connected to the winning neuron. After
the training stage, output of the CVCPN are separate in real
and imaginary parts. They are again combined after the output
layer to give the complex output.

If each input vector in a cluster maps to a different output
vector, then the outstar learning procedure will enable the
outstar to reproduce the average of those output vectors when
any member of the class is presented to the inputs of the
CVCPN. A stuck vector problem is seen if we generate the
weights in the range of [-1 1]. Also to avoid the condition of
orthogonality of randomly generated weight vectors we have
used weight vectors in the range of [0 1]

D. Algorithm for training Complex-Valued Counterpropaga-
tion Network

Kohonen-layer training
The input data is first normalized (normalization is done

on real and imaginary part separately). We have used linear
normalization technique to normalize the input vector if they
are not in the range of [-1,1]. If x is the unnormalized vector
then its normalized form is given by

xnorm =
x− xmin

xmax − xmin
(15)

where xmax, xmin are the maximum and minimum values
of the input data presented to the network.
We have varied α exponentially from 0.9 to 0.1. The smaller
the value of α, less it will go far from the centroid region of
the cluster units.

Grossberg layer training
The weights connecting the winning hidden neuron and

output neuron are updated.The previous weights of Kohonen
layer are not updated at this stage. The learning rate parameter
β is also exponentialy increased from 0.1 to 0.5 in steps of
0.01.

The reason why the paramenters α & β are exponentially
changed is that the large number of values that we get as
compared to when we use linear change in these learning
parameters values. Due to these large number of values, the
centroid of the data set can be precisely located (for Kohonen
layer) and the centroidal values obtained can be accurately
copied on the outpur layer (for grossberg layer).
We assume that,
Total number of input neurons=n
Total number of Kohonen layer neurons=k
Total number of Grossberg layer neurons=g

The formal algorithm is as follows:

Phase 1 :
1. Initialize weights ∈(0,1) randomly.

2. repeat
Apply each of the normalized input to the competitive layer.

• for m=1,..., n, do :
(a) Calculate the distance between mthinput neuron

and jth kohonen weight vector according to:

nethj = ‖xm − wmj‖ (16)

where ‖· · ·‖ represents the Euclidean distance
and j=1,2,3...k.

nethj =
n∑

m=1

√
[(xr

m − wr
mj)2 + (xi

m − wi
mj)2] (17)

xr
m is the real part of the mth input vector, wr

mj

is the real part of weight connecting the mth input
vector to the jth kohonen layer neuron. xi

u and
wi

mj are the imaginary components input and
kohonen weight vector respectively.

(b) Find the winning cluster and call its index k∗ such
that neth∗k ≤ nethj , j=1,...,k..

(c) Update the weights connecting the winning cluster
unit and the input vector according to

wr(t + 1)mk∗ = wr(t)mk∗ + αt(xr
m − wr(t)mk∗)

wi(t + 1)mk∗ = wi(t)mk∗ + αt(xi
m − wi(t)mk∗) (18)

As done in conventional algorithms of CPN, here
there is no need to set the output of cluster or hidden
units as 1 or 0 depending on that minimum distance.

end-for;

• Learning rate α is decreased gradually during the training
algorithm according to :

αt = α0e
−a/a0 (19)

• α0 is set to 0.9, a0 is taken as 10 and a= 1,2,..q. a is
incremented after each set of input pattern is fed into the
network;
until performance is satisfactory or computational bounds are
exceeded;

Phase 2 :
1. Fix α at current level (from Phase 1) and initialize β;
2. repeat

• for m=1,..., n, do :

(a) Calculate the distance between mthinput vector
and kohonen weight vector according to:

nethj =
n∑

m=1

√
[(xr

m − wr
mj)2 + (xi

m − wi
mj)2] (20)

84

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

(b) Find a winning kohonen layer neuron with index
l such that nethl ≤ nethj , j=1,...,k.

(c) Adjust the outstar layer weights connecting the
winning lth neuron to the grossberg layer
g∗ according to :

vr(t + 1)lg∗ = vr(t)lg∗ + βt(yr
g∗ − vr(t)lg∗)

vi(t + 1)lg∗ = vi(t)lg∗ + βt(yi
g∗ − vi(t)lg∗) (21)

g∗ = 1, 2, 3...g

end-for;
• Decrease β, by a small constant in the same exponential
manner as α;
until performance is satisfactory or computational bounds are
exceeded.

E. Algorithm for testing or recalling from CVCPN

The CVCPN functions in the recall mode as a nearest
match look-up table. The difference from the usual table
look-up is that the weight vector ar obtained by the training
algorithm, rather than in an adhoc manner. The input vector
xr+ixi finds the weight vector wr

m+iwi
m that is its closest

match among k vectors available in the hidden layer.Then
the outstar weights vr

m+ivi
m which are fanning out from

the winning mth Kohonen’s neuron are updated. The output
given by the network is the statistical averages of the similar
kinds of input given in the training period.

Step 1: For each input value,repeat the step 2-4.
Step 2: Store the values of real and imaginary part of
Grossberg weights that are connected to the hidden cluster
unit and output neuron in different variables M and N.
Step 3: If the input was given in a normalized form de-
normalize them,else skip this step.
Step 4: The vector M+iN is the desired output.

IV. ILLUSTRATIVE EXAMPLES

For each problem, Intel(M) (Celeron Mobile), 1.5 GHz,
CPU with 256 MB RAM is used for simulation work with
MATLAB as the simulation software. Training and testing
data were normalized wherever necessary. It is observed that
the proposed model exhibits a more efficient learning in each
case. The number of misclassification is very less as compared
to an equivalent model of complex valued approach using
backpropagation algorithm[2]. It is due to the reason that in
the Kohonen Layer of CVCPN unsupervised and in Grossberg
Layer supervised learning is taking place. It is actually the
combination of two independent layer of different learning rule
that makes up the CPN and this basic structure is preserved
in our model also.

A. Julia’s Data Set

Julia’s set are non-euclidean objects whose dimension can
be any real number. A filled julia’s set corressponding to the
given values of the parameters a and b of the dynamical system

is the set of initial conditions (x(0),y(0)) resulting in bounded
system trajectories. The data comes from a set of sequence of
complex numbers called mandelbrot set. The mandelbrot set
of equations are taken as

zk+1 = z2
k + c, [z0 = 0 and c ∈ C]

z(k) = x(k) + iy(k) (22)

c = a + ib

Simplifying it we get

x(k + 1) = x2(k)s− y2(k) + a (23)

y(k + 1) = 2x(k)y(k) + b

We have tested our network with two modifications: The
first method is, we take input & output of the 10 × 10 matrix
into the single neuron. The results obtained are given below in
Table I. We observe that the training and testing time is more
but the number of misclassification is less. This is because due
to the fact that since the single neuron is processing the whole
data, so time taken will be more. But this form of network
gives less number of misclassification.

To take as the first set of initial conditions we set the
following values of

c=(a+ib)=0.2+i0.65
k=2

v=10

where:
c is a complex number used in the map f(z)=z2 + c
k gives the number of iterations
v determines the number of points on the x-axis

TABLE I

PERFORMANCE OF SINGLE INPUT CVCPN FOR C=0.2+I0.65, K=2, V=10

S. No. Parameter CVCPN

1 Number of hidden neurons 1000

2 Total Training and Testing time in minutes 2.36

3 Number of Parameters 60

4 Learning rate (α) 0.9-0.1

(β) 0.1-0.5

5 Misclassification 11

Another way of inputing the values is to take the 10 × 10
matrix in 10 neurons. One way of doing this is that we take
ten input neurons and feed the 10 × by 10 matrix. But in that
way we are actually training each neuron with only 10 input
values. The results obtained are not good and misclassification
are drastically increased. In our model we reshaped in a way
that we take 2 neuron as input and train them with 50 neuron.
In this the training set for each neuron is increased and the
misclassification are reduced significantly. Same values of
c,k,v are taken,and results are tabulated in Table II.

85

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

TABLE II

PERFORMANCE OF TWO INPUT CVCPN FOR C=0.2+I0.65, K=2, V=10

S. No. Parameter general CVCPN

1 Number of hidden neurons 500

2 Total Training and Testing time in minutes 1.10

3 Number of Parameters 60

4 Learning rate (α) 0.9-0.1

(β) 0.1-0.5

5 Misclassification 18

B. Rotational transformation

Here our aim is to show that CVCPN is capable of gen-
eralizing a transformation of complex number, when treated
as vectors. The original set of vector was transformed to 90o

clockwise. To convert the problem in complex domain the real
part of the complex input is used as the x-coordinate of the
data point and imaginary component as y-coordinate. Instead
of choosing points on a line to train the network [10] [11],
we trained it with points that are bounded within a rectangle
of known dimensions i.e. the points lie in a 2 dimensional
rectangular plane. These points which are complex in nature
are rotated by 90o clockwise, as a result the plane gets rotated
by 90o. This is the desired output and CVCPN is trained
with these data sets obtained. In testing the network we
presented a complex data set that resembled english alphabet
’T’, when plotted. Figure 4 shows the testing figure used
for transformation and the results obtained from the network.
Circled dots are the desired output ’T’ whereas the astrik
dots is the ’T’ learned by the network. Table III tabulates
the performance of the network.

Fig. 4. Training data points and output results for Rotational Transformation

The time taken by the network to generalize the transforma-
tion is very less when compared to either of real and complex
BPA.

C. Two Spiral Problem

The two spiral problem is found to be extremely tough
classification and generalization problem for BPA family. The

TABLE III

CVCPN PERFORMANCE FOR ROTATIONAL TRANSFORMATION

S. No. Parameter CVCPN

1 Number of hidden layer neuron 500

2 Training and Testing time (in sec) 22

3 Percentage Misclassification 0.52 %

4 Number of Parameters 31

5 Angle of rotation (in degree) 90

6 Learning rate (α) 0.9-0.1

(β) 0.1-0.5

problem when solved by a standard BPA takes more than 4000
iterations with a target error of 0.0001 [12]. The problem is
composed of two interwoven spirals in x-y plane, one training
to be a member of Class A, the other to Class B. Although
the classification is done in a highly non-linear region, the
problem can easily be solved using self look-up table. The
archimedean spirals are given by following polar equation:
r=Θ
where r is the radius vector and Θ is the polar angle. In
cartesian form we represent it by:
x=Θcos(Θ+Ψ)
y=Θsin(Θ+Ψ)
Ψ is the angle of rise of the spiral. In actual problem statement
the two spiral were chosen to be π radians apart. As the neural
network perform continuous mapping, the points in the vicinity
of the spirals should also get correctly identified. Therefore we
obtained the data set for spirals which are close to each other.
Total of 194 I/O values are taken for training and testing the
network. For uniformity in output result, 40-20-40 criterion is
used i.e. an output is considered to be a logical zero if it is in
the lower 40 percent of the output range, a one if it is in the
upper 40 percent, and indeterminate (and therefore incorrect)
if it is in the middle 20 percent of the range. We found that
using CVCPN only 1 misclassification was obtained with its
testing and training time is significantly reduced as tabulated
in Table IV.

TABLE IV

CVCPN PERFORMANCE FOR TWO SPIRAL PROBLEM

S. No. Parameter CVCPN

1 Number of hidden layer neuron 500

2 Training and Testing time (in sec) 29

3 Percentage Misclassification 0.52 %

4 Number of Parameters 36

5 Learning rate (α) 0.9-0.1

(β) 0.1-0.5

D. Color Image Compression

Two major problems have been tackled while using the
complex-valued CPN with image compression.
1) Mathematically any color image is a 3 dimensional matrix,
and to process it in complex domain, we have to reduce it in
either 2 or 1 dimension.

86

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

2) The 3 components associated with color image, red green
and blue components, when viewed together impart color
to any colored image. The problem that is faced is that all
the three components have equal contribution in the final
colored image. If the dimensionality reduction is done then it
is difficult to decide which two components have to be merged
and which component to leave intact so that it is processed
directly with the network.

We took the advantage of the fact that human eye is more
sensitive towards luminance of a image therefore we converted
the image into YCbCr color space. In this space Y represents
the luminance, Cb the blue component and Cr as the red
component. Therefore the strategy we followed is that we
combined the Cb and Cr components to a single component.
It is then combined with the Y component and fed into the
network in complex form. The output obtained is then broken
down into the 3 components and converted back to RGB color
space and displayed.

TABLE V

CVCPN PERFORMANCE FOR COLOR IMAGE COMPRESSION

S. No. parameter lena mandril text

1 Entropy 7.3216 5.2794 1.5623

(reconstructed image)

2 Entropy Loss 0.0297 2.4073 0.5287

3 PSNR 28.9195 22.7347 18.9415

4 RMSE 9.1320 18.6124 28.8049

5 SNR 21.4591 11.8918 13.6010

6 Hidden neurons 64 128 8

7 Compression Ratio 4:1 2:1 8:1

V. CONCLUSION

The advantages of complex valued counterpropagation net-
work are that the training rules used by CVCPN are not
computationally complex when compared to the complex
valued backpropagation network which are very costly in their
computational resources. Though there have been a number of
optimization methods invented but the overall complexity is
still higher for backpropagation networks. CVCPN is fast in
generalizing (rotational transformation problem), the number
of misclassification is also very less as compared to its
counterpart in real domain. This is because a self look up table
approach is the basis of counterpropagation network which has
been preserved in our network also.
It can be observed from the results that training and testing
time is not so high and performance of the network is highly
depended upon the winning criterion that we are taking.

Use of a more robust and faster algorithm that can do better
clustering, spatial arrangement, adding a biasing or conscience
to the network thus making use of dead or inactive neurons in
the hidden layer, unsticking the stuck vector and use of other
methods for dimensionality reduction like embedding magni-
tude of complex number in its phase are further areas that
need to be explored with complex valued counterpropagation
network.

REFERENCES

[1] Silverman H., Complex variables, Houghton, Newark, USA, 1975.
[2] A.Yadav,D.Mishra,S.Ray and P.K. Kalra,“Representation of Complex-

Valued Neural Networks:A Real-Valued Approach“,IEEE Procc. on in-
telligent sensing and information processing, pp.331-335, 2005.

[3] Akira Hirose, “Complex-Valued Neural Network:Theories and Applica-
tions“, World Scientific,2003.

[4] R.Hecht-Nielson,“Application of Counterpropagation Network“, IEEE
Trans.Neural Networks,vol 1,pp.131-141,1988.

[5] R.Hecht-Nielson,“Counterpropagation Networks“, Applied Optics,vol.26,
pp.4979-4984,1987.

[6] T.Kohonen,“Self Organization and Associative Memory“, 2nd Ed., New
York:Springler-Verlag,1988.

[7] G.Carpenter and S.Grossberg,“A massively parallel architecture for
a self-organizing neural pattern recognition machine“ Computer Ve-
rion,Graphics and Image Processing, vol.37, pp54-115, 1987.

[8] J.M.Zurada, “Introduction to Artificial Neural Systems”, Jaico Publishing
House,2005.

[9] J.A.Freeman and D.Skapura, “Neural Networks Algorithms,Applications
and Programming Techniques”, Addison Wesley Longman.

[10] T.Nitta,“An Extension of the Backpropagation Algorithm to Complex
Numbers“, Elsevier, Neural Networks, vol 10, no.8, pp.1391-1415, 1997.

[11] Kshitij Wat,“Complex Valued Based Neural Networks and Algorithms
for their Implementation“, M.Tech Thesis (2003), Department of Electri-
cal Engineering, Indian Institute of Technology, Kanpur.

[12] A.Prashanth,“Investigation On Complex Variable Based Backpropaga-
tion Algorithm and Applications“, Ph.D. thesis (2003), Department of
Electrical Engineering, Indian Institute of Technology, Kanpur.

87

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

