
Resource-aware Online Data Mining
in Wireless Sensor Networks

Nhan Duc Phung, Mohamed Medhat Gaber and Uwe Röhm
University of Sydney, School of Information Technologies

Sydney, NSW 2006, Australia
dphu9727@mail.usyd.edu.au, {mgaber, roehm}@it.usyd.edu.au

Abstract - Data processing in wireless sensor networks often
relies on high-speed data stream input, but at the same time is
inherently constrained by limited resource availability. Thus,
energy efficiency and good resource management are vital for
in-network processing techniques. We propose enabling
resource-awareness for in-network processing algorithms by
means of a resource monitoring component and designed a
corresponding framework. As proof of concept, we implement
an online clustering algorithm, which uses the resource monitor
to adapt to resource availability, on the Sun SPOT sensor nodes
from Sun MicrosystemTM. We refer to this adaptive clustering
algorithm as Extended Resource-Aware Cluster (ERA-Cluster).
Finally, we report on the outcome of several experiments to
evaluate the validity of our approach in terms of resource
adaptiveness and accuracy of the ERA-Cluster. Results show
that ERA-Cluster can effectively adapt to resource availability
while maintaining acceptable level of accuracy.

I. INTRODUCTION

Wireless sensor networks have come into prominent
because of the advance of Micro-Electro-Mechanical Systems
(MEMS) technology and its promising potential. It is a
confluence between many fields including signal processing,
protocols and networks, embedded system, distributed
database management and distributed algorithms and
computation. Its wide range of applications include habitat
monitoring [1], structural monitoring [2] and many others.
However, wireless sensor networks still face many challenges
mostly because of its inherently problematic nature. Wireless
sensor networks often have adhoc deployment, unattened
operation in untethered environment and are susceptible to
changes in physical resources, location and many other
unpredicted factors. Owing to these factors, traditional
techniques are often found to be incapable or poor-performed
when applied directly to wireless sensor networks. As a
result, many research have been carried on in many fields
such as routing, protocols, data gathering, architecture,
prolonging network lifetime or data processing, which is the
concern of this paper.

Unlike in any other environment, processing techniques in
wireless sensor networks often work with continuously high-
speed input rate, typically higher than processing power. They
are often referred to as online processing techniques or online
mining algorithms. Furthermore, they often have very limited
resources such as battery or memory because of the size of
the sensor node and its untethered operation. The main
challenges include how to maintain a desired throughput rate
while maintaining an acceptable level of accuracy. In this
paper, we propose a resource adaptation framework, which
borrows from the field mining data stream, to enable
resource-awareness for data processing algorithms in wireless
sensor networks. Our goals are to adapt online processing
techniques to resource availability to (1) improve resource
consumption patterns and (2) their throughput under scarce-
of-resource condition.

This paper is organised as follows. Section 2 reviews the
related works in this field. Section 3 briefly discusses the
background of the resource-aware framework. Section 4
presents the design and implementation of the resource
monitor and the design of our adaptive online clustering
algorithm that uses the resource monitor to enable resource-
awareness. Section 5 evaluates the validity of this approach in
terms of resource-awareness and accuracy. Section 6
concludes this paper.

II. RELATED WORKS

In this paper, we discuss an approach to adapt mining data
stream techniques to resource availability. Online data stream
mining has attracted more and more research attention in
recent years. Gaber et al. [3] have done an in-depth survey of
mining data stream. There are several existing approaches to
adapt data stream techniques to changes in resource
constraints.

The first approach is the threshold-based approach for
clustering algorithms. BIRCH [4] was the first threshold-
based algorithm that uses an adjustable threshold to allow
large datasets to fit into memory. Recently, it has been

139

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

adopted in new algorithms such as CluStream [5] and LWC
[6], which adds more features and/or modifies its structures to
be able to adapt to streaming environments. Online stream
clustering also has been termed by Aggarwal et al. [5] as
microclustering.

The second family of algorithms is frequent item set
mining which concerns with finding sets of items occurring
together frequently. Giannella et al. [7] have proposed a
method to extend the traditional FP tree for finding frequent
item sets to mine streaming data in a time-sensitive way.
Franke et al. [8] have discussed methods to measure the
quality of data stream mining algorithms. In [8], they have
used these measurements to analyze and enhance a frequent
itemset mining technique. The enhanced technique can
estimate the quality of output depending on the current
resource situation (mainly available memory) as well as
allocate resources needed for guaranteeing user-specified
quality requirements.

Teng el al. [9] have proposed the RAM-DS algorithm,
which uses a wavelet-based approach to control the resource
requirements. The algorithm is used to mine temporal patterns
and is be used in conjunction with a regression-based stream
mining algorithm proposed by the authors.

III. BACKGROUND

The resource-aware framework is a theoretical generic
approach to provide resource-awareness for data stream
mining first proposed by Gaber and Yu [10]. It promotes a
holistic approach that jointly considers adjusting the settings
of the mining algorithm input, output and/or processing
endpoints according to resource availability. Gaber and Yu
[10] have coined the algorithm input settings as Algorithm
Input Granularity AIG, the algorithm output setting as
Algorithm Output Granularity AOG and the processing
settings as Algorithm Processing Granularity APG. In
general, they are referred to as the Algorithm Granularity
Settings or AGS.

The AIG represents the process of changing the data rates
that feed into the algorithm such as sampling rates or data
structure. The AOG represents the process of changing the
output size of an algorithm such as the number of clusters
formed by a clustering algorithm. The APG represents the
process of changing the algorithm parameters to consume less
processing power. Changing the randomization factor is an
example of an APG setting.

The resource-aware framework consists of three main
components:

• A resource monitoring component that periodically
monitors the availability of various resources. The
implementation of the resource monitoring
component is platform dependant and the resources
to be monitored can also vary. Common resources

are battery charge, remaining memory, CPU
utilization, communication buffers or bandwidth.

• The data mining algorithm that processes data in
real-time.

• The algorithm granularity setting that is responsible
for adjusting the mining algorithm parameters
according to resource availability.

Gaber and Yu [10] have also developed a resource-aware
clustering algorithm, called RA-Cluster, which uses the
resource monitoring component to adapt to resource
availability. RA-Cluster adjusts its microcluster creation
radius threshold according to remaining memory, sampling
rate according to remaining battery and the randomization
factor according to CPU utilization. By increasing the radius
threshold, RA-Cluster discourages the formation of new
microclusters, thus, reduces memory consumption. This is
done in combination with the removal of outliers and inactive
microclusters to free more memory. The randomization factor
affects a strategy called randomized assignment. The
randomized assignment means that when determining a new
data point, only a random number of existing microclusters
are examined instead of all microclusters. The higher the
randomization factor is, the less number of microclusters are
examined. RA-Cluster uses adaptor threshold bounds to
adjust the trade off between the resource adaptation and
accuracy loss of the algorithms.

Previously, Gaber and Yu [10] have only implemented
and tested the framework and RA-Cluster in Matlab 7. In this
research, we have extended and employed this approach to
develop and test the framework in an actual sensor node. To
the best of our knowledge, this is the first adaptive data
mining algorithm that runs on a sensor node with limited
resource availability. The sensor node is the novel Sun Small
Object Programmable Technologies sensor node from Sun
Microsystems, a.k.a. Sun SPOT. Sun SPOT uses the Squawk
Virtual Machine, which is a high performance JVM written
mostly in Java and designed specifically for resource-
constrained devices. Applications for the Sun SPOT node are
written entirely in Java to be deployed and run from the node.
Current version of Sun SPOT can detect light, temperature
and 3D acceleration.

IV. DESIGN AND IMPLEMENTATION
This section discusses the design and implementation of

the resource-aware framework and our clustering algorithm.
Our implementation employs the publish-subscribe pattern for
the resource-aware framework. Following this pattern, the
resource monitor is the publisher of resource events, which
contains updates of different resource availability. The data
mining algorithms that require receiving resource events
should subscribe to the resource monitor to get notified. We
have also extended the RA-Cluster algorithm to be able to

140

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

work on the actual sensor environment. We have termed the
new algorithm, Extended Resource-aware Cluster (ERA-
Cluster). The following subsections discuss each component
in more details.

A. Resource Monitor
The responsibility of the resource monitor is to

periodically examine remaining battery, memory and CPU
utilization and publishes a resource report, which contains
status of various resource availabilities. We allow two ways
of updating the resource report, periodic and aperiodic
updating schemes. The periodic scheme is the traditional way
of updating. It is also the initial scheme used by Gaber and
Yu [10] in his original framework. This means that the
resource monitor notifies the subscribed processing
techniques over fixed time frames. The drawback of this
approach is that if there is stability in the resource level, many
of the updates will be wasted as there is no need to adjust the
algorithm settings. This becomes a more important issue
when we consider using the resource monitor for the whole
sensor network for distributed processing techniques because
of the communication cost. Thus, we have implemented an
alternative method, which is the aperiodic scheme. The
aperiodic scheme only notifies subscribed processing
techniques when the accumulative change in resource level is
greater than a significant threshold. This threshold is
submitted to the resource monitor during the algorithm’s
subscription. For example, an algorithm can request to be
notified only if there is more than 10% or 5% changes in
resource level. This approach can greatly reduce processing
and communication cost, especially with remote monitoring.
Using either approach, there is only one resource event object
follows the singleton pattern. This is to minimize unnecessary
usage of limited memory of the sensor node.

Current implementation of the resource monitor allows
monitoring of battery charge, free memory and CPU
utilization. For the memory, we use the available API
provided by Sun SPOT as memory can be consumed quite
fast. However, we create two simulations for the battery and
the CPU utilization to facilitate the manipulation of resource
availability, thus, make it easier to experiment with resource
adaptation and accuracy of the algorithm. The battery
simulation employs a credit point system, which is used by
Younis and Fahmy in [11]. With this approach, each activity
of the sensor node is assigned an amount of points and the
maximum battery capacity is defined. Activities such as sleep
mode, send/receive radio signal, sensing data and
computational processing are defined. During operation, the
battery charge is decreased gradually according to the sensor
activities. With the CPU simulation, we use a simple queuing
model that has a fixed queue length and tasks with random
generated service time. The CPU utilization is computed as
the percentage of total service time of existing tasks in the

queue over maximum load. Both simulations have methods to
set the resource to a specified level to do experiments.

B. ERA-Cluster
ERA-Cluster is the first resource-aware clustering

algorithm written in Java for wireless sensor networks. It is
extended from RA-Cluster to work in the Sun SPOT node.
Similar to RA-Cluster, it is an online threshold-based
clustering algorithm and can be used to reduce data generated
by the sensor to be processed offline later. Current
implementation of ERA-Cluster can adapt to change in
battery level, remaining memory and CPU utilization.

Current Squawk VM of Sun SPOT does not support
floating-point number representation to avoid the complexity
of floating-point representation, cost of memory and
computation. Hence, we need to use Manhattan distance in
the clustering algorithm instead of the normally used
Euclidean distance. In addition, we have also used a work-
around way to represent variables that need floating point
accuracy.

ERA-Cluster creates microclusters during its operation. In
order to preserve memory, we choose a short representation
for microclusters which only consists of the mean of the
clusters and the size which is the number of records added to
the clusters. When a new record is added to the microcluster,
its mean will be recalculated and its size will be incremented.
The record is not kept. In addition, each microcluster has an
inactivePeriod which is the time since the last record has been
added until current time. It is used to detect inactive
microclusters which are clusters that have become obsolete.
Figure 1 shows the pseudo-code of ERA-Cluster algorithm.
Repeat
Get a new record
Assign new record to existing microclusters
 If (randomization_factor == 100%)
 Examine the all existing microclusters.
 Find min_dist and min_cluster.
 Else
 Examine a random number of existing
 microclusters (based on randomization_factor).
 Find min_dist and min_cluster.
 If (min_dist < radius_threshold)
 Insert record to min_cluster.
 Update min_dist microcluster.
 Update inactive period for all microclusters

 except min_cluster.
 Set create_new_cluster flag = false.
 Else
 Set create_new_cluster flag = true.
 Update inactive period for all microclusters.
If (create_new_cluster flag == true)

Create new microcluster.
Update new microcluster.

Until finish
Figure 1 ERA-Cluster algorithm

141

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

In the algorithm, the randomization factor is the
percentage of existing microclusters to be examined during
arrival of new record.

C. Algorithm Granularity Settings
The algorithm granularity setting is the way that the

algorithm adapts to resource availabilities. By changing the
algorithm input, output and/or processing endpoints, we can
decrease or increase the consumption of remaining battery,
memory or CPU utilization. Figure 2 shows the pseudo-code
of ERA-Cluster algorithm granularity settings:

If (NoFMem > RTMem)
 radius_threshold = radiusLB
Else
 Reclaim outliers and inactive microclusters.
 Recalculate radius_threshold.
If (NoFCPU < RTCPU)
 randomization_factor = 100%;
Else
 Recalculate randomization_factor
If (NoFBatt > RTBatt)
 sampling_interval = sampling_interval_lower_bound.
Else
 Recalculate new sampling_interval

Figure 2 ERA-Cluster algorithm granularity setting

When the remaining memory reduces to a criticality
threshold, the adaptation will be triggered. The adaptation
first starts with the detection and removal of outliers and
inactive microclusters. Then, the radius threshold of
microcluster formation will be recalculated based on the
remaining battery level. Memory adaptation is followed by
CPU adaptation. We use a randomized assignment approach,
which we only examine a random subset of the existing
microclusters when determining a new record. In our
implementation, the randomization factor is the percentage of
existing microclusters to be examined and is calculated
directly based on the CPU utilization. By reducing the
number of microclusters examined, we can reduce the CPU
consumption of ERA-Cluster. Certainly, this also reduces the
accuracy of the clustering algorithm as the microcluster
having the minimum distance to the new record might not be
selected - a suboptimal problem. However, even if the nearest
microcluster is not selected, a reasonable closed one will be.
Thus, as we shall see in the evaluation section, the suboptimal
effect tends to be minimal. Finally, the battery adaptation is
performed. The main factor that consumes significant energy
is the receiving or emitting of data streams or radio signal.
Therefore, after the battery reaches the criticality threshold,
we decrease the sampling interval of ERA-Cluster according
to the remaining battery.

We can see that during the adaptation process, the
accuracy of the algorithm is reduced because of the
randomized assignment or prolonged sampling interval. Thus,

we have mechanisms to maintain and adjust the loss of
accuracy. Figure 3 illustrates the adaptation of randomization
factor against CPU utilization. In this case, the criticality
threshold of CPU utilization is set to 40%. If the CPU
utilization is less than 40%, the randomization factor is
always 100%, which means we examine all existing
microclusters in determining a new record. From 40% to
100% CPU utilization, we spread the randomization factor
equally between 100% and 50%. Here, 50% called lower
bound or the adaptor threshold bound of the randomization
factor.

Figure 3 Adaptation of randomization factor against CPU utilization

Given the symbols described in Table 1, we formalize the
adaptation strategies of each parameter as follows:

Variable Meaning
lb Lower bound of the parameter.
ub Upper bound of the parameter.
memory Remaining memory in percentage.
X_crit_threshold Criticality threshold of resource X in

percentage.
battery Remaining battery in percentage.
cpu Current CPU utilization in percentage.

TABLE 1 SYMBOLS FOR ADAPTATION FORMULAS

The microcluster creation radius threshold is calculated as:

radius = ub − memory × ub − lb

mem_crit _ threshold
 (1)

The sampling interval (SI) is calculated as:

SI = ub − battery × ub − lb

batt _crit _ threshold
 (2)

The randomization factor (RF) is calculated as:

RF = 10000 − cpu _ crit _ threshold × lb − (100 − lb) × cpu

100 − cpu _ crit _ threshold
 (3)

Having presented the design and implementation of the
resource-aware framework for the Sun SPOT, the next section
describes the evaluation we used to validate the framework.

142

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

V. EVALUATION

To assess the effectiveness and performance of the ERA-
Cluster, we have created an evaluation framework that
provides insights into the following aspects of the system:
- Resource-awareness: Is the algorithm able to adapt to

changes in resources to improve its performance as well as
resource consumption patterns?

- Accuracy: Is the accuracy while adjusting the algorithm
granularity settings acceptable?

A. Resource-aware assessment
The goal of the resource-awareness assessment is to prove

the benefits of having resource-awareness for the data
processing in wireless sensor networks, which in this
particular case is the ERA-Cluster algorithm. These benefits
include the ability to adapt to changes in resources
availability to have better resource management as well as
improving the throughput of the algorithm under resource-
constrained cases.

The assessment of memory, battery and CPU is done over
synthetic data sets. The data rate is set to be faster than the
processing rate of the algorithm to reflect the nature of
streaming data. The radius threshold of the microcluster
creation also set to be small compared to the maximum value
of the Manhattan distance formula in order to create many
microclusters in a short period. We run the same synthetic
data set on the clustering algorithm with resource-awareness
enabled and disabled. We sample the interested characteristics
of the algorithm with and without resource-awareness at each
time frame.

Figures 4 shows the changes of remaining memory level
over time. We set the memory criticality level at 80%. As it
can be seen from the graph, with RA, the memory reduction
follows a much stepper patterns than without RA. With
resource-awareness, after the memory reaches the criticality
threshold, it fluctuates around the threshold and does not go
lower. Figure 5 helps explains how the memory is kept at
80% level. It shows the number of clusters formed over time
when run the similar test cases but this time we sample the
number of clusters created. Without RA, the number of
clusters increases dramatically over a period of 200 seconds.
It reaches a peak of about 350 microclusters at the last time
frame. With RA the number of clusters fluctuates around 125
microclusters and does not increase any more. This is because
after the memory goes beyond the criticality threshold, ERA-
Cluster increases the radius threshold to discourage the
creation of new microclusters as well as detects and removes
outliers and inactive microclusters to free more memory.
Figure 6 shows the reactions of radius threshold against
memory level.

Figure 4 Remaining memory over time

Figure 5 Number of clusters formed over time

Figure 6 Radius threshold versus remaining memory over time

Figure 7 shows the reaction of sampling interval against
battery over time. The criticality threshold of battery is 90%.
We set the battery simulator to decrease battery level at
periodic time frame. After, the battery reduces below 90%,
the sampling interval starts to increase proportionally.

143

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Figure 7 Sampling rate versus remaining battery over time.

Figure 8 hows the adaptation of randomization factor
against CPU utilization. Again, the CPU utilization is
generated randomly by the CPU simulator. However, we set it
to maximum limit at some period to see how the algorithm
reacts. The criticality threshold of CPU utilization is set at
40%. The graph is fluctuating because we only sample CPU
utilization at fixed time frame not for a period of time. This is
because we are only interested in seeing how the
randomization factor is calculated based on the CPU
utilization. As it can be seen from the graph, when the CPU is
below 40%, the CPU utilization is always 100%. This is most
clear at time frame number 41 - 43. When the CPU is 100%,
the randomization factor reaches 10% and does not go beyond
this threshold. This is because 10% is the lower bound
threshold of the randomization factor.

Figure 8 Randomization factor versus CPU utilization

The above results provide an evidence of the adaptation of
the algorithm over time corresponding to resource
availability. It also shows a significant improvement in the

memory consumption patterns with the resource-awareness.
However, there are tradeoffs between the adaptation and
accuracy of the algorithm. This is investigated in the next
subsection.

B. Accuracy assessment
ERA-Cluster has mechanisms to control its accuracy

including adjusting the adaptor threshold bounds, the resource
criticality thresholds and removal of outliers and inactive
clusters. By adjusting these threshold values, users can adjust
the loss of accuracy of the algorithm. Firstly, this section
starts with a description of the methodology that we use to
benchmark the accuracy of ERA-Cluster. Secondly, it
presents results of accuracy tests under normal operation
scenarios. Finally, it presents the loss of accuracy tests under
resource-stress scenarios.

The major challenge with the accuracy assessment is how
we are going to benchmark the accuracy of the ERA-Cluster.
Clustering is classified as unsupervised learning. Unlike
supervised learning, there is no priori output, no training data
and testing data. Benchmarking the accuracy of unsupervised
learning is often much more complicated than supervised
learning. We have use another clustering algorithm as a
benchmark and compare the accuracy of ERA-Cluster with
this algorithm. Among other algorithm, kmeans is chosen
because it has been used in resource-constrained
environments such as astronomical applications due to its low
complexity. Examples include clustering earth science data in
a NASA project using kmeans [12] and mission planning on-
board Mars rovers using kmeans [13]. In these projects, it has
been pointed out that the use of kmeans is due to its low
complexity and the scarce of computational resources for
such missions. To avoid biased implementation, we have
chosen the kmeans algorithm provided by the Weka software
package. Weka [14] is a free data mining software package
that contains many different data mining algorithms both
supervised and unsupervised types.

Firstly, we aim to show that under normal operation,
including random resource adaptation, the accuracy of ERA-
Cluster is competitive to kmeans in Weka over the same
synthetic data set. We use 1-attribute record dataset for this
test to simplify the task of representing the results. The
attribute is a uniform random integer of the range 0 to 100.
We run the algorithm over a dataset of 660 records, to create
a number of microclusters, say n. We then run kmeans 3
times over the same synthetic data with k = n to create the
same number of clusters. We sort all of the results (ERA-
Cluster and 3 kmeans according to ascending order of mean
value of the microcluster. We then plot the mean value of
ERA-Cluster against the average mean value of kmeans.
Figures 9 and 10 show the results of this experiment with
different dataset sizes.

144

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Figure 9 Accuracy of ERA-Cluster vs. kmeans (660 records)

Figure 10 Accuracy of ERA-Cluster vs. kmeans (2000 records)

We also measure the average result deviation of each
cluster between kmeans and ERA-Cluster for the two above
tests. This can tell us about the accuracy loss of ERA-Cluster.
For each cluster, the result deviation is calculated as the sum
of the normalized deviation along each dimension (i.e. each
attribute) averaged over the number of dimensions, where the
normalized deviation along a dimension is obtained by
dividing the difference of the cluster mean values (between
kmeans and ERA-Cluster) by the spread of the true cluster
along that dimension (i.e. the maximum value of the ERA-
Cluster distance formula). As we have only one dimension
(one-attributed record), the result deviation is just the
normalized deviation of this attribute. Then, the average result
deviation of one cluster is calculated as the sum of the result
deviations of all clusters average over the number of clusters.
The results are shown in Figure 11. It shows that the result
deviation is low for both tests on the 660-record data set and
the over 2000-record data set.

Results of the previous experiments show that under
normal circumstances, including resource adaptation during
operation, the accuracy of ERA-Cluster is competitive to that
of kmeans. Having seen the accuracy of ERA-Cluster under
normal operation, we are also interested in knowing how
worse the accuracy degrades under resource stress scenarios.

Figure 11 Average results deviations of ERA-Cluster

The goal of these experiments is to show the loss of
accuracy under different resource stress scenarios. For
example, for a criticality CPU utilization threshold of 40%,
how worse the accuracy degrades if the resource-aware
clustering algorithm is constantly under the CPU utilization
of 50% or 100% compared to the case when CPU utilization
is always less than 40%. Similar to the approach used in the
previous section, we measure the loss of accuracy by the
average result deviation of one cluster.

For this test, we set the adaptor threshold bound (the
lower bound) of the randomization factor to be 10% and keep
the sampling interval and radius threshold always constant.
The size of the synthetic data set is about 1500 records. For
the ideal case, we run the ERA-Cluster with less than 40%
CPU utilization, which is the criticality threshold we set for
CPU utilization. This means that there is no randomized
assignment occurs. For the second case, after half of run time,
we set the CPU utilization to be constantly at 50%. This
means when determining a new data point, only 85% of
existing microclusters are examined randomly. For the third
case, after half of run time, we set the CPU utilization to be
constantly at 100%, which corresponds to randomized
assignment at 10%. We repeat these cases three times, each
time with a different data set.

The results of these cases from ERA-Cluster and the
original data set are all be used as input to the kmeans of
Weka with k=10 to create ten clusters. We sort all the clusters
according to ascending order of their mean value. After that,
we calculate the mean values for the cpu < 40%, cpu = 50%
and cpu = 100% by averaging each case over results of three
runs. The result deviation of each cluster is the normalized
deviation of each cluster’s mean. Finally, the average result
deviation of one cluster is calculated by the sum of all result
deviations averaged over the number of clusters. The results
are shown in Figure 12. As we can see from the graph, the
average result deviation of a microcluster increases with the
increase of CPU utilization. However, overall result
deviations are still small.

145

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Figure 12 Average result deviation under CPU-stress

VI. CONCLUSIONS
The primary goal of our work is to enable resource-

awareness for data processing in wireless sensor networks by
using a resource monitoring component. The main
contributions of this paper include the design of a resource-
aware framework for the Sun SPOT sensor node, the
development of the resource monitor and the development of
our ERA-Cluster algorithm.

The proposed adaptive clustering algorithm was evaluated
with regard to accuracy and resource-awareness. The results
show that ERA-Cluster can effectively adapt to resource
availability and that it can improve resource consumption
patterns.

Based on the successful result of this research,
possibilities for future work are identified as follows:

• Replacing the battery and/or CPU utilization
simulation by the real API and investigate the
improvement in consumption patterns of these
resources using the resource-aware framework.

• Extending the resource monitor to be able to monitor
a remote node or the whole network and the
resource-aware framework to be able to support
distributed processing techniques.

• Investigating the performance and resource
consumption patterns of other processing techniques
and several parallel processing techniques on the
same sensor nodes.

REFERENCES

[1] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler,
and J. Anderson, "Wireless sensor networks for
habitat monitoring.," Proc. of the ACM International
Workshop on Wireless Sensor Networks and
Applications, WSNA 2002. Atlanta, Sep. 2002.

[2] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan,
A. Broad, R. Govindan, and D. Estrin, "A Wireless
Sensor Network for Structural Monitoring," in ACM

Conference on Embedded Networked Sensor
Systems(Sensys04), November 2004.

[3] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy,
"Mining data streams: a review.," SIGMOD Rec.,
vol. 34, pp. 18-26, 2005.

[4] T. Zhang, R. Ramakrishnan, and M. Livny, "BIRCH:
an efficient data clustering method for very large
databases.," SIGMOD Rec., vol. 25 (2), June 2006.

[5] C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A
Framework for Clustering Evolving Data Streams,"
in Proc. of VLDB 2004, 2003.

[6] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy,
"A Cost-Efficient Model for Ubiquitous Data Stream
Mining," Proc. of IPMU 2004., 2004.

[7] C. Giannella, J. Han, E. Robertson, and C. Liu,
"Mining Frequent Itemsets over Arbitrary Time
Intervals in Data Streams," Technical report, Indiana
University, 2003.

[8] C. Franke, M. Karnstedt, and K.-U. Sattler, "Mining
Data Streams under Dynamicly Changing Resource
Constraints," in KDML 2006: Knowledge Discovery,
Data Mining, and Machine Learning. Hildesheim,
Germany, 2006.

[9] W.-G. Teng, M.-S. Chen, and P. S. Yu, "Resource-
aware mining with variable granularities in data
streams," In SIAM SDM 2004, 2004.

[10] M. M. Gaber and P. S. Yu, "A framework for
resource-aware knowledge discovery in data
streams: a holistic approach with its application to
clustering," in Proceedings of the ACM SAC '06.
Dijon, France: ACM Press, 2006.

[11] O. Younis and S. Fahmy, "HEED: a hybrid, energy-
efficient, distributed clustering approach for ad hoc
sensor networks.," IEEE Transactions on Mobile
Computing, vol. 3 (4), pp. 366-379, Oct-Dec 2004.

[12] M. Steinbach, P. Tan, V. Kumar, S. Klooster, C.
Potter, and A. Torregrosa, "Clustering Earth Science
Data: Goals, Issues and Results," in KDD 2001
Workshop on Mining Scientific Dataset.

[13] T. Estlin, R. Castano, B. Anderson, D. Gaines, F.
Fisher, and M. Judd, "Learning and Planning for
Mars Rover Science," in IJCAI 2003, Workshop on
Issues in Designing Physical Agents for Dynamic
Real-Time Environments: World modeling, planning,
learning, and communicating. Acapulco, Mexico,
August 2003.

[14] I. H. Witten and E. Frank, Data mining: practical
machine learning tools and techniques with Java
implementations. San Francisco, CA: Morgan
Kaufmann Publishers Inc., 2000.

146

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

