
Abstract— In this paper, a novel approach for tuning the 
parameters of fuzzy wavelet systems which are used for 
modeling of nonlinear and complex systems is proposed. In 
fuzzy inference system, each fuzzy rule is analogous to a 
wavelet basis function multiplied by a coefficient. Using 
clustering techniques, the center of these basis functions are 
located in the detected center of clusters. In this way, not only 
the approximation accuracy is increased, but also the number 
of unknown parameters is decreased. The feasibility of the 
proposed method is shown by modeling two highly nonlinear 
functions. The comparison of the results using the proposed 
approach, with the previous schemes, shows the effectiveness 
and superiority of this algorithm. 

I. INTRODUCTION

UZZY systems, due to their universal approximation 
property, constitute a good framework for modeling 

complex and nonlinear systems. However, fuzzy systems are 
difficult to be constructed by specialists’ knowledge or 
experience when complexity and desirable accuracy of 
identified or controlled systems are increased, and they 
require formal synthesis techniques that guarantee the global 
stability and acceptable performance [1], [2]. Many 
researchers have done plenty of study in combining the 
fuzzy systems with other intelligent systems or beneficial 
classic theories to construct accurate inference systems. One 
of these theories is wavelet transform that in recent years has 
become a very active subject in many scientific and 
engineering research areas. Wavelet transform decomposes a 
signal into a set of special basis wavelet functions that give a 
time-frequency localization of the signal. In [3], [4], it is 
shown that the fuzzy models with some restrictions and 
modifications can be functionally equivalent to discrete 
wavelet transforms. Therefore, the fuzzy models can not 
only offer a framework for combining linguistic information 
and numerical data in a unified fashion, but also take 
advantage of the rigorous approximation theory of wavelet 
basis function expressions. In order to benefit from the 
discrete wavelet transform (DWT), the general fuzzy 
models, such as Takagi-Sugeno’s model can be modified 
such that each fuzzy rule can be viewed as a wavelet basis 
function multiplied by a real coefficient. But major 
parameters such as the dilation and translation parameters of 
these basis functions should also be tuned in order to 
construct the fuzzy system which can approximate a given 
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system accurately. In some studies [5], [6] these parameters, 
including the multiplied real coefficients, are tuned by 
particular learning algorithms using checking data. But 
because of dilation and translation parameters, which are 
located nonlinearly in the approximation function, these 
tuning algorithms may not result in optimal solutions. 
Therefore in this paper, data clustering algorithms are used 
for setting the translation parameters. So by selecting the 
appropriate dilation parameters, only multiplied real 
coefficients remain which they could also be tuned by 
tuning algorithms. Hence only linear parameters are tuned. 
Therefore, as is shown, besides increasing the accuracy, 
computational volume is reduced effectively.  

II. CLUSTERING ALGORITHM

The objective of the clustering analysis is the 
classification of objects according to their similarities, and 
organizing the data into several groups [7]. Clustering 
techniques which can be classified into unsupervised
methods, do not use prior class identifiers. The main 
potential of clustering is to detect the underlying structure in 
data, not only for classification and pattern recognition, but 
for model reduction and optimization. In this paper, the 
Gustafson-Kessel [8] algorithm is used for data clustering. 
The algorithm is the extended form of standard fuzzy c-
means which employs an adaptive distance norm, in order to 
detect the clusters of different geometrical shapes in one 
data set. In this way, each cluster has its own norm-inducing 
matrix

iA , which yields the following inner-product norm  
2 ( ) ( ); 1 , 1 .T
ikA k i i k iD x v A x v i c k N (1)

where
1 2[ , ,..., ], n

c iV v v v v R  is a vector of cluster 

centers, which have to be determined. The clustering 
algorithm is based on the minimization of an objective 
function defined as  

2
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m

ik ikA
i k

J X U V A D (2)

where [ ]ikU  represent the fuzzy partitions and its 

conditions given by 
[0,1],1 ,1 ,ij i N k c (3)

1

1,1 ,
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ik
k

i N (4)

1

0 ,1
N

ik
i

N k c (5)

Also m  is the weighting exponent that determines the 
fuzziness of the clusters and must be defined as a scalar 
greater than one. The objective function is minimized using 
the Lagrange multiplier method having the above  

Fuzzy Wavelet Modeling Using Data Clustering  

Nasser Sadati, Member, IEEE and Bahram Marami 

F

114

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE



constraints and allowing the matrix 
iA  to vary with its 

determinant fixed corresponding to optimizing the cluster's 
shape, while its volume remains constant: ; 0,i i iA

where i  is fixed for each cluster. Therefore, the algorithm 

is implemented according to the following procedure: 
   Given the data set X , choose the number of clusters 
1 c N , the weighting exponent 1m , the termination 
tolerance 0  and the norm-inducing matrix A. Also 
initialize the partition matrix randomly, such that 

(0)
fcU M .

Repeat for 1, 2,...l
Step1: Calculate the cluster centers 

( 1)

( ) 1

( 1)

1

( )
; 1

( )

N
l m

ik k
l k

i N
l m

ik
k

x
v i c (6)

Step2: Compute the cluster covariance matrices 

( 1) ( ) ( )

( ) 1

( 1)

1

( ) ( )( )
; 1

( )

N
l m l l T

ik k i k i
l k

i N
l m

ik
k

x v x v
F i c (7)

Add a scaled identity matrix 
1

0: (1 ) ( ) ; 0 1n
i iF F F I (8)

Extract eigenvalues 
ij

and eigenvectors 
ij

. Find 

,max maxi ij
j

, and set

,max ,max;i ij i ijj for which (9)

Reconstruct iF  by
1

,1 , ,1 ,1 ,1 ,... ( ... ) ...i i i n i i i i nF diag (10)

Step3: Compute the distances 
2 ( ) 1 1 ( )( , ) ( ) ( det( )) ( )

i

l T n l
ikA k i k i i i i k iD x v x v F F x v (11)

Step4: Update the partition matrix 
( )

2 ( 1)

1

1

( , ) ( , )
i

l
ik c m

ikA k i jk k i
j

D x v D x v

                                 ; 1 ,1i c k N

(12)

until ( ) ( 1)l lU U .

 Now use the center of clusters; 1 2[ , ,..., ]cV v v v  to 

construct the fuzzy system described in next section. 

2 ( ) ( ); 1 , 1T
ikA k i i k iD x v A x v i c k N

III. DISCRETE WAVELET TRANSFORM

Wavelet system is a set of building blocks to construct or 
represent any function ( )f x  that could be written as 

0 0 0 0

0

2 2( ) ( ) ( )j j j j
k jk

k k j j

f x c a a x k d a a x k (13)

where it is a series expansion in terms of the scaling 

function ( )k x  and wavelets ( )kj x [9]. In this expansion, 

kc ’s are the coefficients that are referred to as 

approximation coefficient at scale 0j  and it could also be 

zero. The set of jkd coefficients represents the details of the 

signal ( )f x  at different scales. The DWT coefficients 

consist of both kc ’s and jkd ’s. For a given wavelet 
2 ( )nL R , the sequence function 

kj
 is defined by 

dilating and translating mother wavelet function  as 

follows 
1 2( ) det ( )jk j j kx D D x k (14)

where
1,..., ,

T n n
nj j j Z k Z , 1( ,..., )njj

jD diag a a  is 

the dilation matrix and 
1( ,..., ); 1,k ndiag b b a a R

1( ,..., ) n
nb b b R  is the translation matrix. The conditions 

on , a  and b  to guarantee a multi-scaling wavelet frame 

for 2 ( )nL R , are obtained and given by [10]. 

 Now let the multidimensional wavelet functions be the 
generalized one-dimensional wavelet functions, i.e., 

1 1( ) ( ) ... ( )n nx x x (15)

That is applying one-dimensional wavelet transform 
separately in each of n  orthogonal direction. As is given in 
[10], for satisfying the sufficient conditions, a given function 

( )i ix  with adequate decay at infinite, should have zero 

mean, i.e.  ( ( ) 0i i ix dx ) . 

 In this paper, the sequence functions 
kj

are a set of 

wavelet basis functions to constitute a frame for a class of 
functions 2 ( )nf L R , which are going to be approximated 

by 
,

jk jk
j k

f c , where 1
jk jkA  and 

22 2

,

, jk
j k

A f f B f  .

Also the coefficients are expressed as  
, ,j k jkc f .

Therefore, f  can be reconstructed by the expansion of 

kj
 exactly. Now a variety of wavelets can be used for 

our purpose. Here, the mother wavelet of the form 
2 2( ) ( ) i ix

i i ix g x e  is used, where the 2( ) (1 )i i i ig x x

satisfies ( ) 0i i ix dx . ( )i ix  is the so called ‘Mexican 

Hat’ mother wavelet function. Therefore, the 
multidimensional wavelet function can be constructed as 

21
1 1 1 1 1 12 ( ) 22

1 1 1 1 11 ( ) ...
jj j a x b k

jk a a x b k e
22 ( ) 221 ( )

jn
n n n n n nj j a x b k

n n n n na a x b k e

(16)

IV. TAKAGI–SUGENO FUZZY SYSTEM USING DISCRETE

WAVELET TRANSFORM

The fuzzy model proposed by Takagi and Sugeno is 
suitable to model a large class of nonlinear systems and is 
described by fuzzy IF-THEN rules as follows  

115

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



:jR  IF 1x  is 
1jA  and … and nx  is 

jnA

        THEN 
0 1 1 ...j j jn ny w w x w x (17)

where
jR represents the  jth fuzzy inference rule, 

1jA , 2jA ,… and 
jnA  are the input fuzzy sets, y is the output 

and
1,...,

T

nx x x is the input state vector. The THEN part 

of this model is a linear combination of premise variables to 
represent the local linear input-output relation of nonlinear 
system. A fuzzy model, as proposed in [10], has the 
following form 

:cR  IF 1x  is 1cA  and … and nx  is cnA
        THEN 1 1( )... ( )i c c cn ny d g x g x (18)

where 1cA ,…, cnA  are the fuzzy sets with Gaussian 

membership functions, cd ’s are the real coefficients, and 

( )ci ig x  is the shifted and scaled functions of ( )ig x . Now 

using the min-product inference process, the output iy can

be obtained as 

1

1

( ) ( )

( )

ci

ci

n

c i ci iA
c i

i n

iA
c i

d x g x

y
x

(19)

where ( )
ci iA

x  is the membership function of ciA . As 

mentioned in [3], [5], the main purpose of proposed 
modification is to link the fuzzy model and the wavelet 
theory such that the fuzzy model can share the advantages of 
wavelet transform. Beside the modification of THEN part of 
fuzzy rules, multi-resolution wavelet function is needed for 
obtaining the accurate approximation which is considered by 
more than one fuzzy rule base. In [5], [6] any function f is

approximated by 
,

jk jk
j k

f c , where all unknown 

parameters such as 
jkc , , a  and b , for any resolution j ,

are tuned using checking data. This is done by various 
procedures such as Kalman filter algorithm, least square 
(LS) and back-propagation law. Accordingly, a great set of 
parameters should be tuned which not only a large amount 
of computations is needed, but also for multiplicity of linear 
and nonlinear parameters, desired accuracy can not be 
obtained. Therefore, in this paper we use the data clustering 
techniques to specify the translation parameters. For a given 
resolution 

1,...,
T

nj j j , we assume that the sequence of 

basis vectors is denoted as 
1 2,...,e e , and the center of 

clusters is represented by  
1

1 1 1 ... njj
k n n nv k a b e k a b e (20)

Now for constructing the fuzzy system, the centers of 
membership functions can be located on the center of 
clusters. This procedure is depicted in Fig.1, for a two 
dimensional input data with two clusters. It should be noted 
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Fig. 1. Membership functions located on the center of clusters. 

that in [3], [4], it is assumed that the center of membership 
function of linguistic terms are equally spaced and the center 
of fuzzy basis functions are located in these lattice points. 
Thus in the proposed approach presented in here, each 
cluster’s center is a fuzzy basis function, 

jk
, defined as  

( ) ( )

( ) ( )

T
k j k

T
k j k

n

x v Q x v

jk x v Q x v

K Z

e

e
(21)

where 1 2 2
1 ( ) ,..., ( )njj

j nQ diag a a . Hence, the 

output of each fuzzy rule base can be given by 

j jk jk
k

y d (22)

where 1 1( ) ... ( )jk jk jkn n jkg x g x  and 
jkd ’s are the real 

coefficients. Also 
jy  represents the output of the jth fuzzy 

rule base. Therefore, the multi-resolution approximation of a 
given function f needs more than one fuzzy rule base. So it 

can be written as  

jk jk
j k

f d (23)

This expression represents the equivalent functional 
behavior of the multi-resolution wavelet transform and the 
proposed fuzzy model. 

Now based on (22), for approximation of a given function 
f , using the proposed formulation, we only need to tune 

the real coefficients, i.e., 
jkd ’s. The center of membership 

functions which are set on the center of clusters are also 
obtained by Gustafson-Kessel data clustering algorithm. In 
each resolution,  and a  are also set appropriately for 
obtaining the accurate approximation. Therefore, the number 
of unknown parameters depends on the number of clusters 
and also the number of used resolutions. Now for more 
accuracy, the final equation is added to another unknown 
parameter which adds a dc value to function evaluation 
generated by fuzzy wavelet. Hence, the approximation 
function can be written as  

0jk jk
j k

f d d (24)
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It should be noted that the tuning of linear coefficients, 
jkd ,

using the training data, is almost simple and there exist some 
methods such as least mean square (LMS), Kalman filtering 
algorithm, back-propagation law, etc., which do the job for 
us. In this study, the least square (LS) algorithm is used to fit 
the evaluated function by the training data. That is, given 
input data Xdata , and the observed output Ydata , the 
coefficients

jkd  is found such that the following equation is 

minimized. 
2

1

1
( ( , ) )

2min
jk

n

jk i
d i

F d Xdata Ydata
(25)

Xdata and Ydata  are the vectors of length n (length of 
training data), and ( , )jkF d Xdata  is a vector-valued 

function. 

V. NUMERICAL EXPERIMENTS

In this section, the effectiveness of the proposed fuzzy 
wavelet modeling algorithm is demonstrated by some 
examples. The results for the proposed approach are 
obtained by using a model which gives better performance 
index and less number of parameters than others. If the 
performance of the selected model is not adequate, then we 
increase the number of unknown parameters, which is 
possible by increasing the number of data clusters or using 
more resolutions. The performance index that is used for 
comparing with other works is Non-Dimensional Error 
Index (NDEI). It is the root mean square error divided by 
the standard deviation of checking data. 

2

1

2

1

( )

( )

n d
j jj

n d
jj

y y
J

y y
(26)

where d
jy  is the desired output for the jth sample of data, y

is the corresponding fuzzy system output and y  is the 

average value of desired output. 
In presented examples we have used a single fuzzy rule 
based (single resolution), where the output of fuzzy rule 
based is given by 

0k k
k

f d d (27)

and the number of unknown parameters is one more than the 
cluster’s number. 
Example1: This example addresses the approximation of a 
single variable piecewise function given by 

(0.5 0.5)

2.186 12.864 ; 10 2

( ) 4.246 ; 2 0

10 sin( (0.03 0.7));0 10x

x x

f x x x

e x x x

(28)

This piecewise function is continuous and analyzable. 
However traditional analytical tools become inefficient and 
often fail due to following reasons; 1) The wide-band 
information hidden at the turning points, 2) The coexistence 
of linearity and nonlinearity. The sampled data which was 
selected for checking and training is distributed uniformly 
over [-10, 10] and 200 input-output pairs, as described 
below, are considered for each set. 

TABLE I
COMPARISON OF THE PROPOSED APPROACH WITH FWN AND WNN

Method Number of unknown 
parameters 

NDEI

Proposed fuzzy 
wavelet system 

20 0.00101 

First FWN [9] 27 0.00228 
Second FWN [9]  37 0.00957 
FWN [5] 28 0.021 
WNN[11] 22 0.05057 
WNN[12] 23 0.0480 

( ), ( 1), ( 2), ( 1) ; ( )d dX x t x t x t y t y y t (29)

   As is shown in Table I, the performance index (NDEI) of 
the proposed approach is better than the others, yet the 
number of unknown parameters is decreased. In Table I, the 
NDEI is the average of ten simulations. In Fig. 2, excellent 
performance of the proposed fuzzy wavelet system is 
shown. For this example, the parameters are selected as 

1, 1, 115, 38j b a

Example2: This example illustrates the prediction of a high 
dimensional chaotic time series. The considered chaotic 
series is the Mackey-Glass differential delay equation 
defined as 

10

0.2 ( )
( ) 0.1 ( )

1 ( )

x t
x t x t

x t

(30)

where 17  and (0) 1.2x . The prediction of future values 

of this time series is a benchmark problem. 1000 input-
output pairs ,d dX Y  are extracted from the Mackey-Glass 

time series of the following form, while it is also available in 
MATLAB documents. 

( 18), ( 12), ( 6), ( )

( 6)

d

d

X x t x t x t x t

Y x t
(31)

where 118t  to 1117 . For comparison, similar to what the 
others have done [4], [5], the first 500 pairs were used as the 
training data set, and the remaining 500 pairs were the 
checking data set for validation of the learned fuzzy wavelet 
system. The performance index (NDEI) of the new proposed 
approach in comparison with the other approaches, for this 
example, is shown in Table II.  
If the proposed fuzzy wavelet system is compared with one 
presented in [4], which considers the center of membership  

TABLE II
CAMPARISON OF GENERALIZATION CAPABILITIES.

The last 4 rows are from [4], [5]. 
Method Training cases NDEI 

Proposed fuzzy wavelet system* 500 0.0061 
Proposed fuzzy wavelet system**  500 0.0096 
Fuzzy Wavelet Networks 
(FWN)[5] 

500 0.0066 

Fuzzy system proposed in [4]** 500 0.017 
Back-Propagation NN 500 0.02 
Six-order polynomial 500 0.04 
Cascade-correlation NN 500 0.06 
Linear predictive  2000 0.55 

* Number of unknown parameters is 141. 
** Number of unknown parameters is 81. 
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functions to be located on equally spaced lattice points, the 
performance index (NDEI) of the new approach is decreased 
noticeably, while the number of unknown parameters is 
equal. Also if the number of clusters is set to 140, the NDEI 
of the proposed method is less than the FWN approach 
which its unknown parameters are more than 150 [5]. For 
this example, the parameters are set as follows 

1, 1, 0.4, 0.32j b a
 Figure 3 shows the excellent performance of the proposed 
approach. In this figure the desired and the predicted values 
for checking data, and the difference between them is 
presented.
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Fig. 2. Comparison between the original signal (solid line) and the output of the proposed Fuzzy Wavelet System (dotted line). 
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Fig. 3. a) Six step-ahead prediction by the proposed fuzzy wavelet system (dashed line) and Mackey-Glass time series (solid line),
 b) prediction error.

118

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



VI. CONCLUSION

Combining the rigorous approximation theory of 
wavelet basis functions and the linguistic information of 
fuzzy systems is a useful contraption for modeling the 
complex and nonlinear functions. In this paper, a new 
approach for tuning the parameters of fuzzy wavelet 
systems which are used for modeling of nonlinear 
systems is proposed. The Gustafson-Kessel algorithm is 
used for clustering the input data set and also applied for 
setting the nonlinear parameters of fuzzy basis functions. 
Consequently, by tuning the real linear coefficients of the 
proposed fuzzy system, it is shown that an accurate 
approximation of examined systems can be obtained. 
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