
A Prototype-driven Framework for Change 
Detection in Data Stream Classification 

Hamed Valizadegan 
Computer Science and Engineering 

Michigan State University 
valizade@cse.msu.edu 

Pang-Ning Tan 
Computer Science and Engineering 

Michigan State University 
ptan@cse.msu.edu

Abstract- This paper presents a prototype-driven framework 
for classifying evolving data streams. Our framework uses 
cluster prototypes to summarize the data and to determine 
whether the current model is outdated. This strategy of 
rebuilding the model only when significant changes are 
detected helps to reduce the computational overhead and 
the amount of labeled examples needed. To improve its 
accuracy, we also propose a selective sampling strategy to 
acquire more labeled examples from regions where the 
model’s predictions are unreliable. Our experimental results 
demonstrate the effectiveness of the proposed framework, 
both in terms of reducing the amount of model updates and 
maintaining high accuracy.

1. Introduction 
Data stream classification [1,3,4,5,6] has attracted considerable 
interest among researchers because of its wide range of 
applicability, from network traffic analysis to the mining of 
video streams. However, characteristics of the data stream 
present several technical challenges that make conventional 
classification algorithms ineffective. First, it is infeasible to 
store and process the entire data stream in memory due to its 
high volume. Second, it is insufficient to build a static model to 
classify the entire data due to the presence of concept drifts.  

Many works in data stream classification are therefore 
focused on developing models that adapt to changes in the data 
and are applicable in real time [3,4,6]. A key issue in the design 
of such an algorithm is the model maintenance problem. More 
specifically, the algorithm must consider the following two 
questions: (1) How often should the model be updated? (2) 
Which portion of the data stream should be used to create the 
new training set for model rebuilding? 

There are several approaches employed by current data 
stream classification algorithms to address the first question: 
1. Continuous Update. In this approach, the model is 

incrementally updated every time a new labeled example 
arrives. Recent studies have shown that such incremental 
learning algorithms [9, 15] do not perform quite as well as 
algorithms that periodically rebuild their models from 
scratch [4] on evolving data streams because of their 
tendency to retain information from outdated history. 

2. Periodic Update. This approach partitions the data stream 
into disjoint time windows and rebuilds the model at the 
end of each time window [3, 4].  

3. Deferred Update. This approach rebuilds the model only 
when there are significant changes in the distribution of 
data. It requires a change detection mechanism to determine 
whether the current model is obsolete.  

The second question deals with the issue of creating the 
appropriate training set to ensure that the revised model is 
accurate in spite of concept drifts and memory limitations. In 
[4], Aggarwal et al. introduced the notion of a time horizon, 
referring to the earliest time period from which the labeled 
examples are selected for training. We consider this approach as 
selective sampling across time. To enhance the performance of 
the model, it would be useful to incorporate more labeled 
examples from regions that are hard to classify—a strategy 
adopted by boosting and active learning algorithms. We 
consider this approach as selective sampling across space. As 
far as we can tell, none of the existing data stream classification 
algorithms employ such a strategy for their training set creation.  

In this paper, we introduce a new framework for data 
stream classification that uses deferred update with selective 
sampling across space as its model maintenance strategy. The 
data stream is partitioned into disjoint time windows and change 
detection is performed at the end of each time window. Model 
rebuilding is triggered only when significant changes are 
detected. The deferred update strategy helps to reduce the 
computational overhead of periodic updates and the amount of 
labeled examples needed. In the worse-case scenario, for rapidly 
evolving data streams, the number of times the model is revised 
is the same as that for the periodic update approach [2, 3, 8]. 
Furthermore, the sampling across space strategy helps to ensure 
that the model maintains a high accuracy despite performing 
less updates. The key features of our algorithm are as follows: 
1. It utilizes both labeled and unlabeled data. The input space 

is partitioned into several clusters, represented by their 
corresponding prototypes. Our algorithm determines 
whether the current model is outdated by comparing the 
class distribution of labeled examples associated with each 
cluster against the class label predicted by the model.  

88

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE



2. The cluster prototypes also help to identify regions in the 
input space where the model’s predictions are unreliable. If 
the model needs to be revised, a selective sampling 
procedure is triggered to acquire more labeled examples 
from these hard to classify regions.  

3. The framework decouples change detection from the model 
rebuilding procedure. As a result, it is applicable to any 
combination of clustering and classification algorithms 
(unlike some of the previous approaches which are 
generally restricted to certain classifiers – e.g., tree-based 
classifiers or nearest-neighbor classifiers [4, 5]).  

4. The framework also accommodates the discovery of new 
classes. When a new cluster is created, our selective 
sampling procedure will request for new labeled examples 
from the cluster. The newly acquired examples may suggest 
the presence of a new class.  

The remainder of the paper is organized as follows. Section 
2 describes the related work in data stream classification. Our 
proposed framework is introduced in Section 3. Section 4 
presents our experimental results, while Section 5 concludes 
with a summary of the paper.

2. Related Work 
Several incremental learning algorithms have been developed 
for data stream classification [9, 16]. Domingos and Hulten 
have proposed an online decision tree algorithm known as 
VFDT, which employs a statistical principle known as 
Hoeffding bound to provide guarantees on its asymptotic 
similarity to the corresponding batch tree [9]. This work was 
extended in [6] to handle concept drifts by growing alternative 
sub-trees to replace outdated sub-trees. Other extensions to the 
VFDT algorithm were proposed by Gama et al. [16] and Jin et 
al. [17]. In [15], Law et al. introduced an incremental 
classification algorithm based on multi-resolution data 
representation. 

Many algorithms also employ data compression schemes to 
efficiently store the data for subsequent processing. Aggarwal et 
al. [4] used micro-clusters as a condensed representation of the 
data. Ding et al. [13, 14] have used Peano Count Trees to keep a 
compressed version of their spatial data for data stream 
classification. An alternative way for handling concept drift is to 
build an ensemble of classification models [3, 18]. While such 
an approach may be able to handle concept drifts, maintaining 
and applying a large number of classifiers can be quite costly.  

Another model maintenance issue is choosing the 
appropriate labeled examples to create the training set. This is 
also known as the data expiration problem [3]. Most works in 
data stream classification employ a FIFO queue which replaces 
older examples with newer ones. Alternative approaches for 
handling this problem have been investigated by Fan [2] and 
Yang et al. [8].  

The deferred update strategy has been employed by several 
authors. One approach is to keep track of the misclassification 
rate in each time window [8, 10]. If the rate is higher than a 
specified threshold, then the model is revised. Fan et al. [5] 

proposed an alternative way for detecting changes by analyzing 
the data distribution at the leaf nodes of a decision tree. This 
approach however is designed specifically for decision trees and 
does not perform selective sampling across space.. 

3. Prototype-Driven Classification 
A data stream S is a sequence of examples <X1, X2, …>, where 
each example Xi is a d-dimensional feature vector with a 
timestamp ti. Each Xi is also associated with a class label 
Xi.class. An example is said to be labeled if its class value is 
known; otherwise, it is unlabeled. We partition the d-
dimensional input space into k disjoint regions or clusters, {P1,
P2, …, Pk}. A prototype Cj is chosen as the representative point 
for each partition Pj. For input space with continuous-valued 
attributes, the prototype is represented by the cluster centroids1.

3.1 Proposed Framework 
Figure 1 shows a summary of our proposed framework. The 
framework consists of the following two phases:
1. Initialization Phase to generate an initial classification 

model and a set of clusters from the data. 
2. Monitoring and Updating Phase to assign newly arrived 

examples to their corresponding clusters and to determine 
whether the current model is outdated. 

3.1.1 Initialization Phase 
A classification model M is initially built from the labeled 
examples L. These examples are also used to partition the input 
space into k clusters. For each cluster Pj, we maintain a data 
structure (Cj, classj, Vj, Wj), where Cj corresponds to the cluster 
prototype, classj denote its class label, Vj is a queue containing 
the labeled examples assigned to Pj, and Wj is a queue 
containing the unlabeled examples assigned to Pj. Due to 
memory limitations, the sizes of the queues are constrained as 
follows: 

                                                          

This paper focuses only on centroid-based prototypes even though 

the framework can be generalized to data sets with nominal features.

Figure 1: Framework of Proposed Approach 

Time

Evolving Data Stream

Initialization
Phase

Monitoring and Updating
Phase

Build initial
classification model

Generate initial set
of prototypes

Update prototypes with new records

Classify prototypes with existing model

Detect changes in prototype classes

Intelligent sampling for creating training set

Rebuild model from new training set

89

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



(1) 

where  is the amount of memory available. In principle, our 
framework may accommodate any clustering algorithm 
including k-means, self-organizing map (SOM), and neural gas 
[7]. These algorithms seek to find a set of prototypes for 
encoding the data with minimum quantization error [11]. K-
means uses a greedy approach to find the clusters. Despite its 
efficiency, it gets easily trapped in a local minimum and is 
susceptible to outliers. SOM arranges the centroids in a 
rectangular lattice and allows neighboring centroids to be 
updated for each example. This makes it less prone to outliers 
and local optima compared to k-means [19]. Since the lattice 
dimension is usually set to at most three, SOM may not be 
flexible enough for modeling complex manifolds [11]. Instead 
of using a predefined lattice, neural gas updates the centroids 
based on the rank of their distances to a given example [7]. The 
clustering method employed in this study is a variation of the 
recently developed online neural gas algorithm [11]. 

Table 1: Initialization Phase 
Input: Labeled training set L, number of clusters k, and number of 
nearest neighbors m.
Output: Classifier M and set of clusters C

1. M  BuildClassifier(L);    // Build initial model 
2. C = {};             
3. for i =1 to k do
4.     Initialize a new cluster Pi with centroid Ci.
5.     C = C  {Ci};
6. end;   
7. do
8.     Randomly select an example X from L  
9.     Rank the prototypes in C based on their increasing distance to X
10.    for k = 1 to m do
11.        Cj  get the kth highest ranked centroid  

12.        Update the prototype: )(/)1(
j

j
tjj CXeCC t

13.    end
14 until convergence  
15 for each example X L
16    Pj  Find the closest cluster to X
17    Insert X into the queue Vj

18 end
19 Use M to classify all the clusters in C.
20 Discard all clusters with empty queues. 

Table 1 summarizes the key steps of the initialization phase. 
First an initial classifier M is constructed from the labeled data. 
Our clustering algorithm begins by randomly choosing k initial 
centroids (Steps 3–6). The algorithm then proceeds to update 
the centroids incrementally in the following manner. Given a 
training example X, the algorithm ranks the prototypes 
according to their distance to X and chooses the m closest ones 
for updating (Steps 9–13) based on the following formula:  

)(/)1(
j

j
jj CXeCC (2) 

where  is the learning rate,  is a kernel width parameter, and j
is the rank of the prototype (in terms of its distance to x).
controls the sensitivity of the centroid to newly arrived 

examples, while  controls the influence of the neighbors. Each 
training example is then assigned to its closest cluster. The 
cluster prototypes are also classified using the model M (Step 
19). Finally, we remove all clusters with empty queues. 

3.1.2 Monitoring and Updating Phase 
A summary of the monitoring and updating phase is shown in 
Table 2. The monitoring procedure is invoked to update the 
clusters each time a new example arrives, whereas the updating 
procedure is invoked at the end of each time window w to detect 
whether the current model is outdated. If significant changes are 
detected, the model will be revised. 

Table 2: Monitoring and Updating Phase 
Input: Data stream S = L U, classifier M,
         set of clusters C, threshold , window size W.
Output: Updated classifier M and set of clusters C

//  Monitoring Phase (invoked each time a new example arrives) 
1. for each example X  S do
2.     find m nearest prototypes in C based on their to X 
3.     Cj  Get the nearest prototype 
4.     if (distance(X, Cj) > )
5.        Create new cluster P|C|+1 with centroid C|C|+1= X;      
6.         if (X is labeled)
7.             P|C|+1.class = X.class;
8.             Insert X into labeled queue v|C|+1.
9.         else
10.            P|C|+1.class = classify(M, x)
11.             Insert X into unlabeled queue w|C|+1.    
12.        end 
13.        C = C  {P|C|+1};
14.    else
15.        Update centroid: )(/0

jjj CXeCC

16.        if (X U)
17.            Insert X into unlabeled queue w(1)                     
18.        else if (X L)
19.            Insert X into labeled queue v(1)

21.        end
22.        for k = 2 to m do
23.            Cj  Get the kth nearest centroid  
24.            if (distance(X, Cj) )
25.               Update centroid: )(/)1(

j
j

jj CXeCC
26.            end
27.        end 
28.    end

// Updating Phase (invoked at the end of each time interval w)

29.    if (ti mod w == 0) 
30.         if (ChangeDetection(M, C))
31.            TrainSet = IntelligentSampling({V},{W});
32.            M = BuildClassifier(TrainSet);
33             Use M to classify all clusters in C.
34.         end;
35.         FlushQueue({v},{w}); 
36.    end

When a new example X arrives, the algorithm selects its m
closest centroids for updating. The update depends on the 
distance between X and the selected centroids. If the distance is 
less than , the location of the centroid is updated according to 
Equation 2. X is then inserted into the corresponding labeled (V)

,
1

k

j
jj WV

90

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



or unlabeled (W) queue of its closest cluster. On the other hand, 
if the distance between X and the selected cluster centroid 
exceeds , a new cluster is formed with X as its prototype (Steps 
4-13). X is then inserted into the corresponding labeled or 
unlabeled queue of the newly formed cluster. Furthermore, if X
is a labeled example, the cluster is assigned the class label of X;
otherwise the label of the new cluster is determined by applying 
the current model M.

During the updating phase, which is invoked periodically at 
the end of each time window w, the current model is applied to 
each cluster prototype. The ChangeDetection function, which 
will be described later in Section 3.2, is used to determine 
whether the model needs to be revised. If change is detected, the
algorithm employs the selective sampling procedure described 
in Section 3.2.3 to create a training set from which the classifier 
can be re-trained. Finally, the labeled and unlabeled queues for 
each cluster are periodically flushed to eliminate outdated 
examples. A cluster is discarded if both of its queues are empty. 

3.1.3 Selective Sampling Across Space 
Our proposed algorithm uses a selective sampling across space 
strategy to choose the labeled examples needed for creating the 
training set. More specifically, our procedure focuses on: (1) 
selecting more labeled examples from regions that are hard to 
classify and (2) acquiring additional labels from the unlabeled 
examples in clusters whose predictions are most uncertain. By 
manipulating the distribution of training examples, the classifier 
is biased towards learning regions that are hard to classify.  

Our sampling procedure is implemented with the aid of the 
labeled and unlabeled queues. The idea here is to incorporate 
more examples from impure clusters into the training set. Given 
a cluster Pi, its impurity is computed as follows:  

(3) 

where gij be the fraction of labeled data from class j. Each 
cluster Pi is then assigned a weight factor fi depending on the 
cluster impurity: 

(4) 

where k is the number of clusters and  

(5) 

is the normalization factor. Note that, if all the clusters are pure, 
then the sampling is performed uniformly across all clusters.  

Let N be the training set size. Based on Equation (4), the 
the training set is created using Nfj examples from cluster Pj. If 
the number of examples in the labeled queue for Pj is less than 
Nfj, we consider two approaches for acquiring additional labeled 
examples. The first approach performs sampling with 
replacement on the examples stored in the labeled queue. This 
approach is known as Deferred-Bootstrap. The second approach 
explicitly requests for new labels from the examples stored in 
the unlabeled queue. This allows the possibility of discovering 
new classes especially when a new cluster does not have any 
labeled examples. We call this the Deferred-Active approach. 

3.2 Cluster Based Change Detection 
This section explains how the change detection algorithm works. 
Note that each cluster is associated with a class label. The class 
labels are determined either during initialization (Step 20 in 
Table 1) or during the monitoring and updating phase in 
previous time windows (Steps 7, 10, and 30 in Table 2).  

Our algorithm applies two tests to determine whether the 
current model is outdated. First, it compares the class label of 
each prototype to the label predicted by the current model. If 
there is a difference, the model will be rebuilt. Second, it 
performs a chi-square test to determine whether the class 
distribution within each cluster has changed significantly. To 
compute this, let OCij be the number of examples from class j in 
cluster i during the previous time window and NCij be the 
number of examples in the current time window. The chi-square 
statistic for cluster i is: 

(6) 

If the chi-square for any cluster is higher than a pre-defined 
threshold, the model will be rebuilt.  

To understand the intuition behind our change detection 
approach, Figure 2 illustrates three scenarios that will trigger 

ij
j

iji gg log

Z

kk
f i

i

)/1log(*/1

j ij

j
ij

j
ij

ij

ij

i OC

OC
NC

NC
OC

X

2

2

)(

k

i
i kkZ

1

))/1log(*/1(

Before

A B

C

A B

CA

After

A B

C

A B

C

Before After

A B

C

A B

C

A

Before After

(a) Changes due to drifting cluster.

(b) Changes due to an evolving cluster.

(c) Changes due to emerging cluster.

Figure 2: Three scenarios that will trigger model 
rebuilding in the change detection procedure.  

91

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



model rebuilding. In each figure, we show the data distributions 
in two successive time windows (before and after) as well as the 
decision boundary produced by the current model. We assume 
that the examples belong to three classes: A, B, or C.  

In Figure 2(a), the clusters associated with class C have 
drifted upwards. When the current model is applied, it predicts 
some of the clusters from class C as either A or B (depending 
on their locations with respect to the decision boundary). 
Because of the discrepancy between the predicted class and the 
assigned class of the clusters, the model rebuilding procedure is 
invoked. In Figure 2(b), the class distributions for two of the 
clusters have changed (from pure class C to a mixture of classes 
A and C). Such distribution change can be detected using the 
chi-square test. In Figure 2(c), a new cluster (for class A) is 
formed because its location is far away from other existing 
clusters (Steps 4-13 in Table 2). When the model M is applied, 
the difference between the predicted class and the assigned class 
of the cluster will trigger the model rebuilding procedure.  

4. Experimental Evaluation 
We have implemented our algorithm in MATLAB and 
conducted our experiments on a PC with Intel Pentium 4, CPU 
3.2 GHz with 1.00 GB of RAM. 

4.1 Data set 
There are two data sets used in our experiments. The first 
corresponds to a synthetic data set generated using a mixture of 
three Gaussian distributions with the following parameters:  

375.00

0375.0
),0,5.1( 11

5.00

05.0
,

25

50
,3 22

t

375.00

05.0
),0,5.4( 33

The synthetic data stream is generated for 100 time windows. 
In each time window, there are 2500 examples generated for 
each mixture component. The entire data stream contains 2500 

 3  100 = 750,000 examples.  
Figure 3 shows snapshots of the data taken at different time 

windows. Notice that as time progresses the cluster due to the 
second component drifts upward while the rest of the clusters 
remain stationary. Also notice that the data is well separable at 
the beginning and at the end of the data stream. In the middle of 
data stream there is substantial overlap among the three classes. 
We therefore expect the accuracy of the model to be very good 
at the two ends of the data stream and poor in the middle of it. 

The second dataset used for our experiment corresponds to 
the KDDCup 1999 Intrusion Detection data. We randomly 
choose a million records from the full KDDCup data to perform 
our experiment. 

4.2 Experimental Results 
We compare the performance of the following data stream 
classification methods in our experiments: 

1. Periodic Update (PERIODIC). This approach rebuilds the 
model at the end of each time window.  

2. CVFDT, which is a state of the art decision tree classifier 
for evolving data streams developed by Hulten et al. [6]. 

3. Deferred Update (DEFERRED). In this approach, the 
model is tested at the end of each time window (using the 
ChangeDetection function in Table 2) to determine whether 
it is outdated. If so, the algorithm uses labeled examples 
from the most recent time window to rebuild the model. 

4. Deferred Update with Selective Sampling Across Space 
(DEFERRED-Bootstrap and DEFERRED-Active). 
These approaches correspond to the deferred update 
strategies described in Section 3.2.3. 

Figure 3: The synthetic dataset 

4.2.1 Performance Comparison for Synthetic Data 
For the synthetic data set, there are 7500 examples generated in 
each time window, out of which only 20% of them are labeled. 
The training set during the initialization phase contains 7500 
labeled examples. Because of memory limitations, we assume 
that we may store only up to 4000 examples. The maximum 
number of clusters is set to 50 and the learning rate is .02. We 
use decision tree as the base classifier of our framework. 

Figure 4: Error rate comparison for synthetic dataset 

92

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



Figure 4 shows the error rate comparison among the four 
competing approaches while Figure 5 shows their update times. 
The horizontal axis in both figures refers to the time window. 
Figure 4 suggests that the DEFERRED-Active approach tends 
to produce the lowest error rate compared to other approaches. 
In Figure 5, the points in each row indicate the update times of 
the models. Notice that DEFERRED-Active requires less 
number of updates (24) compared to the PERIODIC (100) and 
DEFERRED (29) approaches. These results demonstrate that 
the deferred update approach with selective sampling strategy 
generally produces better models than those produced by 
algorithms that periodically rebuild their models. Furthermore, 
because of their less number of updates, the amount of labeled 
examples needed for each time window can be reduced. 

Figure 5: Updating time for synthetic dataset 

Figure 6 shows the number of labeled examples chosen from 
each cluster to create the training set. Each rectangle denotes the 
location of a cluster prototype. The size of the rectangle 
represents the number of examples chosen—the larger it is, the 
more examples chosen from the cluster to create the training set. 
Observe that our selective sampling procedure tends to choose 
more examples from regions near the decision boundary. This 
explains the improved accuracy obtained using the 
DEFERRED-Active method. Finally, note that the runtime 
using DEFERRED-Active is about 150 seconds, which means a 
record processing rate of 5000 examples per second. 

Figure 6: Selective sampling from the synthetic data 

4.2.2 Performance Comparison for KDDCup Data 
For the KDDCup data, we assume the data stream is partitioned 
into 100 time windows, with 10,000 examples collected in each 
window. We used the examples in the first time window for 
initialization. For the remaining time windows, we assume that 
only 10% of the examples are labeled. For model rebuilding, we 
assume the training set contains 3000 labeled examples. We use 
a decision tree classifier to build our classification models. 

Figure 7 shows the error rate comparison for the three 
approaches. Both DEFERRED-Active and DEFERRED-
Bootstrap approaches produce models with lower error rates 
than the other approaches. Furthermore, the DEFERRED-
Active tends to produce lower error rates compared to 
DEFERRED-Bootstrap. This is because DEFERRED-
BOOTSTRAP reuses some of the labeled examples whereas 
DEFERRED-Active acquires additional labeled examples by 
requesting the labels for some of the unlabeled examples. 

Figure 7: Error rate comparison for intrusion detection dataset

Figure 8: Update time for intrusion detection dataset 

Figure 8 shows the model update times for each method. 
Notice that the deferred update methods perform less number of 
updates than the PERIODIC approach. The average processing 
rate for DEFERRED-ACTIVE is 1200 examples per seconds. 

4.2.3 Runtime Analysis 
Another important criterion for evaluating any data stream 
mining algorithm is its time complexity. A good algorithm 
needs to be able to process the examples at the rate of the 

93

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



incoming data stream. Our proposed algorithm performs a one 
time batch clustering step during the initialization phase. Then 
for each newly arrived example, it needs to update the centroid 
of its m nearest clusters. This requires O(mk) computations, 
where k is the number of clusters. The time complexity for the 
monitoring phase is linear in the number of clusters and number 
of neighbors. Figures 9, 10, 11 show the number of examples 
processed per second when the number of clusters, number of 
neighbors, and number of attributes increase. As the value for 
each parameter increases, the number of processed examples 
decreases but still quite reasonable for data stream processing. 

Figure 8: Processing rate for different number of clusters 

Figure 9: Processing rate for different number of neighbors

.
Figure 10: Processing rate for different dimensionality 

4.2.4 Sensitivity Analysis 
There are several parameters that need to be tuned in our 
algorithm. These parameters correspond to the learning rate 
(Equation 2), the number of neighbors, the number of clusters 
and window size. In this section, we illustrate the effect of using 
different parameter values on the performance of our algorithm. 

Some of these parameters may affect the runtime of the 
algorithm while others may affect model accuracy. The default 
values of these parameters are: window size = 10000, learning 
rate = 0.1, number of neighbors = 5, and number of clusters = 
30. We empirically show that our algorithm is not too sensitive 
to the choice of parameter values. We use the KDDCup data for 
our experiments. 

Figure 12: Error rate at different learning rates 

Figure 13: Error rate for different number of clusters 

The learning rate parameter controls the rate at which the 
algorithm forgets older examples when computing the cluster 
centroids. A large learning rate causes the algorithm to be more 
sensitive towards newer samples. In principle, the learning rate 
should be chosen based on the rate of concept drift. For rapidly 
evolving data streams, a large learning rate would be preferable 
while for slower drifts, a small learning rate would be sufficient. 
Figure 12 shows the effect of varying the learning rates on the 
performance of our algorithm. Notice that although the default 
learning rate does not yield the optimal result, it is still better 
than other algorithms. More importantly, the performance of the 
model is quite stable when the learning rate is varied. 

The number of clusters is another parameter that affects the 
performance of the algorithm. When the number of clusters is 
too small, the cluster sizes will be very large and as a result, the 
change detection function may not be that effective. On the 
other hand, when the number of clusters is large, there are many 
clusters with few samples, which may reduce the effectiveness 
of our selective sampling procedure. Figure 13 shows the result 
of our algorithm when the number of clusters is varied. While 
the performance of our algorithm varies with the number of 
clusters, it still outperforms other algorithms in most cases. 

Figure 14 shows the error rate when the number of 
neighbors is varied. Observe that the number of neighbors does 

94

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



not have a significant impact on the error rate of the model. 
Nevertheless, the number of neighbors does affect the average 
processing time of the algorithm. As the number of neighbors 
increases, the number of records processed per second will 
decrease (Figure 10). Our experience shows that a choice of 1-5 
neighbors seems reasonable for this dataset. 

Figure 14: Error rate with different number of neighbors

Figure 15: Error rate comparison when the window size 
changes while the available memory is kept constant. 

Figure 16: Error rate comparison when the available 
memory changes proportional to window size. 

Window size is another parameter of this algorithm as well 
as other window-based data stream algorithms. As the window 
size increases, the error rate tends to increase if the amount of 
memory is constant. This is because any new model built at the 
end of the current time window must wait until the completion 
of the next time window before it is applied. We perform two 
experiments to evaluate the effect of window size. First, we 
keep the available memory constant and increase the size of the 
time window. Figure 15 shows the result of this experiment. 

Observe that the number of updates decreases as window size 
increases.  In the second experiment, we increase the window 
size and the available memory. Figure 16 shows the result of the 
experiment. As can be seen, when we use a larger window size 
and a larger training set size, the accuracy increases.

5. Conclusions
In this paper, we propose a novel prototype-based framework 
for data stream classification. Our approach has several 
advantages. First, it reduces the number of model rebuilding 
steps without sacrificing accuracy. Second, the framework 
allows us to decouple change detection from model updating. 
Thus it can be used as a wrapper approach for applying any 
classification method. Third, the prototypes allow us to identify 
regions in the input space that are hard to classify. This allows 
us to develop a selective sampling procedure to select training 
examples that can improve the performance of the classifier. 
Our experimental results confirmed these assertions.

References: 
[1] G. Widmer, M. Kubat, Learning in the presence of concept drift 

and hidden context, Machine Learning, 23(1), 69-101 (1996). 
[2] Wei Fan, Systematic Data Selection to Mine Concept-Drifting 

Data Streams. In Proc of KDD (2004). 
[3] H. Wang, W. Fan, P.S. Yu and J. Han, Mining Concept-Drifting 

Data Streams Using Ensemble Classifiers, Proc of KDD (2003). 
[4] C. Aggarwal, J. Han, P.S. Yu, On Demand Classification of Data 

Streams, In Proc of KDD (2004). 
[5] W. Fan, Y. Huang, H. Wang, P.S. Yu, Active Mining of Data 

Streams, In Proc of SIAM Int’l Conf on Data Mining (2004). 
[6] G. Hulton, L. Spencer and P. Domingos, Mining Time-changing 

Data Streams, In Proc of KDD (2001). 
[7] T.M. Martintetz, S.G. Berkarich, K.J. Schultem. Neural Gas 

Network for Vector Quantization and its Application to Time 
Series Prediction. IEEE Trans on N. Networks, 4:558-569 (1993). 

[8] Y. Yang, X. Wu and X. Zhu, Combining Proactive and Reactive 
Predictions for Data Streams, In Proc of KDD (2005). 

[9] P. Domingos and G. Hulten, Mining High-Speed Data Streams, 
In Proc of KDD (2000). 

[10] F.Chu and C.Zaniolo, Fast and Light Boosting for Adaptive 
Mining of Data Streams. In Proc of PAKDD (2004). 

[11] D. Deng, N. Kasabov, Online pattern analysis by evolving self 
organizing maps, J. of Neurocomputing, 51, pp. 87-103 (2003). 

[12] L. O'Callaghan, N. Mishra, A. Meyerson, S. Guha, R. Motwani. 
Streaming-data algorithms for high-quality clustering. In Proc of 
ICDE (2002) 

[13]  Q. Ding, Q. Ding, W. Perrizo, Decision Tree Classification of 
Spatial Data Streams Using Peano Count Trees. In SAC (2002) 

[14] M. Khan, Q. Ding, W. Perrizo, K-nearest Neighbor Classification 
on Spatial Data Stream Using P-trees, In Proc of PAKDD (2002) 

[15] Y-N Law, C. Zaniolo, An Adaptive Nearest Neighbor 
Classification Algorithm for Data Streams, Proc of PKDD (2005) 

[16] J. Gama, R. Rocha and P. Medas, Accurate Decision Trees for 
Mining High-Speed Data Streams, In Proc of KDD (2003). 

[17] R. Jin and G. Agrawal, Efficient Decision Tree Construction on 
Streaming Data. In Proc of KDD (2003). 

[18] W.N. Street, Y. Kim, A streaming Ensemble Algorithm (SEA) 
for Large-Scale Classification. In Proc of KDD (2001)

[19] F. Bacao, V. Lobo, M. Painho, Self-organizing map as Substitutes 
for K-means Clustering, In Proc of ICSS. 

95

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)


