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Abstract- We report on the application of an evolutionary 
algorithm to a noisy, dynamic optimization problem in chem- 
istry: the maximization of three-photon absorption in molecular 
iodine. An evolution strategy is used in real-time in a closed loop 
experiment to search the space of physically realizable phase- 
modulated femtosecond laser pulses. The probability of three- 
photon absorption is estimated by measuring UV fluorescence. 
With the evolutionary search it is possible to enhance the UV 
fluorescence by a factor of 3.4 compared to the most intense 
pulse. 

It has long been a goal of photochemistry to control the 
quantum state of a molecule with a tailored laser pulse 
[I]. This is known as coherent control. This amounts to 
finding the time-varying electric field (laser pulse), E ( t )  , 
that maximizes the probability of a particular quantum 
transition in the molecule. The dynamics of any molecule 
under an electric field are described by the time-dependent 
Schrodinger equation. Use of the equation requires know- 
ledge of the Hamiltonian for the molecule. However, com- 
plete specification of the Hamiltonian has only been achieved 
for the simplest cases, notably hydrogen and some diatomic 
molecules. Ref. [2] proposed instead to use an optimization 
algorithm in a closed loop to optimize the probability of the 
quantum transition. There has been much success since in the 
application of evolutionary algorithms to coherent control 
of a range of optical [3], chemical [4] and biochemical 
processes [5]. See [6] for a review. However, there often 
is little discussion of the choice of objective function and 
the implications thereof for optimization. An important ex- 
ception is [7] in which the effect of the objective function 
on the robustness of the optimization is investigated. Ref. 
[8] gives a didactic presentation of evolutionary algorithms 
targeted at the quantum control community together with a 
case study and highlights some practical considerations. 

11. NATURE OF THE OPTIMIZATION PROBLEM 

Molecular Iodine 

The target system under consideration is molecular iodine, 
12, in the gas phase. If I2 is irradiated with light of central 

This work is supported by EPSRC grant reference S47649. 

Nicholas T. Form 
Benjamin J. Whitaker 
School of Chemistry 
University of Leeds 

Woodhouse Lane, Leeds, LS2 9JT, UK 
{chmontf, chm6bjw)@leeds .ac .uk 

wavelength 570 nm then it may absorb three photons and be 
excited to a higher energy level [9]. The molecule then emits 
a photon of wavelength 340 nm as it decays to its ground 
state. The molecule can be thought of as traversing a path 
along coupled potential energy surfaces (PESs). Coherent 
control of a quantum phenomenon amounts to finding a 
shaped laser pulse that determines the path the molecule 
takes along the PESs, such that the probabilty of that 
phenomenon is maximized [lo]. We aim to find a shaped 
laser pulse that maximizes the probability of three-photon 
absorption (3PA). 

A. Parametrization of Laser Pulse 

The pulse is parametrized with respect to angular fre- 
quency, w = 2.rrc/X, where c is the speed of light in a 
vacuum and X is wavelength. The spectral amplitude window 
is a super-Gaussian with a full-width at half maximum of 46 
nm and a central wavelength of 570 nm. The pulse is shaped 
by varying the phase, $(w),  at a number of control points, 
W I , .  . . , W+ The number of control points is determined 
by the spectral resolution of the pulse shaper. The pulse 
shaper is a Dazzler from ~astlite', this is an acousto-optic 
programmable dispersive filter (AOPDF) [ l l ] .  The AOPDF 
uses a crystal of tellurium dioxide (Te02) as a programmable 
diffraction grating. Te02 is birefringent, i.e. light travels at 
different speeds along different directions (the fast ordinary 
axis and the slow extraordinary axis). Light incident along 
the fast axis can be diffracted to the slow axis by compression 
of the crystal, a property known as photoelasticity. Each 
frequency component of the incident light can therefore 
be retarded by a specific amount by varying the point of 
diffraction. The amount of retardation for each frequency, 
w,  is known as the delay, ~ ( w ) .  This controls the phase 
since ~ ( w )  = d$(w)/dw. The point of diffraction of each 
frequency is varied by varying the compression in the crystal, 
i.e. by propagating an acoustic wave through the crystal. 

Non-linear optical processes, such as 3PA in iodine, are 
unaffected by the addition of aw + b to $(w) [6]. An 
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optimization of $(w) directly thus results in two-dimensional 
infinite redundancy in the search space. For this reason, we 
optimize the second derivative of the phase w.r.t. angular 
frequency, S(w) = d.r(w)/dw = d2$(w)/dw2. Since there 
are only a finite number of control points, wl, . . . , wd, at 
which the phase can be specified, we optimize S(wi), i = 
1, . . . , k and numerically integrate twice to obtain the phase. 
The range of S(wi) is the same for all wi and is determined 
by the physical properties of the tellurium dioxide crystal. 

There are 178 evenly spaced control points from wl = 
3.45 rad fs-I to W178 = 3.18 rad fC1, corresponding 
to X1 = 547 nm to = 593 nm, with S(w) E 
[-7300,7300] fs2 rad-I. 

B. Fitness Function 

The iodine molecule can absorb three photons via resonant 
transitions. It then decays to its first excited state and 
emits a photon. The emitted photons (fluorescence) can be 
detected in a photomultiplier tube (PMT). The PMT signal 
measures the number of I2 molecules that have been excited 
to the desired state by the absorption of three photons. This 
signal is, therefore, expected to be proportional to the cube 
of the intensity of the laser pulse. This is independently 
measured by a photodiode (PD) placed after the absorption 
cell. (Because the sample is optically thin any absorption in 
the molecular beam is negligible.) 

The PMT and PD signals are both corrupted by random 
experimental noise and dark signal. The dark signal is a noisy 
systematic offset with non-constant mean. 

We aim to maximize the probability of 3PA for a shaped 
laser pulse with a given power. The most common choice of 
algorithm in the quantum control literature is an evolutionary 
algorithm [12] as originally suggested by [2] ,  although other 
search algorithms have been used, such as the modified sim- 
plex algorithm in [7].  These are all optimization algorithms 
that aim to maximize (or minimize) some objective function. 
In the field of evolutionary optimization the objective func- 
tion is called the fitness function in analogy with Darwin's 
concept of biological fitness. The choice of fitness function 
will affect the properties of the solution found, although it 
is rarely discussed in the quantum control literature. 

The most obvious choice of fitness function is fl(S) = 
PMT(S), where PMT(S) is the fluorescence signal from 
the photomultiplier tube and S is shorthand for the laser 
pulse with spectral phase obtained by twice numerically 
integrating S(wi), i = 1 , .  . . , k .  However, the mean laser 
power is not constant during the course of an optimization 
owing to changes in ambient temperature and humidity that 
are difficult to fully control. The result is that fl (6) has non- 
constant mean for a fixed S. 

In principle, PMT(S) cc P D ( c ~ ) ~ ,  which suggests f2(S) = 
PMT(G)/PD(C~)~ as the fitness function. Owing to scattered 
light and dark signal in the PMT and PD, the proportionality 
does not hold in practice, so that f2(6) also has a non- 
constant mean for a fixed 6. Thus the problem of a dynamic 
fitness function is not overcome when normalizing the fluor- 
escence signal by the cube of the laser power. This can be 

contrasted with [ S ] ,  in which coherent control of a protein in 
the liquid phase was investigated. In that work the number of 
photons absorbed was used to weight the fitness, resulting 
in a stable fitness function. This is not possible with our 
experimental conditions. 

The aim is to maximize the PMT signal of a shaped pulse 
with a given laser power. Typically, the PMT signal for a 
shaped pulse is compared to that of the unshaped pulse. 
The unshaped pulse has S(X) = 0, hence $(A) = 0, for 
all wavelengths A. This is known as the transform-limited 
(TL) pulse, STL, and is the shortest and most intense pulse 
for a given power and bandwidth. An enhancement of 3PA 
above that achievable with the TL is indicative of optical 
effects that are not due to intensity variation and suggests that 
coherent control of the optical process has been achieved [9].  
This suggests f3(S) = PMT(S)/PMT(STL) as the fitness 
function. Since the laser power varies, PMT(STL) should be 
measured frequently enough that the long-term drift in the 
laser power is negligible. Once per generation is sufficient 
for the algorithm used here in the current experimental 
conditions. (If PMT(STL) were measured for every shaped 
pulse, then the number of fitness evaluations possible in the 
given available time would be halved.) 

Since the mean of the dark signal varies, we also record the 
dark signal, PMT(O), prior to evaluating PMT(STL). The 
enhancement of 3PA over that of the TL for a shaped pulse, 
S, is then estimated as (PMT(S) -PMT(0))/(PMT(STL) - 
PMT(0)). We do not use this as the fitness function since the 
dark signal is independent of the laser power and the pulse 
shape, whereas the noise in the dark signal would increase 
the noise in the fitness function and lead to a deterioration 
in performance. 

C. Experimental Conditions 

A schematic of the experimental set-up is given in Fig. 1. 
Nominally transform-limited pulses of length 30 fs, centred 
at 570 nm from a commercial non-collinear optical para- 
metric amplifier (Clark-MXR, NOPA) pumped by a 1 kHz 
repetition chirped pulse amplifier (Clark-MXR, CPA-2010) 
are directed into an AOPDF of length 25 rnm. The shaped 
pulse is loosely focused with a parabolic mirror into a 
cell containing about 100 N mP2 of I2 vapour at around 
310 K. The resulting UV fluorescence is detected through 
a discriminating spectral filter at right angles to the laser 
propagation direction by a PMT. In order to avoid saturation 
effects the incident pulse energy was restricted to be less 
than 170 nJ. Supporting evidence that these conditions are 
in the perturbative regime was obtained by measuring the 
intensity dependence of the UV fluorescence signal, which 
was confirmed to be approximately cubic. 

There is one further consideration when evaluating optim- 
ized pulse shapes. The AOPDF achieves phase-modulation 
by longitudinal dispersion of the frequency spectrum. That 
is, different frequencies are diffracted at different distances 
into the crystal and thus undergo more or less dispersion. The 
result is that different pulse shapes have different diffraction 
efficiencies, dependent on how far the various frequency 
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Fig. 1. Closed-loop optimization of pulse shape. An unshaped laser pulse from the NOPA is directed into the pulse-shaper (AOPDF). A pulse shape is 
specified by the evolution strategy (ES). The shaped pulse is focused into a cell containing iodine. The fluorescence is measured by a photomultiplier tube 
(PMT). The PMT signal is used as feedback for the optimization (fitness). The intensity of the diffracted pulse is monitored with a photodiode (PD). 

components have propagated through the crystal. Two pulses 
with the same incident laser power having different dif- 
fraction efficiencies will not have the same power at the 
point-of-experiment. That is, the number of photons available 
for absorption will vary. This is partially corrected for by 
calibration of the AOPDF [13]. Some variation in diffraction 
efficiency is still evident, though. We measure the diffracted 
power of the shaped pulses to assess whether the variation 
in PMT is due to coherence effects or power variation. The 
diffracted power is measured by the PD simultaneously with 
the PMT signal. 

D. Evolutionary Optimization 

Evolutionary optimization is inspired by biological evol- 
ution [14]. A collection of potential solutions is operated 
on by evolutionary operators with the aim of finding an 
optimal solution. In analogy with biological evolution, a 
potential solution is called an individual and the collection of 
individuals is called the population. In biological evolution, 
the fittest individuals in a given environment are those that 
survive to reproduce and pass on their genetic information. 
This is reversed in evolutionary optimization. A fitness 
function is specified and the individuals that survive are those 
with the highest fitness. 

There is an increasing variety of evolutionary algorithms 
(EAs). Here we consider the evolution strategy (ES). In par- 
ticular, we use the standardized (pip t A)-ES as described 
in [15]. The parameters are the number of parents, p, the 
number of children, A, the number of parents per child, p, 
and the selection strategy ('plus' or 'comma'). A variety of 
EAs have been employed in the quantum control literature, 
rarely with any justification of the particular variant selected, 
and often with insufficient information to reproduce the 
experiment. We aim to introduce the optimization problems 
in quantum control to the EA and wider computational in- 
telligence communities whilst arguing for a more systematic 
application of EAs in quantum control. In the following we 
detail and motivate our algorithmic design choices. There 
is plenty of scope for further research in identifying the 
optimal choice of settings for the (pip t A)-ES as applied 
to quantum control. 

Briefly, the (pip, A)-ES proceeds as follows. A collection 
of ,u individuals, termed parents, is selected at random 

from the space of candidate solutions. The fitness of these 
individuals is evaluated. A new collection of A individuals, 
termed children, is generated by repeated application of 
the evolutionary operators of recombination and mutation. 
The fitness of these A individuals is evaluated, and the 
p individuals with the highest fitness are selected. This 
constitutes one generation, the best p individuals become the 
parents of the next generation. The process is then repeated 
with the new parents until some stopping criterion is met. 

The (pip + A)-ES is the same except for one important 
difference. The parents of the next generation are selected 
from both the X children and the p parents of the current 
generation. This is termed elitist since it is possible for a 
very fit individual to remain in the population indefinitely. 
The (p, A) strategy is preferred for unbounded search spaces 
[16], whereas the ( p  + A) strategy is preferred for discrete, 
finite search spaces [17]. Theoretically, the space of phase- 
modulated pulses is continuous and bounded. In practice, it 
is discrete and finite. It is not clear which strategy is optimal 
for quantum control. We prefer elitism since the algorithm is 
then likely to converge to a local or global maximum and we 
are interested in investigating the nature of the search space, 
and the number and nature of its maxima [12]. 

The ( p  + A)-ES with a noisy fitness function suffers 
from over-valuation [IS]. That is, the parents will have 
optimistically high fitness scores since they were selected as 
maximizing a noisy function. To avoid keeping over-valued 
parents, the fitness of the parents is reevaluated along with 
that of the children. This is particularly important in the case 
where the mean fitness of a given individual is drifting from 
generation to generation (which is the case here). 

With a noise-free fitness function, elitism guarantees a 
monotonic increase in the fitness of the best individual from 
generation to generation. However, this is not guaranteed for 
a noisy, dynamic fitness function. 

The PMT signal is noisy, which results in a noisy fitness 
function. Noise in the fitness function reduces the quality of 
the solution at convergence [19], [20]. To increase the signal- 
to-noise ratio, the signal is averaged over (N =)500 laser 
shots (i.e. 500 ms). The relative noise of the averaged signal 
is ca. 5%. There are more efficient strategies for sampling in 
the presence of noise, e.g. [19]. These are not investigated 
here. 

98

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



Ideally, the algorithm would be run for as many gener- 
ations as were required for convergence. In practice, the 
number of fitness evaluations is limited by the amount of 
time for which the laser can be operated continuously. There 
is a trade-off between the number of generations, n, the 
population size, p + A, and the sample size, N [21]. We have 
found empirically that an (8+32)-ES outperforms a (4+ 16)- 
ES allowed the same number of fitness evaluations (and so 
double the number of generations). The latter outperforms 
the (1 + 1)-ES, which is a point-based search equivalent to 
stochastic hill-climbing [14]. We use the (8 + 32)-ES in the 
following with n = 50, although there is much room for 
investigation of the trade-off between n, p,  X and N. 

The other evolutionary operators (i.e. apart from selection) 
are recombination and mutation. These are designed to 
mimic the eponymous biological processes, see [14], [15] for 
details. The mutation operator is the primary search operator 
in an ES. The parameters controlling the mutation strategy 
are themselves evolved, one of the main advantages of the 
ES. We use intermediate recombination on the objective 
parameters, i.e. a child is formed by taking the arithmetic 
mean of two individuals randomly chosen (with replacement) 
from the collection of parents (so that p = 2). We use pan- 
mictic intermediate recombination on the strategy parameters 
[16]. We use anisotropic but uncorrelated mutations. The 
hyperparameters for the evolution of the strategy parameters 
are set using the heuristics quoted in [14]. 

It should be clear from the preceeding that there is plenty 
of scope for investigation of mutation and recombination, 
as well as the design of evolutionary operators for specific 
optimization tasks. 

E. Comparison with Previous Work 

Enhancement of 3PA in molecular iodine was first demon- 
strated in [9]. The phase, $(w), can be written as a Taylor 
expansion in the frequency domain, $(w) = $(0) + $'(O)w + 
$"(0)w2 + . . ., where the central frequency of the pulse has 
been set to zero. The term $"(0) is the linear chirp. The 
transform-limited (TL) pulse has 4'' = 0. Ref. [9] demon- 
strated in an open-loop experiment that the 3PA yield has a 
non-linear dependence on the linear chirp. At the wavelength 
of 570nm, they observed a threefold enhancement in the 3PA 
yield for a positively chirped pulse relative to the TL pulse. 

Varying the linear chirp $"(O) is equivalent to setting all 
S(wi) = k in the current parametrization and varying k .  
This is single-parameter control. Preliminary work indicates 
that 3PA can be further enhanced by also varying the 
quadratic chirp [22]. In contrast, we aim to achieve a higher 
enhancement by allowing much more flexibility in the pulse 
shape. The downside is that it is not possible to evaluate all 
shaped pulses. We therefore use an evolutionary algorithm 
to search the space of shaped pulses. 

In practice, the enhancement achievable varies with the 
experimental conditions. In order to provide a direct com- 
parison with [9], we repeat that work as follows. Each 
generation of the ES has 40 pulses, for each generation 
we evaluate 40 pulses with linear chirp equally spaced in 

Generation 

Fig. 2. Performance of the ES. The fitness of the best p pulses in each 
generation is shown. The fitness is averaged over 16 successive runs. The 
dotted lines indicate one standard deviation. 

(-2281.5, 2281.5) fs2 rad-l. The fitness evaluations are 
interleaved with randomized design so that the experimental 
conditions are the same for the two experiments. We find that 
the optimum linear chirp is near 400 fs2 rad-l and gives an 
enhancement by a factor 3.0 f 0.3 over the TL pulse. There 
is also a local maximum near -640 fs2 rad-l. These results 
are in close agreement with [9]. 

The fitness of the ES through the evolutionary run is 
shown in Fig. 2. We plot the mean fitness of the best 
p(= 8) pulses each generation. This is averaged over 16 
successive runs of the ES (four per day on consecutive 
weekdays). Results are reported as the mean f one standard 
deviation over the 16 runs. The initial fitness is 2.7 f 0.4, 
this corresponds to an enhancement of 3PA by a factor of 
2.6 f 0.3. The initial fitness is the mean fitness of the fittest 
eight pulses in the initial random sample of 40. That this 
is so high is due to a peculiarity of the parametrization. By 
the central limit theorem, a random sample of pulses from 
S E [-7300, 7300]178 has an average linear chirp (over w) 
with distribution N(0,316~). Since there are local maxima 
w.r.t. linear chirp at 4'' = 400 and 4'' = -640, some of 
the randomly chosen pulses will already have near optimal 
enhancement. 

The ES gradually improves on the initial fitness throughout 
the optimization. The average fitness in the final generation 
is 3.8 k 0.9, corresponding to an enhancement of 3PA by a 
factor of 3.4 f 0.4. There is wide variation in the perform- 
ance from day to day, owing to uncontrollable changes in 
experimental conditions. The greatest average enhancement 
on convergence was by a factor of four. On all but two of 
the 16 runs, the average enhancement of 3PA of the best p 
pulses in the final generation was higher than that of the best 
linearly chirped pulse. 

99

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



An examination of the fitness on the separate runs suggests 
that in some cases the ES had not converged. Preliminary 
results with n = 100 generations, however, do not improve 
on the results obtained with n = 50 generations. 

The diffracted power of the optimized shaped pulses was 
the same as that of the transform-limited pulse. This indicates 
that the enhancement in 3PA is not due to intensity effects. 

IV. CONCLUSIONS 

We have reproduced the result of [9], viz. that three-photon 
absorption in molecular iodine can be enhanced by a factor 
of three compared to the unshaped transform-limited pulse 
by the addition of linear chirp. Moreover, we have shown 
that it is possible to improve on this by using an evolution 
strategy to search the space of phase-modulated pulses. 

Ref. [9] identified two local maxima of 3PA when varying 
linear chirp. Ref. [22] showed that these can be improved 
by also varying the quadratic chirp and identified a third 
local maximum with that parametrization. Since the initial 
population is likely to contain pulses close these maxima, it 
is possible that the ES is fine-tuning the previously found 
pulse shapes. Characterization of the optimized pulse shapes 
should identify if this is the case, or if the ES has found 
entirely novel pulse shapes. 

As discussed in the text, there are a number of design 
choices that have not been fully investigated. These include 
the population size, the selection strategy, the number of 
generations and the sample size, as well as the fitness 
function. For example, initial results suggest that increasing 
the number of generations is not beneficial. 

We have argued that the appropriate fitness function is 
f3(S) = PMT(G)/PMT(STL) since fI(6) = PMT(S) 
is dynamic. However, preliminary results with the same 
ES maximizing fi(S) suggest that the latter is preferable. 
Fitness function f3(S) is estimated from two noisy signals 
whereas fi(S) contains only one noisy signal. It seems 
that the advantage gained in having a fitness function with 
constant mean is outweighed by the increased noise. Further 
investigation and signal analysis will shed light on this. 
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