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     Abstract—As databases continue to grow in size, 
efficient and effective clustering algorithms play a 
paramount role in data mining applications. Practical 
clustering faces several challenges including: identifying 
clusters of arbitrary shapes, sensitivity to the order of 
input, dynamic determination of the number of clusters, 
outlier handling, processing speed of massive data sets, 
handling higher dimensions, and dependence on user-
supplied parameters. Many studies have addressed one or 
more of these challenges. PYRAMID, or parallel hybrid 
clustering using genetic programming and multi-
objective fitness with density, is an algorithm that we 
introduced in a previous research, which addresses some 
of the above challenges. While leaving significant 
challenges for future work, such as handling higher 
dimensions, PYRAMID employs a combination of data 
parallelism, a form of genetic programming, and a multi-
objective density-based fitness function in the context of 
clustering. This study adds to our previous research by 
exploring the detection capability of PYRAMID against a 
challenging dataset and evaluating its independence on 
user supplied parameters.    
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I.  INTRODUCTION 

LU
di
a s

STERING is a technique used to unravel data 
stributions and patterns in a dataset by means of 
upervised [3] or unsupervised [6] classification 

of those patterns. Example clustering applications 
include multimedia analysis and retrieval [7], pattern 
recognition [10], and bioinformatics [3].  
     Research continues in the field of clustering, 
involving numerous disciplines. Many existing 
algorithms make certain assumptions about the 
underlying hypothesis space (i.e. bias): such 
assumptions, once placed into practice, may prove 
erroneous. For example, traditional centroid based 
clustering algorithms yield solutions that are a 
collection of convex sets. Such algorithms fail on non-
convex boundaries. Other algorithms require user input 
parameters to initiate processing, as in k-means 
clustering. These observations motivate avenues for 
further research and introduce new challenges that 

become core issues to be addressed by clustering 
algorithms.  
     In [18], we introduced PYRAMID: Parallel hYbrid 
clusteRing using genetic progrAmming and Multi-
objective fItness with Density. In its present form, 
PYRAMID employs a combination of data parallelism, 
genetic programming (GP), special operators, and 
multi-objective density-based fitness function in the 
context of clustering to resolve most of the above 
challenges. The data space is divided into cells that 
become the target of clustering thus eliminating 
dependence on the order of data input. Data 
parallelism is used to achieve speedup. The algorithm 
divides the data set onto multiple processors each of 
which executes a genetic program that uses a flexible 
individual representation that can represent arbitrary 
shaped clusters. The genetic program also utilizes a 
density-based fitness function that helps avoid outliers. 
The experiments in [18] have shown positive results. 
The datasets used therein were characterized by 
various sizes and irregular cluster shapes. They were 
used to compare cluster and outlier detection between 
PYRAMID and existing renowned algorithms such as 
BIRCH [20], CURE [5], DBSCAN [4], and NOCEA 
[13]. This paper is a continuation of [18]. It conducts 
experiments using another dataset that was employed 
in [15] featuring different challenges, as described in 
Section 5. It also explores the independence of 
PYRAMID on the user supplied parameters. 
   The rest of this paper is organized as follows. Most 
sections borrow from [18]. Section 2 enumerates some 
related work. Section 3 elicits some key concepts that 
play an essential role in this study. Section 4 elaborates 
on the PYRAMID approach. Section 5 provides details 
about the experiments from [18] as well as this study. 
Finally, Section 6 states the conclusion of this research 
and future directions. 

II. RELATED WORK 
     Many algorithms have been developed previously 
to address some of the above mentioned issues, but 
each of those concentrated on a specific aspect. 
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BIRCH [20] focused on speed by means of data 
summarization but favored circular clusters [9]. CURE 
[5] concentrated on sampling and outlier handling. 
DBSCAN [4] yielded good detections by favoring 
dense neighborhoods. As reported in [8], CURE and 
DBSCAN did not always detect outliers and depended 
on user-supplied parameters. RBCGA [12] used a 
genetic algorithm that utilized rectangular shapes, 
called rules, each representing a cluster, thus only 
accommodating rectangular cluster shapes. NOCEA 
[13] improved over RBCGA by providing multiple 
rules per cluster, thus offering better detection than 
RBCGA but, as stated in [13], its crossover operator 
broke large rules and did not always detect sparse 
areas within those rules, thus resulting in coarse 
detections. In [18], we introduced PYRAMID, a 
clustering algorithm that has proven to provide value 
in cluster and outlier detection on existing renowned 
datasets. We borrow directly from [18] in the ensuing 
description of PYRAMID. 

III. DEFINITIONS 
     This section briefly introduces terms and concepts 
that are pertinent to the PYRAMID algorithm. The 
reader is encouraged to refer to [18] for further details. 
In all definitions, n symbolizes the number of points in 
a data set and d is the number of dimensions.  
Definition 3.1: A Minimum Bounding Hyper-
Rectangle (MBHR) is the smallest hyper-rectangular 
area in the data space that contains all the d-
dimensional data points in a given data set [11].  
Definition 3.2: Binning of dimension m within the 
MBHR where m = 1, …, d, is the division of the m-
axis into tm non-overlapping segments, called bins. All 
bins within a dimension m have the same bin width. 
Definition 3.3: The intersections of the bin lines 
construct a d-dimensional grid that divides the MBHR 
into contiguous non-overlapping d-dimensional cells, 
denoted quantization. Furthermore, cells have the 
following property:  
∀ cell c, width of c with respect to dimension m = wm. 
Definition 3.4: Rule r is the hyper-rectangular sub-
region of the MBHR that contains one or more cells, 
denoted constituent cells of r. A rule r is said to 
overlap with another rule r’ if they share at least one 
common constituent cell. This study does not allow 
overlapping rules within the same solution. 
Definition 3.5: Individual I is the region in the 
MBHR that is a union of rules, called I’s constituent 
rules. A list of the constituent rules of an individual I 
and their constituent cells, comma-separated, is called 
the individual profile, or profile(I).  The size of a an 
individual size(I) is the number of rules in I. 

     The cardinality, volume, and density of cells, rules, 
and individuals are the same as outlined in [18]. 
Definition 3.6 Geometric Division is an algorithm 
that divides the data space into quadrants. A quadrant 
encompasses a data subset formed by the data points 
that belong to its constituent cells. The details of this 
algorithm are outlined in [18] and exemplified in Fig. 1 
in a three-dimensional data space. 

 
 

Fig. 1.  Sample geometric division. 

IV. THE APPROACH 
     PYRAMID is a multi-step hybrid approach that is 
based on several components that utilize the above 
concepts. For the sake of simplicity, the rest of this 
study focuses on two-dimensional data sets as in [18] 
and leaves higher dimensions for future research. The 
PYRAMID algorithm is summarized in Fig. 2. 
 

A. Data Transfer from Master to Slaves 
    The geometric division algorithm forms quadrants 
as groups of cells. The master processor sends each 
quadrant’s data subset to a separate slave processor 
where another quantization is performed and a genetic 
program is executed. 

 
Master Processor 
1. Conduct binning. 
2. Perform geometric division. 
3. Send each subset to a different slave. 
4. Receive p resulting subsets of discovered 

data points from p slaves. Determine 
cells that contain returned points.  

5. Merge returned cells into global solution 
that labels every cell with a cluster. 

Slave Processor 
1. Receive a data subset P from master 

processor. Perform quantization on local 
data. 

2. Run genetic program on the local data 
points in P (on current slave processor). 

3. After algorithm finishes, send points in 
discovered cells to master processor. 

 

 
Fig. 2.  Master and slave roles in PYRAMID. 

 
B. Genetic Program 
     A genetic program typically represents a solution as 
a tree-based individual [10]. In this study, each 
individual is encoded as a combination of blocks 
(rules) to form a genetic programming tree with leaf 
nodes symbolizing these constituent rules. This 
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representation offers more flexibility than genetic 
algorithm-based bit-strings [10]. A sample is shown in 
Fig. 3, which demonstrates the tree representation for 
individual I  from Fig. 4. As in standard genetic 
programming, the internal nodes represent the 
functions that apply to the leaf nodes [10]. In this 
study, the only function employed is union, which 
symbolizes that the individual is formed as a 
combination of its constituent rules (leaf nodes).

1

 
Fig. 3.  Individual I  1 tree representation. 

 
 

Fig. 4.  Rules for individual in Fig. 3. 
 

1) Genetic Operators 
     The main genetic operators used by PYRAMID 

are crossover, smart mutation, architecture altering 
(also called structural), and repair. The reader is 
encouraged to refer to [18] for further details about 
these operators. In summary, crossover occurs at the 
rule level by swapping rules between individuals thus 
producing two new individuals. Smart mutation has 
two flavors: enlarge mutation, which moves towards 
denser neighboring cells while shrinking mutation 
diminishes a rule by one bin with respect to a certain 
dimension m. Mutation always produces one new 
individual. Architecture altering adds a new rule or 
deletes an existing one. Finally, the repair operator the 
repair operator reforms overlapping rules into new 
ones that align better with the distribution of the data 

points. The repair sample is in Fig. 5 where the frame 
depicts the area covered by the original rule. 

 
Fig. 5.  PYRAMID repair operator. 

 

2) Fitness Function 
     PYRAMID focuses on three main factors to achieve 
good solutions. It attempts to find a solution that 
achieves high coverage. It also tries to identify 
gatherings of dense areas in the MBHR by looking for 
solutions in the form of dense individuals composed of 
dense rules that contain dense cells. Finally, it attempts 
to avoid complex individuals by having a bias in favor 
of those having a smaller number of member rules, 
thus exercising parsimony pressure. Therefore, 
PYRAMID attempts to identify better solutions, or 
individuals, by incorporating, in its fitness function, 
the following three main objectives [18] shown in (1). 

)(

)()(
)(

IsizeF

IdensityFIcoverageF
IFitness

×
=     (1) 

 

3) Selection Operator and Elitism 
     The selection operator is based on tournament 
selection with a tour size of three [2]. We adopt one-
individual elitism, whereby in every iteration, the best 
performer is preserved for the next generation [1]. 
4) Main Algorithm 
     The GP that is run on each slave processor is 
summarized in Fig. 6. After each operator is applied, 
the fitness of resulting individuals is evaluated. 
 
 

t = 0 
Initialize population t 
Evaluate population t 
While (not termination condition) 
 Begin 
  t = t + 1 
  s = selection from population t-1 
  c = crossover 2 individuals in t               
 m = smart mutation                                         

  a = architecture-altering  
  e = elitism 
  Evaluate(fitness) population t                             
 End 

 

Fig. 6.  Serial GP algorithm. 
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C. The Merge Phase 
     After the discovered points are sent back to the 
master, it traverses these discovered cells; assigning 
them cluster labels based on their neighborhoods. The 
merge algorithm was discussed in details in [18]. 
 

V. EXPERIMENTS 
     Several experiments were performed in [18] to test 
the ability of PYRAMID to identify clusters of 
arbitrary shapes, dynamic determination of the number 
of clusters, speedup using parallelism, independence of 
the order of input, and outlier handling. For these 
experiments, PYRAMID was run over existing two-
dimensional data sets that were used by other 
algorithms such as NOCEA, CURE, DBSCAN, and 
RBCGA. Table 1 shows a list of those data sets.  In 
addition, DS5 is included in this table, which will be 
utilized in a later experiment. 

 

TABLE 1. DATA SETS USED IN PYRAMID EXPERIMENTS. 
DATA SETS DATA OBJECTS CLUSTERS 

DS1 8,000 6 
DS2 10,000 9 
DS3 100,000 6 
DS4 1,120 3 
DS5 100,000 100 

 

Fig. 7 demonstrates the results that were produced in 
[18] after running PYRAMID on the first three data 
sets while Fig. 8 shows their detection by NOCEA. 
Fig. 9 depicts the detection of DS1 and DS2 by CURE 
and that of DS3 by DBSCAN. The left side of Fig. 10 
shows how PYRAMID detected DS4 while the right 
side shows how RBCGA detected the same.  
     It is noteworthy from Fig. 7 how PYRAMID 
identified the correct number of clusters. With respect 
to the goodness of detection, it is evident in Fig. 10 
and from a comparison between Fig. 7 and Fig. 8 that 
PYRAMID provided a smoother detection than 
RBCGA and NOCEA, respectively. Furthermore, Fig. 
7 and Fig. 9 demonstrate how PYRAMID overcame 
outliers while CURE and DBSCAN did not [8]. 
 

 
 

Fig. 7.  PYRAMID cluster discovery. 
 

 
 

 
 

Fig. 9.  Discovery of DS1, DS2 by CURE, DS3 by DBSCAN [8]. 
 

 
 

Fig. 10.  DS4 by PYRAMID versus RBCGA [12]. 
 

Concerning the dependence on the order of input, the 
left part of Fig. 11 shows the result of running 
PYRAMID on DS1 with its original. The right part 
depicts the detection after DS1 was shuffled in a 
completely different order. It is obvious that both 
detections are fairly similar, thus demonstrating the 
independence of PYRAMID on the order of input. 
 

 
 

Fig. 11.  Detection with different data order. 
 

Other experiments were conducted in [18] to evaluate 
the improvements in speed that PYRAMID achieved 
from serial to parallel with four and sixteen slave 
processors, for data sets DS1, DS2, and DS3. The 
results showed considerable speedup improvements 
that ranged from 1.8 to 6.43. The reader is encouraged 
to refer to [18] for further details.  

     Furthermore, as suggested in the Conclusion and 
Future Work section of [18], further experiments were 
conducted in this research to evaluate two additional 
aspects: the performance of PYRAMID with a more 
challenging dataset, referred to as DS5 and the 
evaluation of PYRAMID’s independence on user-
supplied parameters.  
Evaluation of PYRAMID with DS5: 
DS5 contains one hundred clusters that are closely 
intermingled with a considerable amount of outliers, 
which makes it a very challenging dataset for various 
clustering algorithms. In [15], this dataset was 
processed by an algorithm, named WaveCluster, which 
transforms the original feature space by applying 
wavelet transform and then finding dense regions in 
the new space. This produces different clusters at 
different resolutions and scales, which can be chosen 
based on users needs [15]. Fig. 12 below compares the 

Fig. 8.  NOCEA cluster discovery [13]. 
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WaveCluster detection of DS5 (middle) with that of 
PYRAMID (right). The circular shapes point to 
clusters that were erroneously grouped together under 
the same color, therefore representing the same cluster 
whereas they should not. It is noticeable that 
PYRAMID did erroneously combine some clusters. 
However, it is also visible that the number of such 
errors is lower than that in WaveCluster, as reported in 
[15]. 
 

 
Fig. 12.  DS5 and its discovery by WaveCluster and PYRAMID. 

 

It is also worth noting that PYRAMID had a partial 
detection of one of the hundred clusters, as indicated 
by the arrow in Fig. 12. 
 

Independence of PYRAMID on user parameters: 
Further experiments were conducted to evaluate the 
impact of modifying different parameters on the 
outcome of the PYRAMID algorithm. To accomplish 
that, the following parameters were modified: 

• Population size was reduced from 15 to 10. 
• Number of rules per individual was reduced from 
10 to 5. 
• Crossover percentage was changed from 20 to 45. 
• Mutation percentage was changed from 35 to 20. 
• Structural percentage was changed from 45 to 35. 

As demonstrated in Fig. 13, PYRAMID was still able 
to identify nine clusters correctly for data set DS2. 
Although the quality of detection may look slightly 
different from its previous counterparts, it still 
provided good detection. The results have shown that 
detection remained fairly similar even when crucial 
parameters such as the genetic algorithm population 
size, number of rules per individual, and the genetic 
operator percentages. This is demonstrated in Fig. 13 
where these parameters were changed and the results 
are compared to the original PYRAMID run for DS2 
shown in Fig. 7. 
 

  
Fig. 13. PYRAMID detection with different parameters on DS2. 

VI. CONCLUSION AND FUTURE WORK 
     A novel approach to clustering large data sets, 
called PYRAMID, was introduced in [18] which 
leverages some of the concepts used in NOCEA [7]. 
PYRAMID improved over NOCEA by employing a 

hybrid combination of GP’s global search and strong 
representational capabilities along with a powerful 
density-aware multi-objective fitness function. 
PYRAMID also employed data parallelism to achieve 
speedup. The experiments in [18] demonstrated that 
PYRAMID detects clusters of arbitrary shapes, is 
immune to outliers, and independent of the order of 
input. In addition, it does not require prior knowledge 
of the number of clusters, and its inherent data 
parallelism allows it to improve performance. This 
paper added to [18] by exercising the ability of 
PYRAMID to detect a more challenging dataset, DS5, 
which was employed in previous well known 
clustering research [15]. The results have demonstrated 
that, despite the challenges inherent within DS5, 
PYRAMID has exhibited relatively better detection 
than WaveCluster [15]. Another experiment also 
attested to the independence of PYRAMID on user-
supplied parameters. 
     One possible avenue for future research is to revisit 
the PYRAMID algorithm and explore the performance 
measurements through speedup with higher 
dimensions. Other avenues include: performing 
additional experiments to assess various aspects of 
cluster detection such as exploring the use of rules 
with variable shapes, not strictly rectangular, and using 
other data sets as well as other forms of parallelism.  
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