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Abstract— The existence of preserved subsequences in a set
of related protein sequences suggests that they might play a
structural and functional role in protein’s mechanisms. Due to
its exploratory approach, the mining process tends to deliver a
large number of motifs. Therefore it is critical to release methods
that identify relevant significant motifs.

Many measures of interest and significance have been pro-
posed. However, since motifs have a wide range of applications,
how to choose the appropriate significance measures is appli-
cation dependent. Some measures show consistent results being
highly correlated, while others show disagreements. In this paper
we review existent measures and study their behavior in order to
assist the selection of the most appropriate set of measures. An
experimental evaluation of the measures for high quality patterns
from the Prosite database is presented.

I. INTRODUCTION

The mining of sequence patterns or motifs is one of the most
important tasks in protein sequence analysis and continues to
be an active topic of research. The large number of works and
algorithms that can be found in literature sustain this claim.
Sequence mining consists in the task of analyzing a set of
possible related sequences and detecting subsequences, also
called motifs, that occur a significant number of times among
those sequences. The motif overrepresentation can be ex-
plained by the existence of segments that have been preserved
through natural evolution of the protein. This may suggests
that those subsequences play a structural and functional role
in the protein’s mechanisms [32], [7]. Different types of motifs
representation have been proposed and two main classes can
be distinguished: probabilistic and deterministic. Probabilistic
motifs consist of a model that simulates the sequences or
part of the sequences under consideration. When an input
sequence is provided, a probability of being matched by the
motif is yielded. Position Weight Matrices (PWM) and Hidden
Markov Models (HMMs) are examples of probabilistic motifs.
Deterministic motifs are commonly expressed through means
of an enhanced regular expression syntax, either matching or
not the input sequences.

A critical aspect that is raised during motif analysis is
that the mining process tends to report a large number of
motifs. This can be blamed to the algorithm characteristics,
the database properties or even the user parameter values. Not
all these motifs are particularly interesting and most of them

certainly arise by chance. It is therefore crucial to propose
pruning methods to discriminate the relevant and significant
motifs.

The definition of significant motif is by itself an interesting
problem. One possible solution to asses the significance of
motifs is to delegate this decision on a biologist. This expert
would analyze the target proteins and decide which motifs
have biological significance. Since this approach is not feasible
in practice, an alternative is to automatically evaluate the
motifs according to their statistical or informative importance.
As pointed in [26] by Stolovitzy and Califano, although the
statistical significance can be neither necessary nor sufficient
for biological significance, it provides a starting point for this
analysis.

Additionally to the task of supporting a better understanding
of the protein’s structure and function, motifs have also a
wide-range of other applications. They can be used to perform
clustering [30], family classification [6], [7], [11], [15], [20],
[14], [8], discovery of sub-families in large protein families
[1], sequence annotation, gene expression analysis [17] and
the study and discovery of homology relations. The selection
of the appropriate measures for a specific problem depends on
how well they adjust to the problem.

In the literature, many measures of interest and significance
have been proposed. Usually, for each proposed motif mining
algorithm a different measure is also proposed. How to choose
the most appropriate significance measure is still an open
question. As far as we know, a thorough survey on comparing
different metrics for motif significance is still missing. Such
study can bring significant improvements to the field of protein
sequence analysis. For instance, the unsupervised mining of
massive protein datasets (like comprehensive protein sequence
databases e.g. SwissProt [12]) is not yet possible. This can be
due to the limitations of the existent algorithms which are
not yet capable of efficiently mining such amount of data.
However, the inexistence of measures that objectively evaluate
the biological significance of newly discovered motifs also
contribute to preclude this goal.

Different measures have different properties, thus the best
solution for a particular problem will most probably include
several measures and not be reduced to just choosing just
one. Given that some of these measures will show consistent
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and similar results, it is important to study how they inter-
relate. This will permit the identification of mutually different
measures and avoid biased evaluations. It is our aim to identify
such relations among the studied measures. The contributions
of this paper can be summarized as follows:

• Discuss the need of making a comprehensive evaluation
of different motif significance measures.

• Survey different types of measures presented in the bioin-
formatics, data mining, statistics and machine learning
literature and provide a full characterization.

• Evaluate the measures on a set of well defined motifs.
Study the behavior of these measure on different motifs
(intra-measure information) and how they inter-relate
(inter-measure information).

II. PRELIMINARIES

A. Evaluating Deterministic Motifs

Deterministic motifs make use of widely known regular
expression syntax, being easily understandable by humans.
These motifs can be divided in two types: fixed-length and
extensible-length. Fixed-length motifs (a.k.a (l, d)-motifs [23],
[10]) consist of motifs of a fixed size of l symbols where
d possible symbols may have a mismatch with the matched
subsequences in a database. Extensible-length motifs have an
arbitrary length. In the enhanced regular expression syntax by
which they are expressed, each symbol is generically called
an event and the distance between consecutive events as gaps.
Consider the definition of extensible-length pattern as:
A1 − x(p1, q1) − A2 − x(p2, q2) − . . . − An

, where Ai is a sequence of consecutive amino-acids and
−x(pi, qi)− gaps greater than pi and smaller than qi. Two
types of extensible-length motifs can be distinguished:

• Rigid Gap Motifs only contain gaps with a fixed length,
i.e. pi = qi,∀i. The symbol “.” is a wild-card symbol used
to denote a gap of size one and it matches any symbol
of the alphabet. Ex: MN..A.CA

• Flexible Gap Motifs allow a variable number of gaps
between events of the sequence, i.e. pi ≤ qi,∀i.
Ex: AN-x(1,3)-C-x(4,6)-D.

Deterministic motifs are typically mined through combina-
torial algorithms that perform an exhaustive traversal of the
search space and output motifs based on the support metric.
This metric requires that a motif, in order to be reported,
occurs in a number of sequences equal or greater than a
user pre-defined threshold (see to [21] for a comprehensive
overview). Typically, the assessment of the motifs significance
is done as post-processing step. In this context, two important
facts justify the critical need to evaluate significance measures.
The first is to provide means for an early pruning of irrelevant
motifs. As a result of the combinatorial nature of the mining
algorithms, the number of potentially candidates of determin-
istic motifs can easily grow exponentially. The second refers to
the fact that the over-representation implied by the minimum
support threshold does not always implies the significance of
the motif.

B. The Prosite Database

Today, there are a significant number of motifs repositories
freely available at the Internet. Examples of well established
and reliable sequence motif databases are: Prosite, PRINTS,
BLOCKS, InterPro or eMotif (see [16] for an overview). From
the mentioned databases, Prosite deserves a special attention
in the context of our work. Prosite [4] is the oldest and
best known sequence motif database. It is a semi-manually
annotated database. The sequence motifs are characterized by
having a high biological significance. They provide a strong
indication of a region in the protein with an important role.
A family of protein sequences is then described by one or
more motifs. The key aspects of the Prosite motifs are: its
capability to identify functional or structural regions in the
proteins and its use as a tool to distinguish family members.
This database is considered a standard (due to the high quality
of its motifs). New algorithms and methods tend to use this
database as a benchmark test. As an example of a motif, we
examine the Prosite entry ps00017. It reports the ATP/GTP-
binding site motif A also known as P-loop. This motif appears
in a considerable number of proteins that bind ATP or GTP.
It is a motif with a high probability of occurrence. A scan
to Swiss-Prot (release 49.1) shows that this motif has 17861
hits in 16550 different sequences. The pattern has the format:
[AG] - x(4) - G - K - [ST].

III. SIGNIFICANCE MEASURES

As introduced by Brazma et al. in [9], a significance
measure can be defined as function in the form: f(m,C) → R.
m stands for the motif being evaluated and C a set of possibly
related proteins sequences. This function returns a real valued
score that expresses how relevant or significant is m with
respect to C. These scores may provide hints to biological
or statistical relevant motifs.

The set of sequences C under which m is being compared
usually correspond to a part or the totality of a family of
proteins and is called target family. The set of remaining
sequences in the universe of all sequences U is denoted as
C, where U = C + C. The size of each set of sequences is
denoted as |C| and |C|, respectively. We now distinguish four
possible cases of a motif m matching a sequence of C:

• True Positive (TP ): a sequence that belongs to the target
family and matches the motif.

• True Negative (TN ): a sequence that does not belong to
the target family and does not match the motif.

• False Negative (FN ): a sequence that belongs to the target
family and does not match the motif.

• False Positive (FP ): a sequence that does not belong to
the target family and matches the motif.

In [24] Sagot suggests that motifs can be evaluated accord-
ing to the following approaches :

• Probability of matching a random sequence;
• Sensitivity/Specificity;
• Information content;
• Minimum Description Length;
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Since this categorization does not include all the possible
measures nor distinguishes the type of information provided,
in this work we will adopt a different categorization. Three
categories of measures are proposed:

1) Class-based measures are calculated based on the in-
formation of the pattern in relation to the target and
complement protein classes/families.

2) Theoretic-Information measures are based solely on the-
oretic models like probabilistic or entropy models. In
this case the measure calculation is self-contained, i.e.
the necessary information is found in the motif itself.

3) Mixed measures use both theoretic and class informa-
tion.

A. Class-based Measures

The ideal motif is one that matches all the sequences of
the target family and no other sequence outside this family.
These motifs are known as signatures [9] and are a perfect
tool to distinguish sequences from different families. In the
bioinformatics context, the measures most widely used to
express the quality of the patterns are: sensitivity, specificity
and positive predicted value (PPV) (see Table I). Sensitivity,
also called recall, measures the proportion of sequences of
the target family correctly matched by the motif. Specificity
measures the proportion of sequences outside the target family
that are not matched by the motif. The PPV, also called
precision, measures the proportion of sequences that are
covered by the motif and that belong to the target family.
An ideal motif is one with 100% of sensitivity and 100% of
PPV. These three measures yield a positive rank of motifs,
i. e. their score is proportional to the rank. For comparison
purposes we will introduce a negative rank measure: False
positive rate - Fpr. This measure returns the proportion of
negative instances that were incorrectly reported as being
positive. In this case, the greater the score the worst the
quality of the motif. Motifs can be ranked according to one
or all of these measures. When a unique value is required
to score a motif, a combination of these measures can be
used. The F-Measure (F) [27] and the Pearson Correlation
(C) [9], [5](also knows as Matthews Correlation Coefficient,
for its application in secondary structure prediction [34]) are
examples of such composed measures. As a last example of a
class-based measure we refer the Discrimination power (Dp)
[7]. This measure is particularly useful as a filter since Dp is
proportionally associated to selectiveness. A characteristic of
the class-based measures is that they do not rely on the motif in
order to be calculated. Hence, they can be applied to any type
of deterministic motif. We do not review all the possible class-
based measures as many other measures covering different
aspects of the pattern quality can be found. Thus, we only
focus on the most intuitive and widely known measures.

B. Theoretic-Information Measures

When analyzing the probabilistic aspects of the protein
sequences, it is generally assumed that sequences are generated

by an independent identically distributed (i.i.d.) process. Typi-
cally, the Bernoulli model is used. Therefore, the occurrence of
a motif m in a given sequence is assumed to be an i.i.d. process
[3]. In practice, this means that sequences are considered
to be independent and the occurrence of the amino-acids
independent events. Although this argument is not always
totally true (sequences are believed to be biologically related)
it provides a simplification which is a good approximation to
actual verified values [22]. The probability P of a motif M ,
in the form A1−x(p1, q1)−A2−x(p2, q2)− . . .−An, can be
calculated according to equation 1, where Ai is a subsequence
of amino-acids.

P (M) = P (A1) × P (−x(p1, q1)−) × P (A2) × P (−x(p2, q2)−) × . . . P (An) (1)

Since P (.) = 1, then P (−x(p, q)−) = 1 and P (Ai) =
∏

aj∈Ai
P (aj). We consider that the probability of an amino-

acid aj , P (aj), is given by its frequency of occurrence at
the Swiss-Prot database [12]. If ambiguous positions occurs
in subsequence Ai then its probability is given by equation 2.

P (Ai) =
∏

aj∈Ai

(

|Ai|
∑

k=1

P (ajk)) (2)

Where ajk stands for the k-th amino-acid in position j

of the subsequence Ai. For instance, the probability of the
subsequence A− [GC]− ..−V is given by 0.0783×(0.0693+
0.0152) × 1 × 1 × 0.0671 = 4.44 × 10−4.

Support(M) is the number of times that a motif M occurs
in different sequences of the database. Support(M ∪ C)
corresponds to the number of sequences in family C where
M occurs.

Theoretic-information measures quantify the degree of in-
formation encoded in a motif. We provide examples of three of
these measures. The Information Gain (IG) [29], [28] is used
to measure the amount of accumulated information of a motif
in relation to an amino-acid sequence. In this equation (see
table I) the information content I measures how likely a pattern
is to occur and the Support(M) − 1 gives the recurrence of
the motif M in the database.

The Minimum Description Length - MDL principle - ap-
plied in [22], [1] is also an information-theoretic measure and
can be made equivalent to the IG measures. The MDL is
used to score the motifs and to measure the fitness of these
motifs with respect to the input sequences. Assuming the
hypothetical transmission of sequences, the idea is to measure
how much can be saved in this transmission, if one knows
about the presence of the motif. In [22], it is demonstrated
that K × log2P (M) is the saving obtained from a motif M

over K covered sequences, being equivalent to the IG formula.
The Log-Odds (L) measure provides the degree of surprise

of a pattern. It compares its probability of occurrence with
the expected probability of occurrence according to the back-
ground distribution. The equation presented in table I is a
variation of the log-odds equation introduced in [19], that
was first proposed to measure the significance of probabilistic
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patterns. Both IG and L measures can be applied to all types of
deterministic patterns. The Pratt (PR) measure was introduced
by Jonassen et al. in [18] to rank the extensible gap motifs
obtained from the Pratt algorithm. In this measure, a penalty
is given when gaps occur.

As an additional measure we propose the Z-score measure.
Although it is essentially a statical measure, it was included in
this group of measures as it can be calculated based solely on
the support, the motif information and in the number of amino-
acids of the database. This measure can be used to filter out
irrelevant motifs by selecting only those for which the actual
number of occurrences considerably exceeds its expected
number. This criteria is based on the following biological
motivation: if a motif occurs more than it is expected to occur
by chance then it should have a biological interest.

In [3], [26], motifs are statistically evaluated according to a
Z-Score function. For a motif M , the Z-score is provided by
equation 3 (see also table I):

Zscore(M) =
Support(M) − E(M)

N(M)
(3)

In equation 3, Support(M) denotes the actual number
of occurrences (support) and E(M) the expected number
of occurrences of M , which is calculated by the product
of the total number of amino-acids found in the database
by the probability of M . N(M) is an expected value of
some function of M , in this case the square root of the
expected variance. It was generally verified that statistically
relevant motifs, discriminated through the Z-score function,
match functionally important regions of the proteins [3], [26].
Another important conclusion obtained from [3] is that for
over-represented motifs, the non-maximal motifs (which are
contained on other motifs) have a lower degree of surprise
than the maximal ones. This result yields a clever mechanism
to prune motifs just before their significance is computed. The
over-representation approach provided by means of a support
constraint and the under-representation approach provided by
statistical tools like the Z-score, is complementary on the task
of automatically retrieving significant motifs from a database.

C. Mixed Measures

As examples of mixed measures that use information-
theoretic and class-based features to determine the significance
of a pattern, we selected two that are popular in the Machine
Learning and Data Mining communities. These are the J-
Measure [25] and the Mutual Information (I-measure) which
is derived from the Shannon’s entropy theory [2], [35].

For a class space Q = {C,C}, the component H(Q) of
the I measure (see table I) provides the degree of informa-
tion encoded by Q. Given a motif M, component H(Q|M)
measures the amount of uncertainty remaining about Q after
M is known. The difference H(Q) − H(Q|M) provides the
expected information gain about Q upon knowing M.

The J-measure is the product of two components. The first
component, P (M), provides the probability of the motif oc-
currence, which can be interpreted as a measure of simplicity.

Since we are considering a target class C and its complement
C, the second component j(C;M) measures the goodness-of-
fit of M with relation to class C. This is also called cross-
entropy [36].

In addition, we redefine the IG measure to account for the
distribution of motifs along the protein families, leading to
the proposal of a measure called (S)urprise-Measure. The S

measure combines the information gain, I , of the motif M with
the conditional probability of matching a sequence s from the
target class C given the motif M. This probability is given
by the relative occurrence of M in C, Support(M∪C)

Support(M) , which
corresponds to the positive predicted value of M. This measure
express the amount of information provided by the pattern and
its quality as a class descriptor.

These three measures can be easily calculated in all types of
deterministic motifs. In general, one can interpret these mixed
measures as a tool to quantify the uncertainty reduction of a
sequence S belonging to the class C, given that S contains the
motif M.

Table II contains equations to support a better understanding
of the ones from Table I.

Formula Range
P (C) = TP +FN

TP +FN +FP +TN
[0,1]

P (C|M) = TP
TP +FP

[0,1]
P (C|M)

P (C)
=

TP ×(TP +FN +FP +TN )
(TP +FP )×(TP +FN )

[0,1]
1−P (C|M)
1−P (C)

=
FP ×(TP +FN +FP +TN )

(TP +FP )×(TN+FP )
[0,1]

TABLE II
AUXILIARY FORMULAS.

IV. EVALUATION

In this section we describe the set of experiments that
were performed to evaluate the relations among the different
measures. For this purpose only flexible-length motifs were
evaluated. The file prosite.dat that corresponds to the Prosite
database (available by FTP) was analyzed. It corresponds to
the Release 19.20 (Feb-2006). This release contains 1929
entries, where 1330 are regular expression patterns and 1317
entries contain class based information. The number of rigid
gap patterns is 1030. The average PPV is 95.92% and the
average Sensitivity is 90.16%. The overall average gap length
of the motifs is 1.93 and the standard deviation is 1.52.
For the universe of protein sequences we use the Swiss-Prot
database [12] (release 49.0). This database contains more than
8 millions of amino-acids for a total of 207132 non-redundant
protein sequences.

A. Correlation Analysis

As a first experiment, we evaluated the correlation degree
between the measures. For all the 1330 prosite patterns the
score of the different measures was calculated. This results
in a vector of values per measure. Next, an all-against-all
vector comparison was made and the respective correlation
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calculated. The correlation matrix is plotted in Figure 1. Dark
areas indicate a high correlation.

Fig. 1. Plot of the Correlation Matrix.

Fig. 2. Plot of the log of Z-Score versus the motif span.

From Figure 1, one can conclude that the class-based mea-
sures, with the exception of Fpr, show a high inter correlation.
The scatter plots for these measures (Figure 3) shows that these
correlations tend to be positive.

Biological sequence databases are often characterized as
being highly class imbalanced, where the majority of the
cases are negative. In those cases, measures that make use
of negative information, as Fpr or specificity, are not suitable.
The analysis of the Fpr scores shows that all motifs score
closer to zero. This negative rank is of no use in this context,
since no discrimination among the patterns can be obtained.
In the same way, specificity will always show high scores due
to large TN values.

Further analysis also shows interesting positive correlations
among I and IG, logOdd and S, S with PPV and Corr. From
the scatter plot in Figure 4 a negative correlation among J with
LogOdd and J with S is found.

From manual inspection of the data, we verified that the
Z-Score measure shows an almost linear correlation with

the motif span. Figure 2 shows this relation. Since Z-Score
achieves high values, the logarithm is used instead of the actual
score values.

Fig. 3. Scatter Plot of the first 7 measures.

Fig. 4. Scatter Plot of the last 7 measures.

B. Principal Component Analysis

We make use of the Principal Component Analysis - PCA
[31], [33] technique to summarize and discover patterns of
inter-correlations among the studied measures. This method
describes the variation of a set of correlated variables in
terms of a set of uncorrelated combinations, called principal
components. These components, which express combinations
of the original variables, allow a dimensionality reduction
while maintain as much as possible of the original variation.
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After the application of the PCA method we obtain 14
components, where 4 have an initial eigenvalue greater than 1.
Figure 5 shows the scree plot for the 14 components. The first
four components show the highest percentage of variance and
account for a cumulative variance of 89.1%. We have applied
a rotation to the component matrix, see Figure 6 for a 3D
visualization of the three components, according to varimax
method with Kaiser Normalization [33]. Using a threshold
value of 0.5, we can see that in component one the measures
L, S and Z-score are highly correlated. In component two
are four measures: Sn, F, C and Dp. Note that in Figure 6
the two higher points contain an overlap of F and C and Sn
and Dp measures. In component three: Sp, PPV, F and C.
Finally in component four: IG and I are highly correlated.
Component 2 and 3 relates only class-based measures, where
F and C measure are present in both components. This is
due to the high inter-correlation of these two measures and
the high correlation of the other measures of this class.
The two remaining components more surprisingly interesting.
Component four relates IG and I measures which are two
completely different measures. IG does not make use of any
class information and I is essentially class based. Component
one relates measure L and Zscore, where some relationship
can be found since both provide a degree of emergence of
the pattern, i.e. how much its appearance deviates from what
was expected. These two measures are also correlated with
the S measure, which combines positive predictive value with
the information content of the pattern. In this case no obvious
mathematical relation can be found between S and the L and
Z-score measures.

Fig. 5. Scree Plot of the 14 components.

C. Variation Analysis

Since significance measures are used as discrimination tools,
an important property of a measure is its variability. Table
III shows the average, standard deviation and the coefficient
of variation [31] for each measure. From this table we can
see that Z-score shows an extremely large variation, due to
the existence of extremely large values. The IG and Pratt
measure also show a considerable coefficient of variation. The
class-based measures shows small values of variation, but one

Fig. 6. Plot of the Rotated Components.

should remember that for those cases the domain range is very
limited.

Measure Avg Std Std
Avg

Sn 0.910 0.122 0.134
Sp 1.000 0.000 0.000

PPV 0.968 0.091 0.094
F 0.931 0.099 0.106

Corr 0.935 0.091 0.097
Dp 0.919 0.122 0.132
Fpr 0.000 0.000 0.000
IG 552.031 755.787 13.733
PR -3.615 45.055 12.463
L 3.736 3.002 0.817
J -8.888 3.119 0.359
I 0.005 0.007 1.400
S 7.467 2.612 0.349

Zscore 3M 124M 41.3M

TABLE III
AVERAGE, STANDARD DEVIATION AND COEFFICIENT OF VARIATION OF

THE MEASURES.

V. DISCUSSION

In this study a general purpose evaluation of the significance
measures has been made. Since different measures have dif-
ferent properties, the best measures or set of measures should
be selected according to the problem being tackled. At the
moment of selecting those measures caution has to be taken
in order to avoid biased results.

When performing a global comparison, we look for the
fulfillment of two desirable properties. First, measures should
show low correlation with other measures, since two highly
correlated measures are redundant. Second, because the eval-
uated motifs have completely different characteristics in terms
of amino-acid composition, number and length of gaps, num-
ber of don’t cares symbols, motif length and so on, they should
provide considerable different scores among the evaluated
patterns. Therefore a significant variability should be verified.

In general we can say that class-based measures are signif-
icantly correlated. The measures Sn, Sp, PPV, Dp overem-
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phasize some aspects of the pattern quality and should be
combined since they do not work well as single evaluators.
If class information is required a combination of the Sn and
the PPV measures can be used.

They tend to have a relative small correlation and therefore
cover different quality aspects of the motif. In those cases,
where only one score value can be retrieved, the Correlation
measure is recommended. Although this last measures has a
high correlation with F and D and approximately the same
variability it provides a more balanced evaluation since it
makes uses of the four class-based parameters.

The remaining measures evaluate different aspects of the
pattern quality and therefore should be chosen according to the
target application. Considering the two above stated properties
we can say that Z-score, and Pratt are the measures that best
fulfill the criteria expressed by these properties.

The present study was intended to provide guidelines for
choosing the best set of significance measures. The ideal
benchmark would consist in analyzing and comparing how
the score provided by the measures agree with the functional
sites of the protein sequence. As a future work, we plan to
study how these measures can be used for the discovery of
such sites. We would also like to study the impact of such
measures for specific tasks like classification and clustering.
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Symbol Measure Formula Range Type
Sn Sensitivity Sn(M) =

TP
TP +FN

[0,1] 1
Sp Specificity Sp(M) =

TN
TN +FP

[0,1] 1
PPV Positive Predicted Value P P V (M) =

TP
TP +FP

[0,1] 1
Fpr False Positive Rate F pr(M) =

FP
FP +TN

[-1,1] 1
F F-Measure F (M) =

2×Sensitivity×P P V
Sensitivity+P P V

=
2×TP

2×TP +FN +FP
[0,1] 1

C Correlation C(M) =
TP ×TN−FP ×FN

√

(TP +FN )(TP +FP )(TN +FP )(TN +FN )
[-1,1] 1

Dp Discrimination Power Dp(M) =
TP
|C|

−
FP
|C|

[-1,1] 1

IG Information Gain IG(M) = I(M) × [Support(M) − 1]
where I(M) = −log|Σ|P (M) [0, +∞] 2

PR Pratt Measure
P R(M) =

∑n
i I′(Ai) − c ·

∑n−1
k=1

(qk − pk)

where I′(Ai) = −
∑

ai∈Ai
(P (ai) × log(P (ai))) +

∑

ai∈Ai
(

P (ai)
P (Ai)

× log(
P (ai)
P (Ai)

))

and P (Ai) =
∑

ai∈Ai
p(ai)

[−∞, +∞] 2

L Log-Odds L(M) = log(

Support(M)
T otalNumP atterns

P (M)
) [−∞, +∞] 2

Zscore Z-Score Zscore(M) =
Support(M)−E(M)

N(M)

where E(M) = Nresid × P (M) and N(M) =
√

Nresid × P (M) × (1 − P (M))
[−∞, +∞] 2

J J-Measure
J(C; M) = P (M) × j(C; M)

where j(C; M) = P (C|M) × log2
P (C|M)

P (C)
+ (1 − P (C|M)) × log2

(1−P (C|M))
(1−P (C))

[0, 1] 3

I Mutual Information
I(Q; M) = H(Q) − H(Q|M) where H(Q) = −

∑

q∈{C,C̄} P (q) × log2P (q)

and H(Q|M) = −P (M) ×
∑

q∈{C,C̄} P (q|M) × log2P (q|M)
[0, 1] 3

S Surprise Measure S(M) = I(M) × P (C|M) = I(M) ×
Support(M∪C)

Support(M)
= I(M) ×

TP
TP +FP

[0, +∞] 3

TABLE I
LIST OF THE MOTIF SIGNIFICANCE MEASURES.
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