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Abstract - Data processing in wireless sensor networks often 
relies on high-speed data stream input, but at the same time is 
inherently constrained by limited resource availability. Thus, 
energy efficiency and good resource management are vital for 
in-network processing techniques. We propose enabling 
resource-awareness for in-network processing algorithms by 
means of a resource monitoring component and designed a 
corresponding framework. As proof of concept, we implement 
an online clustering algorithm, which uses the resource monitor 
to adapt to resource availability, on the Sun SPOT sensor nodes 
from Sun MicrosystemTM. We refer to this adaptive clustering 
algorithm as Extended Resource-Aware Cluster (ERA-Cluster). 
Finally, we report on the outcome of several experiments to 
evaluate the validity of our approach in terms of resource 
adaptiveness and accuracy of the ERA-Cluster. Results show 
that ERA-Cluster can effectively adapt to resource availability 
while maintaining acceptable level of accuracy.  

I. INTRODUCTION 

Wireless sensor networks have come into prominent 
because of the advance of Micro-Electro-Mechanical Systems 
(MEMS) technology and its promising potential. It is a 
confluence between many fields including signal processing, 
protocols and networks, embedded system, distributed 
database management and distributed algorithms and 
computation. Its wide range of applications include habitat 
monitoring [1], structural monitoring [2] and many others. 
However, wireless sensor networks still face many challenges 
mostly because of its inherently problematic nature. Wireless 
sensor networks often have adhoc deployment, unattened 
operation in untethered environment and are susceptible to 
changes in physical resources, location and many other 
unpredicted factors. Owing to these factors, traditional 
techniques are often found to be incapable or poor-performed 
when applied directly to wireless sensor networks. As a 
result, many research have been carried on in many fields 
such as routing, protocols, data gathering, architecture, 
prolonging network lifetime or data processing, which is the 
concern of this paper.  

Unlike in any other environment, processing techniques in 
wireless sensor networks often work with continuously high-
speed input rate, typically higher than processing power. They 
are often referred to as online processing techniques or online 
mining algorithms. Furthermore, they often have very limited 
resources such as battery or memory because of the size of 
the sensor node and its untethered operation. The main 
challenges include how to maintain a desired throughput rate 
while maintaining an acceptable level of accuracy. In this 
paper, we propose a resource adaptation framework, which 
borrows from the field mining data stream, to enable 
resource-awareness for data processing algorithms in wireless 
sensor networks. Our goals are to adapt online processing 
techniques to resource availability to (1) improve resource 
consumption patterns and (2) their throughput under scarce-
of-resource condition.  

This paper is organised as follows. Section 2 reviews the 
related works in this field. Section 3 briefly discusses the 
background of the resource-aware framework. Section 4 
presents the design and implementation of the resource 
monitor and the design of our adaptive online clustering 
algorithm that uses the resource monitor to enable resource-
awareness. Section 5 evaluates the validity of this approach in 
terms of resource-awareness and accuracy. Section 6 
concludes this paper.

II. RELATED WORKS 

In this paper, we discuss an approach to adapt mining data 
stream techniques to resource availability. Online data stream 
mining has attracted more and more research attention in 
recent years. Gaber et al. [3] have done an in-depth survey of 
mining data stream. There are several existing approaches to 
adapt data stream techniques to changes in resource 
constraints.  

The first approach is the threshold-based approach for 
clustering algorithms. BIRCH [4] was the first threshold-
based algorithm that uses an adjustable threshold to allow 
large datasets to fit into memory. Recently, it has been 
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adopted in new algorithms such as CluStream [5] and LWC 
[6], which adds more features and/or modifies its structures to 
be able to adapt to streaming environments. Online stream 
clustering also has been termed by Aggarwal et al. [5] as 
microclustering.

The second family of algorithms is frequent item set 
mining which concerns with finding sets of items occurring 
together frequently. Giannella et al. [7] have proposed a 
method to extend the traditional FP tree for finding frequent 
item sets to mine streaming data in a time-sensitive way. 
Franke et al. [8] have discussed methods to measure the 
quality of data stream mining algorithms. In [8], they have 
used these measurements to analyze and enhance a frequent 
itemset mining technique. The enhanced technique can 
estimate the quality of output depending on the current 
resource situation (mainly available memory) as well as 
allocate resources needed for guaranteeing user-specified 
quality requirements. 

Teng el al. [9] have proposed the RAM-DS algorithm, 
which uses a wavelet-based approach to control the resource 
requirements. The algorithm is used to mine temporal patterns 
and is be used in conjunction with a regression-based stream 
mining algorithm proposed by the authors. 

III. BACKGROUND 

The resource-aware framework is a theoretical generic 
approach to provide resource-awareness for data stream 
mining first proposed by Gaber and Yu [10]. It promotes a 
holistic approach that jointly considers adjusting the settings 
of the mining algorithm input, output and/or processing 
endpoints according to resource availability. Gaber and Yu 
[10] have coined the algorithm input settings as Algorithm 
Input Granularity AIG, the algorithm output setting as 
Algorithm Output Granularity AOG and the processing 
settings as Algorithm Processing Granularity APG. In 
general, they are referred to as the Algorithm Granularity 
Settings or AGS.

The AIG represents the process of changing the data rates 
that feed into the algorithm such as sampling rates or data 
structure. The AOG represents the process of changing the 
output size of an algorithm such as the number of clusters 
formed by a clustering algorithm. The APG represents the 
process of changing the algorithm parameters to consume less 
processing power. Changing the randomization factor is an 
example of an APG setting.  

The resource-aware framework consists of three main 
components: 

• A resource monitoring component that periodically 
monitors the availability of various resources. The 
implementation of the resource monitoring 
component is platform dependant and the resources 
to be monitored can also vary. Common resources 

are battery charge, remaining memory, CPU 
utilization, communication buffers or bandwidth.  

• The data mining algorithm that processes data in 
real-time. 

• The algorithm granularity setting that is responsible 
for adjusting the mining algorithm parameters 
according to resource availability.  

Gaber and Yu [10] have also developed a resource-aware 
clustering algorithm, called RA-Cluster, which uses the 
resource monitoring component to adapt to resource 
availability. RA-Cluster adjusts its microcluster creation 
radius threshold according to remaining memory, sampling 
rate according to remaining battery and the randomization 
factor according to CPU utilization. By increasing the radius 
threshold, RA-Cluster discourages the formation of new 
microclusters, thus, reduces memory consumption. This is 
done in combination with the removal of outliers and inactive 
microclusters to free more memory. The randomization factor 
affects a strategy called randomized assignment. The 
randomized assignment means that when determining a new 
data point, only a random number of existing microclusters 
are examined instead of all microclusters. The higher the 
randomization factor is, the less number of microclusters are 
examined. RA-Cluster uses adaptor threshold bounds to 
adjust the trade off between the resource adaptation and 
accuracy loss of the algorithms. 

Previously, Gaber and Yu [10] have only implemented 
and tested the framework and RA-Cluster in Matlab 7. In this 
research, we have extended and employed this approach to 
develop and test the framework in an actual sensor node. To 
the best of our knowledge, this is the first adaptive data 
mining algorithm that runs on a sensor node with limited 
resource availability. The sensor node is the novel Sun Small 
Object Programmable Technologies sensor node from Sun 
Microsystems, a.k.a. Sun SPOT. Sun SPOT uses the Squawk 
Virtual Machine, which is a high performance JVM written 
mostly in Java and designed specifically for resource-
constrained devices. Applications for the Sun SPOT node are 
written entirely in Java to be deployed and run from the node. 
Current version of Sun SPOT can detect light, temperature 
and 3D acceleration. 

IV. DESIGN AND IMPLEMENTATION 
This section discusses the design and implementation of 

the resource-aware framework and our clustering algorithm. 
Our implementation employs the publish-subscribe pattern for 
the resource-aware framework. Following this pattern, the 
resource monitor is the publisher of resource events, which 
contains updates of different resource availability. The data 
mining algorithms that require receiving resource events 
should subscribe to the resource monitor to get notified. We 
have also extended the RA-Cluster algorithm to be able to 
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work on the actual sensor environment. We have termed the 
new algorithm, Extended Resource-aware Cluster (ERA-
Cluster). The following subsections discuss each component 
in more details. 

A. Resource Monitor 
The responsibility of the resource monitor is to 

periodically examine remaining battery, memory and CPU 
utilization and publishes a resource report, which contains 
status of various resource availabilities. We allow two ways 
of updating the resource report, periodic and aperiodic
updating schemes. The periodic scheme is the traditional way 
of updating. It is also the initial scheme used by Gaber and 
Yu [10] in his original framework. This means that the 
resource monitor notifies the subscribed processing 
techniques over fixed time frames. The drawback of this 
approach is that if there is stability in the resource level, many 
of the updates will be wasted as there is no need to adjust the 
algorithm settings. This becomes a more important issue 
when we consider using the resource monitor for the whole 
sensor network for distributed processing techniques because 
of the communication cost. Thus, we have implemented an 
alternative method, which is the aperiodic scheme. The 
aperiodic scheme only notifies subscribed processing 
techniques when the accumulative change in resource level is 
greater than a significant threshold. This threshold is 
submitted to the resource monitor during the algorithm’s 
subscription. For example, an algorithm can request to be 
notified only if there is more than 10% or 5% changes in 
resource level. This approach can greatly reduce processing 
and communication cost, especially with remote monitoring. 
Using either approach, there is only one resource event object 
follows the singleton pattern. This is to minimize unnecessary 
usage of limited memory of the sensor node.  

Current implementation of the resource monitor allows 
monitoring of battery charge, free memory and CPU 
utilization. For the memory, we use the available API 
provided by Sun SPOT as memory can be consumed quite 
fast. However, we create two simulations for the battery and 
the CPU utilization to facilitate the manipulation of resource 
availability, thus, make it easier to experiment with resource 
adaptation and accuracy of the algorithm. The battery 
simulation employs a credit point system, which is used by 
Younis and Fahmy in [11]. With this approach, each activity 
of the sensor node is assigned an amount of points and the 
maximum battery capacity is defined. Activities such as sleep 
mode, send/receive radio signal, sensing data and 
computational processing are defined. During operation, the 
battery charge is decreased gradually according to the sensor 
activities. With the CPU simulation, we use a simple queuing 
model that has a fixed queue length and tasks with random 
generated service time. The CPU utilization is computed as 
the percentage of total service time of existing tasks in the 

queue over maximum load. Both simulations have methods to 
set the resource to a specified level to do experiments. 

B. ERA-Cluster 
ERA-Cluster is the first resource-aware clustering 

algorithm written in Java for wireless sensor networks. It is 
extended from RA-Cluster to work in the Sun SPOT node. 
Similar to RA-Cluster, it is an online threshold-based 
clustering algorithm and can be used to reduce data generated 
by the sensor to be processed offline later. Current 
implementation of ERA-Cluster can adapt to change in 
battery level, remaining memory and CPU utilization. 

Current Squawk VM of Sun SPOT does not support 
floating-point number representation to avoid the complexity 
of floating-point representation, cost of memory and 
computation. Hence, we need to use Manhattan distance in 
the clustering algorithm instead of the normally used 
Euclidean distance. In addition, we have also used a work-
around way to represent variables that need floating point 
accuracy. 

ERA-Cluster creates microclusters during its operation. In 
order to preserve memory, we choose a short representation 
for microclusters which only consists of the mean of the 
clusters and the size which is the number of records added to 
the clusters. When a new record is added to the microcluster, 
its mean will be recalculated and its size will be incremented. 
The record is not kept. In addition, each microcluster has an 
inactivePeriod which is the time since the last record has been 
added until current time. It is used to detect inactive 
microclusters which are clusters that have become obsolete. 
Figure 1 shows the pseudo-code of ERA-Cluster algorithm. 
Repeat 
Get a new record 
Assign new record to existing microclusters 
 If (randomization_factor == 100%) 
  Examine the all existing microclusters. 
  Find min_dist and min_cluster. 
 Else  
  Examine a random number of existing 
     microclusters (based on randomization_factor).  
  Find min_dist and min_cluster. 
 If (min_dist < radius_threshold) 
  Insert record to min_cluster. 
  Update min_dist microcluster. 
  Update inactive period for all microclusters 

                   except min_cluster. 
  Set create_new_cluster flag = false. 
 Else 
  Set create_new_cluster flag = true. 
  Update inactive period for all microclusters. 
If (create_new_cluster flag == true) 

Create new microcluster. 
Update new microcluster. 

Until finish
Figure 1 ERA-Cluster algorithm 
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In the algorithm, the randomization factor is the 
percentage of existing microclusters to be examined during 
arrival of new record. 

C. Algorithm Granularity Settings 
The algorithm granularity setting is the way that the 

algorithm adapts to resource availabilities. By changing the 
algorithm input, output and/or processing endpoints, we can 
decrease or increase the consumption of remaining battery, 
memory or CPU utilization. Figure 2 shows the pseudo-code 
of ERA-Cluster algorithm granularity settings: 

If (NoFMem > RTMem)  
 radius_threshold = radiusLB 
Else  
 Reclaim outliers and inactive microclusters. 
 Recalculate radius_threshold. 
If (NoFCPU < RTCPU) 
 randomization_factor = 100%; 
Else  
 Recalculate randomization_factor 
If (NoFBatt > RTBatt) 
 sampling_interval = sampling_interval_lower_bound. 
Else 
 Recalculate new sampling_interval 

Figure 2 ERA-Cluster algorithm granularity setting

When the remaining memory reduces to a criticality 
threshold, the adaptation will be triggered. The adaptation 
first starts with the detection and removal of outliers and 
inactive microclusters. Then, the radius threshold of
microcluster formation will be recalculated based on the 
remaining battery level. Memory adaptation is followed by 
CPU adaptation. We use a randomized assignment approach, 
which we only examine a random subset of the existing 
microclusters when determining a new record. In our 
implementation, the randomization factor is the percentage of 
existing microclusters to be examined and is calculated 
directly based on the CPU utilization. By reducing the 
number of microclusters examined, we can reduce the CPU 
consumption of ERA-Cluster. Certainly, this also reduces the 
accuracy of the clustering algorithm as the microcluster 
having the minimum distance to the new record might not be 
selected - a suboptimal problem. However, even if the nearest 
microcluster is not selected, a reasonable closed one will be. 
Thus, as we shall see in the evaluation section, the suboptimal 
effect tends to be minimal.  Finally, the battery adaptation is 
performed. The main factor that consumes significant energy 
is the receiving or emitting of data streams or radio signal. 
Therefore, after the battery reaches the criticality threshold, 
we decrease the sampling interval of ERA-Cluster according 
to the remaining battery.  

We can see that during the adaptation process, the 
accuracy of the algorithm is reduced because of the 
randomized assignment or prolonged sampling interval. Thus, 

we have mechanisms to maintain and adjust the loss of 
accuracy. Figure 3 illustrates the adaptation of randomization 
factor against CPU utilization. In this case, the criticality 
threshold of CPU utilization is set to 40%. If the CPU 
utilization is less than 40%, the randomization factor is 
always 100%, which means we examine all existing 
microclusters in determining a new record. From 40% to 
100% CPU utilization, we spread the randomization factor 
equally between 100% and 50%. Here, 50% called lower 
bound or the adaptor threshold bound of the randomization 
factor.

Figure 3 Adaptation of randomization factor against CPU utilization 

Given the symbols described in Table 1, we formalize the 
adaptation strategies of each parameter as follows:  

Variable Meaning 
lb Lower bound of the parameter. 
ub Upper bound of the parameter. 
memory Remaining memory in percentage. 
X_crit_threshold Criticality threshold of resource X in 

percentage. 
battery Remaining battery in percentage. 
cpu Current CPU utilization in percentage. 

TABLE 1 SYMBOLS FOR ADAPTATION FORMULAS 

The microcluster creation radius threshold is calculated as: 

radius = ub − memory × ub − lb

mem_crit _ threshold
         (1) 

The sampling interval (SI) is calculated as: 

SI = ub − battery × ub − lb

batt _crit _ threshold
         (2)

The randomization factor (RF) is calculated as: 

RF = 10000 − cpu _ crit _ threshold × lb − (100 − lb) × cpu

100 − cpu _ crit _ threshold
    (3)

Having presented the design and implementation of the 
resource-aware framework for the Sun SPOT, the next section 
describes the evaluation we used to validate the framework. 
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V. EVALUATION 

To assess the effectiveness and performance of the ERA-
Cluster, we have created an evaluation framework that 
provides insights into the following aspects of the system:  
- Resource-awareness: Is the algorithm able to adapt to 

changes in resources to improve its performance as well as 
resource consumption patterns? 

- Accuracy: Is the accuracy while adjusting the algorithm 
granularity settings acceptable?  

A. Resource-aware assessment
The goal of the resource-awareness assessment is to prove 

the benefits of having resource-awareness for the data 
processing in wireless sensor networks, which in this 
particular case is the ERA-Cluster algorithm. These benefits 
include the ability to adapt to changes in resources 
availability to have better resource management as well as 
improving the throughput of the algorithm under resource-
constrained cases.   

The assessment of memory, battery and CPU is done over 
synthetic data sets. The data rate is set to be faster than the 
processing rate of the algorithm to reflect the nature of 
streaming data. The radius threshold of the microcluster 
creation also set to be small compared to the maximum value 
of the Manhattan distance formula in order to create many 
microclusters in a short period. We run the same synthetic 
data set on the clustering algorithm with resource-awareness 
enabled and disabled. We sample the interested characteristics 
of the algorithm with and without resource-awareness at each 
time frame.  

Figures 4 shows the changes of remaining memory level 
over time. We set the memory criticality level at 80%. As it 
can be seen from the graph, with RA, the memory reduction 
follows a much stepper patterns than without RA. With 
resource-awareness, after the memory reaches the criticality 
threshold, it fluctuates around the threshold and does not go 
lower. Figure 5 helps explains how the memory is kept at 
80% level. It shows the number of clusters formed over time 
when run the similar test cases but this time we sample the 
number of clusters created. Without RA, the number of 
clusters increases dramatically over a period of 200 seconds. 
It reaches a peak of about 350 microclusters at the last time 
frame. With RA the number of clusters fluctuates around 125 
microclusters and does not increase any more. This is because 
after the memory goes beyond the criticality threshold, ERA-
Cluster increases the radius threshold to discourage the 
creation of new microclusters as well as detects and removes 
outliers and inactive microclusters to free more memory. 
Figure 6 shows the reactions of radius threshold against 
memory level.

Figure 4 Remaining memory over time 

Figure 5 Number of clusters formed over time 

Figure 6 Radius threshold versus remaining memory over time 

Figure 7 shows the reaction of sampling interval against 
battery over time. The criticality threshold of battery is 90%. 
We set the battery simulator to decrease battery level at 
periodic time frame. After, the battery reduces below 90%, 
the sampling interval starts to increase proportionally. 
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Figure 7 Sampling rate versus remaining battery over time. 

Figure 8 hows the adaptation of randomization factor 
against CPU utilization. Again, the CPU utilization is 
generated randomly by the CPU simulator. However, we set it 
to maximum limit at some period to see how the algorithm 
reacts. The criticality threshold of CPU utilization is set at 
40%. The graph is fluctuating because we only sample CPU 
utilization at fixed time frame not for a period of time. This is 
because we are only interested in seeing how the 
randomization factor is calculated based on the CPU 
utilization. As it can be seen from the graph, when the CPU is 
below 40%, the CPU utilization is always 100%. This is most 
clear at time frame number 41 - 43. When the CPU is 100%, 
the randomization factor reaches 10% and does not go beyond 
this threshold. This is because 10% is the lower bound 
threshold of the randomization factor. 

Figure 8 Randomization factor versus CPU utilization 

The above results provide an evidence of the adaptation of 
the algorithm over time corresponding to resource 
availability. It also shows a significant improvement in the 

memory consumption patterns with the resource-awareness. 
However, there are tradeoffs between the adaptation and 
accuracy of the algorithm. This is investigated in the next 
subsection.

B. Accuracy assessment
ERA-Cluster has mechanisms to control its accuracy 

including adjusting the adaptor threshold bounds, the resource 
criticality thresholds and removal of outliers and inactive 
clusters. By adjusting these threshold values, users can adjust 
the loss of accuracy of the algorithm. Firstly, this section 
starts with a description of the methodology that we use to 
benchmark the accuracy of ERA-Cluster. Secondly, it 
presents results of accuracy tests under normal operation 
scenarios. Finally, it presents the loss of accuracy tests under 
resource-stress scenarios. 

The major challenge with the accuracy assessment is how 
we are going to benchmark the accuracy of the ERA-Cluster. 
Clustering is classified as unsupervised learning. Unlike 
supervised learning, there is no priori output, no training data 
and testing data. Benchmarking the accuracy of unsupervised 
learning is often much more complicated than supervised 
learning. We have use another clustering algorithm as a 
benchmark and compare the accuracy of ERA-Cluster with 
this algorithm. Among other algorithm, kmeans is chosen 
because it has been used in resource-constrained 
environments such as astronomical applications due to its low 
complexity. Examples include clustering earth science data in 
a NASA project using kmeans [12] and mission planning on-
board Mars rovers using kmeans [13]. In these projects, it has 
been pointed out that the use of kmeans is due to its low 
complexity and the scarce of computational resources for 
such missions. To avoid biased implementation, we have 
chosen the kmeans algorithm provided by the Weka software 
package. Weka [14] is a free data mining software package 
that contains many different data mining algorithms both 
supervised and unsupervised types.  

Firstly, we aim to show that under normal operation, 
including random resource adaptation, the accuracy of ERA-
Cluster is competitive to kmeans in Weka over the same 
synthetic data set. We use 1-attribute record dataset for this 
test to simplify the task of representing the results. The 
attribute is a uniform random integer of the range 0 to 100. 
We run the algorithm over a dataset of 660 records, to create 
a number of microclusters, say n.  We then run kmeans 3 
times over the same synthetic data with k = n to create the 
same number of clusters. We sort all of the results (ERA-
Cluster and 3 kmeans according to ascending order of mean 
value of the microcluster. We then plot the mean value of 
ERA-Cluster against the average mean value of kmeans. 
Figures 9 and 10 show the results of this experiment with 
different dataset sizes. 
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Figure 9 Accuracy of ERA-Cluster vs. kmeans (660 records) 

Figure 10 Accuracy of ERA-Cluster vs. kmeans (2000 records) 

We also measure the average result deviation of each 
cluster between kmeans and ERA-Cluster for the two above 
tests. This can tell us about the accuracy loss of ERA-Cluster. 
For each cluster, the result deviation is calculated as the sum 
of the normalized deviation along each dimension (i.e. each 
attribute) averaged over the number of dimensions, where the 
normalized deviation along a dimension is obtained by 
dividing the difference of the cluster mean values (between 
kmeans and ERA-Cluster) by the spread of the true cluster 
along that dimension (i.e. the maximum value of the ERA-
Cluster distance formula). As we have only one dimension 
(one-attributed record), the result deviation is just the 
normalized deviation of this attribute. Then, the average result 
deviation of one cluster is calculated as the sum of the result 
deviations of all clusters average over the number of clusters. 
The results are shown in Figure 11. It shows that the result 
deviation is low for both tests on the 660-record data set and 
the over 2000-record data set. 

Results of the previous experiments show that under 
normal circumstances, including resource adaptation during 
operation, the accuracy of ERA-Cluster is competitive to that 
of kmeans.  Having seen the accuracy of ERA-Cluster under 
normal operation, we are also interested in knowing how 
worse the accuracy degrades under resource stress scenarios.   

Figure 11 Average results deviations of ERA-Cluster 

The goal of these experiments is to show the loss of 
accuracy under different resource stress scenarios. For 
example, for a criticality CPU utilization threshold of 40%, 
how worse the accuracy degrades if the resource-aware 
clustering algorithm is constantly under the CPU utilization 
of 50% or 100% compared to the case when CPU utilization 
is always less than 40%.  Similar to the approach used in the 
previous section, we measure the loss of accuracy by the 
average result deviation of one cluster.  

For this test, we set the adaptor threshold bound (the 
lower bound) of the randomization factor to be 10% and keep 
the sampling interval and radius threshold always constant. 
The size of the synthetic data set is about 1500 records. For 
the ideal case, we run the ERA-Cluster with less than 40% 
CPU utilization, which is the criticality threshold we set for 
CPU utilization. This means that there is no randomized 
assignment occurs. For the second case, after half of run time, 
we set the CPU utilization to be constantly at 50%. This 
means when determining a new data point, only 85% of 
existing microclusters are examined randomly. For the third 
case, after half of run time, we set the CPU utilization to be 
constantly at 100%, which corresponds to randomized 
assignment at 10%. We repeat these cases three times, each 
time with a different data set.  

The results of these cases from ERA-Cluster and the 
original data set are all be used as input to the kmeans of 
Weka with k=10 to create ten clusters. We sort all the clusters 
according to ascending order of their mean value. After that, 
we calculate the mean values for the cpu < 40%, cpu = 50% 
and cpu = 100% by averaging each case over results of three 
runs. The result deviation of each cluster is the normalized 
deviation of each cluster’s mean. Finally, the average result 
deviation of one cluster is calculated by the sum of all result 
deviations averaged over the number of clusters. The results 
are shown in Figure 12. As we can see from the graph, the 
average result deviation of a microcluster increases with the 
increase of CPU utilization. However, overall result 
deviations are still small.  
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Figure 12 Average result deviation under CPU-stress 

VI. CONCLUSIONS
The primary goal of our work is to enable resource-

awareness for data processing in wireless sensor networks by 
using a resource monitoring component. The main 
contributions of this paper include the design of a resource-
aware framework for the Sun SPOT sensor node, the 
development of the resource monitor and the development of 
our ERA-Cluster algorithm.  

The proposed adaptive clustering algorithm was evaluated 
with regard to accuracy and resource-awareness. The results 
show that ERA-Cluster can effectively adapt to resource 
availability and that it can improve resource consumption 
patterns.  

Based on the successful result of this research, 
possibilities for future work are identified as follows:  

• Replacing the battery and/or CPU utilization 
simulation by the real API and investigate the 
improvement in consumption patterns of these 
resources using the resource-aware framework. 

• Extending the resource monitor to be able to monitor 
a remote node or the whole network and the 
resource-aware framework to be able to support 
distributed processing techniques.  

• Investigating the performance and resource 
consumption patterns of other processing techniques 
and several parallel processing techniques on the 
same sensor nodes.  
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