
 

Abstract — Detecting unknown worms is a challenging task. 
Extant solutions, such as anti-virus tools, rely mainly on prior 
explicit knowledge of specific worm signatures. As a result, 
after the appearance of a new worm on the Web there is a 
significant delay until an update carrying the worm’s signature 
is distributed to anti-virus tools. During this time interval a new 
worm can infect many computers and cause significant damage. 
We propose an innovative technique for detecting the presence 
of an unknown worm, not necessarily by recognizing specific 
instances of the worm, but rather based on the computer 
measurements. We designed an experiment to test the new 
technique employing several computer configurations and 
background applications activity. During the experiments 323 
computer features were monitored. Four feature selection 
techniques were used to reduce the amount of features and four 
classification algorithms were applied on the resulting feature 
subsets. Our results indicate that using this approach resulted 
in exceeding 90% mean accuracy, and for specific unknown 
worms accuracy reached above 99%, using just 20 features 
while maintaining a low level of false positive rate.

I. INTRODUCTION

HE detection of malicious code (malcode) transmitted 
over computer networks has been researched intensively 
in recent years. One type of abundant malcode is worms, 

which proactively propagate across networks while 
exploiting vulnerabilities in operating systems or in installed 
programs. Other types of malcode include computer viruses, 
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Trojan horses, spyware, and adware. In this study we focus 
on worms, though we plan to expand the approach to other 
malcodes. 

Nowadays, excellent technology (i.e., antivirus software 
packages) exists for detecting known malicious code. 
Typically, antivirus software packages inspect each file that 
enters the system, looking for known signs (signatures) 
uniquely identifying an instance of malcode. Nevertheless, 
antivirus technology is based on prior explicit knowledge of 
malcode signatures and cannot be used for detecting 
unknown malcode. Following the appearance of a new worm 
instance, a patch is provided by the operating system 
provider and the antivirus vendors update their signatures-
base accordingly. This solution is not perfect, however, since 
worms propagate very rapidly. By the time the antivirus 
software has been notified about the new worm, very 
expensive damage has already been inflicted [1]. 

Intrusion detection, commonly done at the network level, 
called network-based intrusion detection (NIDS), was 
researched substantially [2]. However, NIDS are limited in 
their detection capabilities (like any detection system). In 
order to detect malcodes which slipped through the NIDS at 
the network level, detection operations are performed locally 
at the host level, called Host-based Intrusion Detection
(HIDS). HIDS are detection systems which monitor activities 
at a host. HIDS usually compare the states of the computer in 
several aspects, such as the changes in the file system using 
checksum comparisons. The main drawback of this approach 
is the ability of malcodes to disable antiviruses; other 
technical limiting factors include the fast changes in the file 
system. The main problem is detection knowledge 
maintenance, which is usually performed manually by the 
domain expert. 

Recent studies have proposed methods for detecting 
unknown malcode using Machine Learning techniques. 
Given a training set of malicious and benign executables 
binary code, a classifier is trained and learns to identify and 
classify unknown malicious executables as being malicious 
[3,4,5]. While this approach is a potentially good solution, it 
is not complete, since it can detect only executable files, and 
malcodes located entirely in the memory, such as the 
Slammer worm [6], cannot be detected using this technique. 
Moreover, any technique can be sabotaged by a malcode. 

Our suggested approach can be classified under HIDS, but 
the novelty here is that it is based on the computer 
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measurements and that the knowledge is acquired 
automatically using inductive learning, given a dataset of 
known worms. This approach avoids the need for manual 
acquisition of knowledge, which is sometimes unavailable, 
especially in such an approach, as well as knowledge 
maintenance. While this approach does not prevent infection, 
it enables fast detection of an infection which may result in 
an alert, which can be further reasoned, based on hosts' 
alerts, at the network level. Further reasoning based on the 
network-topology can be performed by a network 
administration function, and relevant decisions and policies, 
such as disconnecting a single computer or a cluster, can be 
further implemented. In this study, we focus on a proposed 
technique that enables the detection of unknown worms 
based on a single computer's (host) behavior. 

Generally speaking, malcode within the same category 
(e.g., worms, Trojans, spyware, adware) share similar 
characteristics and behavior patterns. These patterns are 
reflected by the infected computer's behavior as represented 
by its measurements. Based on these common characteristics, 
we suggest that an unknown worm can be detected based on 
the computer's behavior using Data Mining techniques. In 
the proposed approach, a classifier is trained on computer 
measurements of known worm and non-worm behaviors. 
Based on the generalization capability of the classification 
algorithm, we argue that a classifier can further detect 
previously unknown worm activity. Nevertheless, this 
approach may be affected by the variation of computer and 
application configurations as well as user behavior on each 
computer. In this study, we investigate whether an unknown 
worm activity can be detected, at a high level of accuracy, 
given the variation in hardware and software environmental 
conditions on individual computers, while minimizing the set 
of features required. 

The rest of the article is structured as follows: in section 2, 
a survey of the relevant background for this work is 
presented. The methods used in this study are described in 
section 3, followed by the research questions and the 
corresponding experimental plan in section 4. Finally, results 
are presented, followed by a discussion and conclusions. 

II. BACKGROUND AND RELATED WORK

A. Malicious Code and Worms 

The term 'malicious code' (malcode) refers to a piece of 
code, not necessarily an executable file, intended to harm, 
whether generally or in particular, a specific owner (host). 
The approach suggested in this study aims at detecting any 
malcode activity, whether known or unknown. However, 
since our original research was on worms, we will focus on 
them in this section. 

Kienzle and Elder [7], define a worm by several aspects 
through which it can be distinguished from other types of 
malcode: 1) Malicious code – worms are considered 
malicious in nature; 2) Network propagation or Human 

intervention – a commonly agreed upon aspect, that is, 
worms propagate actively over a network, while other types 
of malicious codes, such as viruses, commonly require 
human activity to propagate; 3) Standalone or file infecting – 
while viruses infect a file (its host), a worm does not require 
a host file, and sometimes does not even require an 
executable file, residing entirely in the memory, as did the 
Code Red [8] worm. Different purposes and motivations 
stand behind worms developers [9] including: Experimental 
curiosity which can lead any person to create a worm, such 
as the ILoveYou worm [10]; pride and power leading 
programmers to show off their knowledge and skill through 
the harm caused by the worm; commercial advantage, 
extortion and criminal gain, random and political protest, 
and terrorism and cyber warfare. The existence of all these 
types of motivation indicates that computer worms are here 
to stay as a network vehicle serving different purposes and 
implemented in different ways. To address the challenge 
posed by worms effectively, meaningful experience and 
knowledge should be extracted by analyzing known worms. 
Today, given the known worms, we have a great opportunity 
to learn from these examples in order to generalize. We 
argue that data mining methods can be a very useful way to 
learn and generalize from previously seen worms, in order to 
classify unknown worms effectively, as a last detection 
method. 

B. Detecting Malicious Code Using Data Mining 

Data mining, commonly considered as the application of 
machine learning to huge data sets, has already been used in 
efforts to detect and protect against malicious codes.  

A recent survey on intrusion detection [2] summarizes 
recent proposed applications of data mining in recognizing 
malcodes in single computers and in computer networks. Lee 
et al. proposed a framework consisting of data mining 
algorithms for the extraction of anomalies of user normal 
behavior for use in anomaly detection [11], in which a 
normal behavior is learned and any abnormal activity is 
considered as intrusive. The authors suggest several 
techniques, such as classification, meta-learning, association 
rules, and frequent episodes, to extract knowledge for further 
implementation in intrusion detection systems. They 
evaluated their approach on the DARPA98 [12] benchmark 
test collection, which is a standard benchmark of network 
data for intrusion detection research.  

A Naïve Bayesian classifier was suggested in [2] referring 
to its implementation within the ADAM system developed 
by Barbara et al. [13]. The ADAM system had three main 
parts: (a) a network data monitor which listens to TCP/IP 
protocol; (b) a data mining engine which enables acquisition 
of the association rules from the network data; and (c) a 
classification module which classifies the nature of the traffic 
in two possible classes, normal and abnormal, which can 
later be linked to specific attacks. Other machine learning 
algorithms techniques proposed are Artificial Neural 
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Networks (ANN) [14,15,16], Self Organizing Maps (SOM) 
[17] and fuzzy logic [18,19,20]. 

III. METHODS

The general goal of this study is to assess the viability of 
employing Data Mining techniques in detecting the existence 
of unknown worms in an individual computer host based on 
its behavior (measurements). In order to create a testing 
environment, we have built a local network of computers, 
which enabled us to inject worms into a controlled 
environment, while monitoring the computers and collecting 
measurements. Preliminary results were very encouraging, 
but we wanted to estimate the influence of the environment 
in which the training set was produced on the detection 
accuracy in another environment. In an extensive experiment 
we have shown elsewhere [21] that there is no significant 
influence. Moreover, when a classifier was trained on an old 
computer, its detection accuracy was better than when 
trained on a new. In this study we want to investigate further 
the possibility of detecting unknown malicious code. 

A. DataSet Creation 

Since there is no benchmark dataset which could be used 
for this study, we created our own dataset. A network with 
various computers (configurations) was deployed, into which 
we could inject worms. The network was a controlled 
environment, in which we could monitor the computer 
features and document the measurements into log files. 
1) Environment Description 

The lab network consisted of seven computers, which 
contained heterogenic hardware, and a server computer 
simulating the internet. We used the windows performance
counters1, which enable monitoring system features that 
appear in these main categories (the amount of features in 
each category appear in parenthesis): Internet Control 
Message Protocol (27), Internet Protocol (17), Memory
(29), Network Interface (17), Physical Disk (21), Process 
(27), Processor (15), System (17), Transport Control 
Protocol (9), Thread(12), User Datagram Protocol (5). In 
addition we used VTrace [22], a software tool which can be 
installed on a PC running Windows for monitoring purposes. 
VTrace collects traces of the file system, the network, the 
disk drive, processes, threads, interprocess communication, 
waitable objects, cursor changes, windows, and the 
keyboard. The data from the windows performance were 
configured to measure the features every second and store 
them in a log file as vector. VTrace stored time-stamped 
events, which were aggregated into the same fixed intervals, 
and merged with the windows performance log files. These 
eventually included a vector of 323 features for every 
second. 
2) Injected Worms 

While selecting worms from the wild, our goal was to 

1http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/counter/counters2_lbfc.asp 

choose worms that differ in their behavior from the available 
worms. Some of the worms have a heavy payload of Trojans 
to install in parallel to the distribution process upon the 
network; others focus only on distribution. Another aspect is 
having different strategies for IP scanning which results in 
varying communication behavior, CPU consumption, and 
network usage. While all the worms are different, we wanted 
to find common characteristics so as to be able to detect an 
unknown worm. We briefly describe here the main 
characteristics, relevant to this study, of each worm included 
in this study. The information is based on the virus libraries 
on the web234. We briefly describe the five worms we used: 

(1) W32.Dabber.A scans IP addresses randomly. It uses 
the W32.Sasser.D worm to propagate and opens the FTP 
server to upload itself to the victim computer. Registering 
itself enables its execution on the next user login (human 
based activation). It drops a backdoor, which listens on a 
predefined port. This worm is distinguished by its use of an 
external worm in order to propagate. 

(2) W32.Deborm.Y is a self-carried worm, which prefers 
local IP addresses,. This worm registers itself as an MS 
Windows service and is executed upon user login (human 
based activation). This worm contains three Trojans as a 
payload: Backdoor.Sdbot, Backdoor.Litmus, and 
Trojan.KillAV, and executes all of them. We chose this 
worm because of its heavy payload. 

(3) W32.Korgo.X is a self-carrying worm which uses a 
totally random method for IP addresses scanning. It is self-
activated and tries to inject itself as a function into MS 
Internet Explorer as a new thread. It contains a payload code 
which enables it to connect to predefined websites in order to 
receive orders or download newer worm versions.  

(4) W32.Sasser.D uses a preference for local addresses 
optimization while scanning the network. About half of the 
time it scans local addresses and the other half random 
addresses. In particular it opens 128 threads for scanning the 
network, which requires a heavy CPU consumption, as well 
as significant network traffic. It is a self-carried worm that 
uses a shell to connect to the infected computer’s FTP server 
and to upload itself.  

(5) W32.Slackor.A, a self-carried worm, exploits MS 
Windows sharing vulnerability to propagate. The worm 
registers itself to be executed upon user login. It contains a 
Trojan payload and opens an IRC server on the infected 
computer in order to receive orders. 

All the worms perform port scanning and possess different 
characteristics. Further information about these worms can 
be accessed through libraries on the web567. 

2 Symantec – www.symantec.com 
3 Kasparsky www.viruslist.com 
4Macfee http://vil.nai.com 
5 Symantec – www.symantec.com 
6 Kasparsky www.viruslist.com 
7Macfee http://vil.nai.com 
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3) Dataset Description 
In order to examine the influence of a computer hardware 

configuration, background running applications, and user 
activity, we considered three major aspects: computer 
hardware configuration, constant background application
consuming extreme computational resources, and user 
activity, being binary variables. (1) Computer hardware 
configuration: Both computers ran on Windows XP, which is 
considered the most widely used operation system, having 
two configuration types: an "old," having Pentium 3 800Mhz 
CPU, bus speed 133Mhz and memory 512 Mb, and a "new," 
having Pentium 4 3Ghz CPU, bus speed 800Mhz and 
memory 1 Gb. (2) Background application: We ran an 
application affecting mainly the following features: 
Processor object, Processor Time (usage of 100%); Page 
Faults/sec; Physical Disk object, Avg Disk Bytes/Transfer, 
Avg Disk Bytes/Write, and Disk Writes/sec. (3) User activity: 
several applications, including browsing, downloading and 
streaming operations through Internet Explorer, Word, 
Excel, chat through MSN messenger, and Windows Media 
Player, were executed to imitate user activity in a scheduled 
order. The two options in the Background Application and 
User Activity were presence or absence of the user activity. 

Each dataset contained monitored samples of each one of 
the five injected worms separately, and samples of a normal
computer behavior, without any injected worm. Each worm 
was monitored for a period of 20 minutes in resolution of 
seconds. Thus, each record, containing a vector of 
measurements and a label, presented a second activity 
labeled by the specific worm, or none activity label. Each 
dataset contained a few thousand (labeled samples) of each 
worm or none activity. We therefore had three binary 
aspects, which resulted in eight possible combinations 
representing a variety of dynamic computer configurations 
and usage patterns. Each dataset contained monitored 
samples for each of the five worms injected separately, and 
samples of a normal computer behavior without any injected 
worm. Each sample (record) was labeled with the relevant 
worm (class), or 'none' for "clean" samples. 

B. Feature Selection 

In Data Mining applications, the large number of features 
in many domains presents a huge challenge. Typically, some 
of the features do not contribute to the accuracy of the 
classification task and may even hamper it. Moreover, in our 
approach, reducing the amount of features while maintaining 
a high level of detection accuracy is crucial for meeting 
computer performance and resource consumption. Ideally, 
we would like to minimize the self-consumption of computer 
resources required for the monitoring operations 
(measurements) and the classifier computations. This can be 
achieved through reduction of the classified features using 
the feature selection technique. Since this is not the focus of 
this paper, we will describe the feature selection 
preprocessing very briefly. In order to compare the 

performance of the classification algorithms, we used the 
filters approach, which is applied on the dataset and is 
independent of any classification algorithm (unlike wrappers, 
in which the best subset is chosen upon an iterative 
evaluation experiment). Under filters, a measure is calculated 
to quantify the correlation of each feature with the class (in 
our case, the presence or absence of a worm activity). Each 
feature receives a rank representing its expected contribution 
in the classification task. Eventually, the top ranked features 
were selected. 

We used three feature-selection measures, which resulted 
in a list of ranks for each feature selection measure and an 
ensemble incorporating all three of them. We used Chi-
Square (CS), Gain Ratio (GR), ReliefF implemented in the 
Weka environment [23] and their ensemble, based on a 
simple average of the three ranks. We took the highest 
ranked (top) features 5, 10, 20 and 30 from each feature 
selection measure ranked list. Finally we had four subsets 
and the full features set, for which we had eight datasets each 
resulting in 17 datasets. While the feature selection is not the 
focus of this study, but rather its application, we briefly 
describe the measures we used. 

Chi-Square measures the lack of independence between a 
feature f and a class ci and can be compared to the chi-square 
distribution with one degree of freedom to judge 
extremeness. Equation 1 shows how the chi-square measure 
is defined and computed, where N is the total number of 
documents and f refers to the presence of the feature (and 

f its absence), and ci refers to its membership in ci. 
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Gain Ratio was originally presented by Quinlan in the 
context of Decision Trees [24], which was designed to 
overcome a bias in the Information Gain (IG) measure [25], 
and which measures the expected reduction of entropy 
caused by partitioning the examples according to a chosen 
feature. Given entropy E(S) as a measure of the impurity in a 
collection of items, it is possible to quantify the effectiveness 
of a feature in classifying the training data. Equation 3 
presents the formula of the entropy of a set of items S, based 
on C subsets of S (for example, classes of the items), 
presented by Sc. Information Gain measures the expected 
reduction of entropy caused by portioning the examples 
according to attribute A, in which V is the set of possible 
values of A, as shown in equation 2. These equations refer to 
discrete values; however, it is possible to extend it to 
continuous values attribute. 
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The IG measure favors features having a high variety of 
values over those with only a few. GR overcomes this 
problem by considering how the feature splits the data 
(Equations 4 and 5). Si are d subsets of examples resulting 
from portioning S by the d-valued feature A.  
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ReslifF [26] estimates the quality of the features according 
to how well their values distinguish between instances that 
are near each other. Given a randomly selected instance x, 
from a dataset s with k features, Relief searches the data set 
for its two nearest neighbors from the same class, called 
nearest hit H and from a different class, called nearest miss 
M. The quality estimation W[Ai] is stored in a vector of the 
features Ai, based on the values of a difference function diff() 
given x, H and M as shown in equation 6..  
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C. Classification Algorithms 

One of the goals of this study was to pinpoint the 
classification algorithm that provides the highest level of 
detection accuracy. We employed four commonly used 
Machine Learning algorithms: Decision Trees, Naïve Bayes, 
Bayesian Networks and Artificial Neural Networks, in a 
supervised learning approach, in which the classification 
algorithm learns from a provided training set, containing 
labeled examples. 

While the focus of this paper is not on classification
algorithm techniques, but on their application in the task of 
detecting worm activity, we briefly describe the 
classification algorithms we used in this study. 

1) Decision Trees 
Decision tree learners [24] are a well-established family of 

learning algorithms. Classifiers are represented as trees 
whose internal nodes are tests on individual features and 
leaves are classification decisions. Typically, a greedy 
heuristic search method is used to find a small decision tree 
that correctly classifies the training data. The decision tree is 
induced from the dataset by splitting the variables based on 
the expected information gain. Modern implementations 
include pruning which avoids over fitting. In this study we 
evaluated J48, the Weka version of the commonly used C4.5 
algorithm [24]. An important characteristic of Decision 

Trees is the explicit form of their knowledge which can be 
easily represented as a set of rules. 

2) Naïve Bayes 
The Naïve Bayes classifier is based on the Bayes theorem, 

which in the context of classification states that the posterior 
probability of a class is proportional to its prior probability 
as well as to the conditional likelihood of the features, given 
this class. If no independent assumptions are made, a 
Bayesian algorithm must estimate conditional probabilities 
for an exponential number of feature combinations. “Naive 
Bayes” simplifies this process by making the assumption that 
features are conditionally independent given the class, and 
requires that only a linear number of parameters be 
estimated. The prior probability of each class and the 
probability of each feature, given each class, is easily 
estimated from the training data and used to determine the 
posterior probability of each class, given a set of features. 
Naive Bayes has been shown empirically to produce good 
classification accuracy across a variety of problem domains 
[27]. In this study, we evaluated Naive Bayes, the standard 
version that comes with Weka. 

3) Bayesian Networks 
Bayesian networks is a form of the probabilistic graphical 

model [28]. Specifically, a Bayesian network is a directed 
acyclic graph of nodes with variables and arcs representing 
dependence among the variables. Like Naïve Bayes, 
Bayesian networks are based on the Bayes Theorem; 
however, unlike Naïve Bayes, they do not assume that the 
variables are independent. Actually Bayesian Networks are 
known for their ability to represent conditional probabilities 
which are the relations between variables. A Bayesian 
network can thus be considered a mechanism for 
automatically constructing extensions of Bayes' theorem to 
more complex problems. Bayesian networks were used for 
modeling knowledge and implemented successfully in 
different domains. We evaluated the Bayesian Network 
standard version which comes with WEKA. 

4) Artificial Neural Networks 
An Artificial Neural Network (ANN) [29] is an 

information processing paradigm that is inspired by the way 
biological nervous systems (i.e., the brain) are modeled with 
regard to information processing. The key element of this 
paradigm is the structure of the information processing 
system. It is a network composed of a large number of highly 
interconnected processing elements, called neurons, working 
together in order to approximate a specific function. An 
ANN is configured for a specific application, such as pattern 
recognition or data classification, through a learning process
during which the weights of the inputs in each neuron are 
updated. The weights are updated by a training algorithm, 
such as back-propagation, according to the examples the 
network receives, in order to reduce the value of error 
function. The power and usefulness of ANN have been 
demonstrated in numerous applications including speech 
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synthesis, medicine, finance and many other pattern 
recognition problems. For some application domains, neural 
models show more promise in achieving human-like 
performance than do more traditional artificial intelligence 
techniques. All ANN manipulations in this study have been 
performed within a MATLAB(r) environment using Neural 
Network Toolbox [30].

IV. EXPERIMENTAL DESIGN

In the first part of the study, we wanted to identify the best 
feature selection measure, the best classification algorithm 
and the minimal features required to maintain a high level of 
accuracy. In the second part we wanted to measure the 
possibility of classifying unknown worms using a training set 
of known worms. In order to answer these questions we 
designed two experimental plans, based on seventeen sets of 
subsets which resulted from the four feature selection 
measures, from which we extracted the Top 5, 10, 20 and 30, 
and the full feature set, in which each set appeared in eight 
created datasets (described earlier), for the evaluation. After 
evaluating all the classification algorithms on the sets of 
datasets, we selected the best feature selection and the top 
features to evaluate the unknown worms' detection. 

A. Experiment I – Best feature selection 

To determine which feature selection measure, top feature 
selection and classification algorithm are the best, we had a 
wide set of experiments, in which we evaluated each 
classification algorithm, feature selection and top selection 
combination. In this experiment, called e1, we trained each 
classifier on a single dataset i and tested on each one (j) of 
the eight datasets. Thus, we had a set of eight iterations in 
which a dataset was used for training, and eight 
corresponding evaluations which were done on each one of 
the datasets, resulting in 64 evaluation runs, for each one of 
the combinations of classification algorithm, feature 
selection measure and top feature selection. When i = j, we 
used 10 folded [10-fold??] cross validation [31], in which 
the dataset is partitioned into ten partitions and repeatedly 
the classifier is trained on nine partitions and tested on the 
tenth. Note, that the task was to classify specifically the exact 
worm out of the five or a none (worm) activity, and not 
generally to a binary classification of “worm” or a “none” 
activity, which was our final goal in the context of an 
unknown worm detection. Such conditions, while being more 
challenging, were expected to bring more insight.

B. Experiment II – Unknown worms detection 

To estimate the potential of the suggested approach in 
classifying an unknown worm activity, which was the main 
objective of this study, we designed an additional 
experiment, called e2, in which we trained classifiers based 
on part of the (five) worms and the none activity, and tested 
on the excluded worms (from the training set) and the none
activity, in order to measure the detection capability of an 

unknown worm and the none activity. 
In this experiment the training set consisted of 5-k worms 

and the testing set contained the k excluded worms, while the 
none activity appeared in both datasets. This process 
repeated for all the possible combinations of the k worms. 
We did this for k = 1 to 4. In each combination a model was 
trained on the training set and test on all the other seven 
datasets. The test set included only the excluded worms and 
not the worms presented in the training set since we wanted 
to measure specifically the detection rate of the unknown. 
Note that in these experiments, unlike in e1, there were two 
classes: (generally) worm, for any type of worm, and none
activity. This experiment was evaluated on each 
classification algorithm, using the outperforming top selected 
features from e1.  

C. Evaluation Measures 

For the purpose of evaluation we used the True 
Positive (TP) measure presenting the rate of instances 
classified as positive correctly, False Positive (FP)
presenting the rate of positive instances misclassified 
(Equation 7), and the Total Accuracy – the rate of the 
entire correctly classified instances, either positive or 
negative, divided by the entire number of instances, as 
shown in Equation 8. The actual (A) amount of 
classifications are represented by XYA, where Y
presents the classification (positive or negative) and X
presents the classification correctness (true or false).

AA

A

FNTP

TP
TP

+
= ;  

AA

A

TNFP

FP
FP

+
= ;      (7) 

AAAA

AA

FNTNFPTP

TNTP
AccuracyTotal

+++
+

= ; (8) 

We also measured a confusion matrix, which depicts the 
number of instances from each class which were classified in 
each one of the classes (ideally all the instances would be in 
their actual class). 

V. RESULTS

A. Experiment I 

Our objective in e1 was to determine the best feature 
selection measure, top feature subset size, and classification 
algorithms. We ran 68 (four classification algorithms applied 
to 17 data sets) evaluations (each comprises 64 runs), 
summing up to 4352 evaluation runs. Figure 1 shows the 
mean performance achieved for each feature selection 
measure in each top selection. Based on the mean 
performance of the four classification algorithms GainRatio
outperformed the other measures in most of the top features 
selection, while the ensemble outperformed at the Top5. 
Unlike the independent measures, in which there was a 
monotonic growth when features were added, in the 
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ensemble a monotonic slight decrease was observed as more 
features were used. The Top20 features outperformed in 
general (by averaging) and in GainRatio in particular. 

Figure 2 shows the same results, but presents the mean 
performance of the classification algorithms and the top 
feature subset size. Bayesian Networks outperforms for any 
amount of top selection, and on average the Top20
outperformed the other top selections. To emphasize the 
significant feature types the Top5 of the GainRatio included: 
A_1ICMP: Sent_Echo_sec, Messages_Sent_sec, 
Messages_sec, and A_1TCP: Connections_Passive and 
Connection_Failures, which are windows performance 
counters, related to ICMP and TCP, describing general 
communication properties. 

Fig. 1. The mean performance achieved by each feature selection measure, 
and the top ranked features. While Top20 outperforms for most of the 
measures, Top5 outperforms for the Ensemble. 

B. Experiment II 

Based on the results achieved in e1, in which the Top20 from 
GainRatio outperformed on average, we used only this 
features subset in e2. 

Fig 2. The performance achieved by each classification algorithm and the 
top ranked selection. Bayesian Networks outperformed across all 
categories. While for most of the algorithms Top30 and Top20 achieved 
similar performance, in the Bayesian Networks the Top30 outperformed.

Figure 3 presents the results of e2, in which a monotonic 
increase in the accuracy is shown, as more worms are 
included in the training set. Note that the number of worms 
in the x axis refers to the number of excluded worms, which 
were in the test set. In general the ANN outperformed all the 
other algorithms, while the BN kept on showing very good 
results. Note that testing on the seven datasets separately had 
decreased slightly the mean accuracy. In addition, when only 
one worm was excluded, in specific worms we observed 
99% accuracy and very low false positive rate of 0.005. 

Fig 3. The performance monotonically increases as fewer worms are 
excluded (and more worms appear in the training set) 

VI. CONCLUSIONS AND FUTURE WORK

We presented the concept of detecting unknown computer 
worms based on a host behavior, using Data Mining 
algorithms. Based on the results shown in this study using 
Data Mining concepts, such as feature selection and 
classification algorithms, it is possible to identify the most 
important computer features in order to detect unknown 
worm activity, currently performed by human experts. Based 
on the initial experiment (e1), the GainRatio feature 
selection measure was most suitable to this task. On average 
the Top20 features produced the highest results. Bayesian 
Networks commonly outperformed other classification 
algorithms. In the detection of unknown worms (e2), the 
results show that it is possible to achieve a high level of 
accuracy (exceeding 90% in average); As more worms were 
in the training set the accuracy improved. In this set of 
experiments the Artificial Neural Networks outperformed in 
general. These results are highly encouraging and show that 
worms, which commonly spread intensively, can be stopped 
from propagating in real time. The advantage of the 
suggested approach is the automatic acquisition and 
maintenance of knowledge, based on inductive learning. This 
avoids the need for a human expert who is not always 
available and familiar with the general rules. This is possible 
these days, based on the existing amount of known worms, as 
well as the generalization capabilities of classification 
algorithms. 
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We are currently in the process of extending the amount of 
worms in the dataset, as well as extending the suggested 
approach to other types of malicious code using temporal 
data mining. 
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