

Abstract — Detecting unknown worms is a challenging task.
Extant solutions, such as anti-virus tools, rely mainly on prior
explicit knowledge of specific worm signatures. As a result,
after the appearance of a new worm on the Web there is a
significant delay until an update carrying the worm’s signature
is distributed to anti-virus tools. During this time interval a new
worm can infect many computers and cause significant damage.
We propose an innovative technique for detecting the presence
of an unknown worm, not necessarily by recognizing specific
instances of the worm, but rather based on the computer
measurements. We designed an experiment to test the new
technique employing several computer configurations and
background applications activity. During the experiments 323
computer features were monitored. Four feature selection
techniques were used to reduce the amount of features and four
classification algorithms were applied on the resulting feature
subsets. Our results indicate that using this approach resulted
in exceeding 90% mean accuracy, and for specific unknown
worms accuracy reached above 99%, using just 20 features
while maintaining a low level of false positive rate.

I. INTRODUCTION

HE detection of malicious code (malcode) transmitted
over computer networks has been researched intensively
in recent years. One type of abundant malcode is worms,

which proactively propagate across networks while
exploiting vulnerabilities in operating systems or in installed
programs. Other types of malcode include computer viruses,

Manuscript received October 31, 2006. This work was supported by
Deutsche Telekom Co.

Robert Moskovitch (corresponding author) is a PhD student, Deutsche
Telekom Laboratories at Ben-Gurion University, Be’er Sheva, 84105 Israel.
Phone: +972-52-2668071; email: robertmo@bgu.ac.il.

Ido Gus and Shay Pluderman were undergraduate students at the
Deutsche Telekom Laboratories at Ben-Gurion University, Ben-Gurion
University of the Negev, Be’er Sheva, 84105 Israel; email: gus@bgu..ac.il,
shaipl@gbgu.ac.il.

Dima Stopel is an M.Sc. student, Deutsche Telekom Laboratories at
Ben-Gurion University, Be’er Sheva, 84105 Israel. email:
stopel@cs.bgu.ac.il.

Clint Feher is an undergraduate student, Deutsche Telekom Laboratories
at Ben-Gurion University, Be’er Sheva, 84105 Israel. email:
clint@bgu.ac.il.

Chanan Glezer is with Deutsche Telekom Laboratories at Ben-Gurion
University, Ben-Gurion University of the Negev, Be’er Sheva, 84105 Israel;
email: chanan@bgu.ac.il.

Yuval Shahar, is the Head of the Department of Information Systems
Engineering, Deutsche Telekom Laboratories at Ben-Gurion University,
Ben-Gurion University of the Negev, Be’er Sheva, 84105 Israel; email:
yshahar@bgu.ac.il.

Yuval Elovici, is the Head of the Deutsche Telekom Laboratories at
Ben-Gurion University, Ben-Gurion University of the Negev, Be’er Sheva,
84105 Israel; email: elovici@bgu.ac.il.

Trojan horses, spyware, and adware. In this study we focus
on worms, though we plan to expand the approach to other
malcodes.

Nowadays, excellent technology (i.e., antivirus software
packages) exists for detecting known malicious code.
Typically, antivirus software packages inspect each file that
enters the system, looking for known signs (signatures)
uniquely identifying an instance of malcode. Nevertheless,
antivirus technology is based on prior explicit knowledge of
malcode signatures and cannot be used for detecting
unknown malcode. Following the appearance of a new worm
instance, a patch is provided by the operating system
provider and the antivirus vendors update their signatures-
base accordingly. This solution is not perfect, however, since
worms propagate very rapidly. By the time the antivirus
software has been notified about the new worm, very
expensive damage has already been inflicted [1].

Intrusion detection, commonly done at the network level,
called network-based intrusion detection (NIDS), was
researched substantially [2]. However, NIDS are limited in
their detection capabilities (like any detection system). In
order to detect malcodes which slipped through the NIDS at
the network level, detection operations are performed locally
at the host level, called Host-based Intrusion Detection
(HIDS). HIDS are detection systems which monitor activities
at a host. HIDS usually compare the states of the computer in
several aspects, such as the changes in the file system using
checksum comparisons. The main drawback of this approach
is the ability of malcodes to disable antiviruses; other
technical limiting factors include the fast changes in the file
system. The main problem is detection knowledge
maintenance, which is usually performed manually by the
domain expert.

Recent studies have proposed methods for detecting
unknown malcode using Machine Learning techniques.
Given a training set of malicious and benign executables
binary code, a classifier is trained and learns to identify and
classify unknown malicious executables as being malicious
[3,4,5]. While this approach is a potentially good solution, it
is not complete, since it can detect only executable files, and
malcodes located entirely in the memory, such as the
Slammer worm [6], cannot be detected using this technique.
Moreover, any technique can be sabotaged by a malcode.

Our suggested approach can be classified under HIDS, but
the novelty here is that it is based on the computer

Detection of Unknown Computer Worms Activity Based on
Computer Behavior using Data Mining

Robert Moskovitch, Ido Gus, Shay Pluderman, Dima Stopel, Clint Feher, Chanan Glezer, Yuval
Shahar and Yuval Elovici

T

202

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

measurements and that the knowledge is acquired
automatically using inductive learning, given a dataset of
known worms. This approach avoids the need for manual
acquisition of knowledge, which is sometimes unavailable,
especially in such an approach, as well as knowledge
maintenance. While this approach does not prevent infection,
it enables fast detection of an infection which may result in
an alert, which can be further reasoned, based on hosts'
alerts, at the network level. Further reasoning based on the
network-topology can be performed by a network
administration function, and relevant decisions and policies,
such as disconnecting a single computer or a cluster, can be
further implemented. In this study, we focus on a proposed
technique that enables the detection of unknown worms
based on a single computer's (host) behavior.

Generally speaking, malcode within the same category
(e.g., worms, Trojans, spyware, adware) share similar
characteristics and behavior patterns. These patterns are
reflected by the infected computer's behavior as represented
by its measurements. Based on these common characteristics,
we suggest that an unknown worm can be detected based on
the computer's behavior using Data Mining techniques. In
the proposed approach, a classifier is trained on computer
measurements of known worm and non-worm behaviors.
Based on the generalization capability of the classification
algorithm, we argue that a classifier can further detect
previously unknown worm activity. Nevertheless, this
approach may be affected by the variation of computer and
application configurations as well as user behavior on each
computer. In this study, we investigate whether an unknown
worm activity can be detected, at a high level of accuracy,
given the variation in hardware and software environmental
conditions on individual computers, while minimizing the set
of features required.

The rest of the article is structured as follows: in section 2,
a survey of the relevant background for this work is
presented. The methods used in this study are described in
section 3, followed by the research questions and the
corresponding experimental plan in section 4. Finally, results
are presented, followed by a discussion and conclusions.

II. BACKGROUND AND RELATED WORK

A. Malicious Code and Worms

The term 'malicious code' (malcode) refers to a piece of
code, not necessarily an executable file, intended to harm,
whether generally or in particular, a specific owner (host).
The approach suggested in this study aims at detecting any
malcode activity, whether known or unknown. However,
since our original research was on worms, we will focus on
them in this section.

Kienzle and Elder [7], define a worm by several aspects
through which it can be distinguished from other types of
malcode: 1) Malicious code – worms are considered
malicious in nature; 2) Network propagation or Human

intervention – a commonly agreed upon aspect, that is,
worms propagate actively over a network, while other types
of malicious codes, such as viruses, commonly require
human activity to propagate; 3) Standalone or file infecting –
while viruses infect a file (its host), a worm does not require
a host file, and sometimes does not even require an
executable file, residing entirely in the memory, as did the
Code Red [8] worm. Different purposes and motivations
stand behind worms developers [9] including: Experimental
curiosity which can lead any person to create a worm, such
as the ILoveYou worm [10]; pride and power leading
programmers to show off their knowledge and skill through
the harm caused by the worm; commercial advantage,
extortion and criminal gain, random and political protest,
and terrorism and cyber warfare. The existence of all these
types of motivation indicates that computer worms are here
to stay as a network vehicle serving different purposes and
implemented in different ways. To address the challenge
posed by worms effectively, meaningful experience and
knowledge should be extracted by analyzing known worms.
Today, given the known worms, we have a great opportunity
to learn from these examples in order to generalize. We
argue that data mining methods can be a very useful way to
learn and generalize from previously seen worms, in order to
classify unknown worms effectively, as a last detection
method.

B. Detecting Malicious Code Using Data Mining

Data mining, commonly considered as the application of
machine learning to huge data sets, has already been used in
efforts to detect and protect against malicious codes.

A recent survey on intrusion detection [2] summarizes
recent proposed applications of data mining in recognizing
malcodes in single computers and in computer networks. Lee
et al. proposed a framework consisting of data mining
algorithms for the extraction of anomalies of user normal
behavior for use in anomaly detection [11], in which a
normal behavior is learned and any abnormal activity is
considered as intrusive. The authors suggest several
techniques, such as classification, meta-learning, association
rules, and frequent episodes, to extract knowledge for further
implementation in intrusion detection systems. They
evaluated their approach on the DARPA98 [12] benchmark
test collection, which is a standard benchmark of network
data for intrusion detection research.

A Naïve Bayesian classifier was suggested in [2] referring
to its implementation within the ADAM system developed
by Barbara et al. [13]. The ADAM system had three main
parts: (a) a network data monitor which listens to TCP/IP
protocol; (b) a data mining engine which enables acquisition
of the association rules from the network data; and (c) a
classification module which classifies the nature of the traffic
in two possible classes, normal and abnormal, which can
later be linked to specific attacks. Other machine learning
algorithms techniques proposed are Artificial Neural

203

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Networks (ANN) [14,15,16], Self Organizing Maps (SOM)
[17] and fuzzy logic [18,19,20].

III. METHODS

The general goal of this study is to assess the viability of
employing Data Mining techniques in detecting the existence
of unknown worms in an individual computer host based on
its behavior (measurements). In order to create a testing
environment, we have built a local network of computers,
which enabled us to inject worms into a controlled
environment, while monitoring the computers and collecting
measurements. Preliminary results were very encouraging,
but we wanted to estimate the influence of the environment
in which the training set was produced on the detection
accuracy in another environment. In an extensive experiment
we have shown elsewhere [21] that there is no significant
influence. Moreover, when a classifier was trained on an old
computer, its detection accuracy was better than when
trained on a new. In this study we want to investigate further
the possibility of detecting unknown malicious code.

A. DataSet Creation

Since there is no benchmark dataset which could be used
for this study, we created our own dataset. A network with
various computers (configurations) was deployed, into which
we could inject worms. The network was a controlled
environment, in which we could monitor the computer
features and document the measurements into log files.
1) Environment Description

The lab network consisted of seven computers, which
contained heterogenic hardware, and a server computer
simulating the internet. We used the windows performance
counters1, which enable monitoring system features that
appear in these main categories (the amount of features in
each category appear in parenthesis): Internet Control
Message Protocol (27), Internet Protocol (17), Memory
(29), Network Interface (17), Physical Disk (21), Process
(27), Processor (15), System (17), Transport Control
Protocol (9), Thread(12), User Datagram Protocol (5). In
addition we used VTrace [22], a software tool which can be
installed on a PC running Windows for monitoring purposes.
VTrace collects traces of the file system, the network, the
disk drive, processes, threads, interprocess communication,
waitable objects, cursor changes, windows, and the
keyboard. The data from the windows performance were
configured to measure the features every second and store
them in a log file as vector. VTrace stored time-stamped
events, which were aggregated into the same fixed intervals,
and merged with the windows performance log files. These
eventually included a vector of 323 features for every
second.
2) Injected Worms

While selecting worms from the wild, our goal was to

1http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/counter/counters2_lbfc.asp

choose worms that differ in their behavior from the available
worms. Some of the worms have a heavy payload of Trojans
to install in parallel to the distribution process upon the
network; others focus only on distribution. Another aspect is
having different strategies for IP scanning which results in
varying communication behavior, CPU consumption, and
network usage. While all the worms are different, we wanted
to find common characteristics so as to be able to detect an
unknown worm. We briefly describe here the main
characteristics, relevant to this study, of each worm included
in this study. The information is based on the virus libraries
on the web234. We briefly describe the five worms we used:

(1) W32.Dabber.A scans IP addresses randomly. It uses
the W32.Sasser.D worm to propagate and opens the FTP
server to upload itself to the victim computer. Registering
itself enables its execution on the next user login (human
based activation). It drops a backdoor, which listens on a
predefined port. This worm is distinguished by its use of an
external worm in order to propagate.

(2) W32.Deborm.Y is a self-carried worm, which prefers
local IP addresses,. This worm registers itself as an MS
Windows service and is executed upon user login (human
based activation). This worm contains three Trojans as a
payload: Backdoor.Sdbot, Backdoor.Litmus, and
Trojan.KillAV, and executes all of them. We chose this
worm because of its heavy payload.

(3) W32.Korgo.X is a self-carrying worm which uses a
totally random method for IP addresses scanning. It is self-
activated and tries to inject itself as a function into MS
Internet Explorer as a new thread. It contains a payload code
which enables it to connect to predefined websites in order to
receive orders or download newer worm versions.

(4) W32.Sasser.D uses a preference for local addresses
optimization while scanning the network. About half of the
time it scans local addresses and the other half random
addresses. In particular it opens 128 threads for scanning the
network, which requires a heavy CPU consumption, as well
as significant network traffic. It is a self-carried worm that
uses a shell to connect to the infected computer’s FTP server
and to upload itself.

(5) W32.Slackor.A, a self-carried worm, exploits MS
Windows sharing vulnerability to propagate. The worm
registers itself to be executed upon user login. It contains a
Trojan payload and opens an IRC server on the infected
computer in order to receive orders.

All the worms perform port scanning and possess different
characteristics. Further information about these worms can
be accessed through libraries on the web567.

2 Symantec – www.symantec.com
3 Kasparsky www.viruslist.com
4Macfee http://vil.nai.com
5 Symantec – www.symantec.com
6 Kasparsky www.viruslist.com
7Macfee http://vil.nai.com

204

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

3) Dataset Description
In order to examine the influence of a computer hardware

configuration, background running applications, and user
activity, we considered three major aspects: computer
hardware configuration, constant background application
consuming extreme computational resources, and user
activity, being binary variables. (1) Computer hardware
configuration: Both computers ran on Windows XP, which is
considered the most widely used operation system, having
two configuration types: an "old," having Pentium 3 800Mhz
CPU, bus speed 133Mhz and memory 512 Mb, and a "new,"
having Pentium 4 3Ghz CPU, bus speed 800Mhz and
memory 1 Gb. (2) Background application: We ran an
application affecting mainly the following features:
Processor object, Processor Time (usage of 100%); Page
Faults/sec; Physical Disk object, Avg Disk Bytes/Transfer,
Avg Disk Bytes/Write, and Disk Writes/sec. (3) User activity:
several applications, including browsing, downloading and
streaming operations through Internet Explorer, Word,
Excel, chat through MSN messenger, and Windows Media
Player, were executed to imitate user activity in a scheduled
order. The two options in the Background Application and
User Activity were presence or absence of the user activity.

Each dataset contained monitored samples of each one of
the five injected worms separately, and samples of a normal
computer behavior, without any injected worm. Each worm
was monitored for a period of 20 minutes in resolution of
seconds. Thus, each record, containing a vector of
measurements and a label, presented a second activity
labeled by the specific worm, or none activity label. Each
dataset contained a few thousand (labeled samples) of each
worm or none activity. We therefore had three binary
aspects, which resulted in eight possible combinations
representing a variety of dynamic computer configurations
and usage patterns. Each dataset contained monitored
samples for each of the five worms injected separately, and
samples of a normal computer behavior without any injected
worm. Each sample (record) was labeled with the relevant
worm (class), or 'none' for "clean" samples.

B. Feature Selection

In Data Mining applications, the large number of features
in many domains presents a huge challenge. Typically, some
of the features do not contribute to the accuracy of the
classification task and may even hamper it. Moreover, in our
approach, reducing the amount of features while maintaining
a high level of detection accuracy is crucial for meeting
computer performance and resource consumption. Ideally,
we would like to minimize the self-consumption of computer
resources required for the monitoring operations
(measurements) and the classifier computations. This can be
achieved through reduction of the classified features using
the feature selection technique. Since this is not the focus of
this paper, we will describe the feature selection
preprocessing very briefly. In order to compare the

performance of the classification algorithms, we used the
filters approach, which is applied on the dataset and is
independent of any classification algorithm (unlike wrappers,
in which the best subset is chosen upon an iterative
evaluation experiment). Under filters, a measure is calculated
to quantify the correlation of each feature with the class (in
our case, the presence or absence of a worm activity). Each
feature receives a rank representing its expected contribution
in the classification task. Eventually, the top ranked features
were selected.

We used three feature-selection measures, which resulted
in a list of ranks for each feature selection measure and an
ensemble incorporating all three of them. We used Chi-
Square (CS), Gain Ratio (GR), ReliefF implemented in the
Weka environment [23] and their ensemble, based on a
simple average of the three ranks. We took the highest
ranked (top) features 5, 10, 20 and 30 from each feature
selection measure ranked list. Finally we had four subsets
and the full features set, for which we had eight datasets each
resulting in 17 datasets. While the feature selection is not the
focus of this study, but rather its application, we briefly
describe the measures we used.

Chi-Square measures the lack of independence between a
feature f and a class ci and can be compared to the chi-square
distribution with one degree of freedom to judge
extremeness. Equation 1 shows how the chi-square measure
is defined and computed, where N is the total number of
documents and f refers to the presence of the feature (and

f its absence), and ci refers to its membership in ci.

)()()()(

)],(),(),(),([
),(

2
2

ii

iiiii
i cPcPfPfP

cfPcfPcfPcfPN
cf

−
=χ (1)

Gain Ratio was originally presented by Quinlan in the
context of Decision Trees [24], which was designed to
overcome a bias in the Information Gain (IG) measure [25],
and which measures the expected reduction of entropy
caused by partitioning the examples according to a chosen
feature. Given entropy E(S) as a measure of the impurity in a
collection of items, it is possible to quantify the effectiveness
of a feature in classifying the training data. Equation 3
presents the formula of the entropy of a set of items S, based
on C subsets of S (for example, classes of the items),
presented by Sc. Information Gain measures the expected
reduction of entropy caused by portioning the examples
according to attribute A, in which V is the set of possible
values of A, as shown in equation 2. These equations refer to
discrete values; however, it is possible to extend it to
continuous values attribute.

)(
||

||
)(),(

)(
v

AVv

v SE
S

S
SEASIG ∑

∈

⋅−= (2)

205

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

||

||
log

||

||
)(2 S

S

S

S
SE c

Cc

c∑
∈

⋅−= (3)

The IG measure favors features having a high variety of
values over those with only a few. GR overcomes this
problem by considering how the feature splits the data
(Equations 4 and 5). Si are d subsets of examples resulting
from portioning S by the d-valued feature A.

),(

),(
),(

ASSI

ASIG
ASGR = (4)

||

||
log

||

||
),(

1
2 S

S

S

S
ASSI i

d

i

i∑
=

⋅−= (5)

ReslifF [26] estimates the quality of the features according
to how well their values distinguish between instances that
are near each other. Given a randomly selected instance x,
from a dataset s with k features, Relief searches the data set
for its two nearest neighbors from the same class, called
nearest hit H and from a different class, called nearest miss
M. The quality estimation W[Ai] is stored in a vector of the
features Ai, based on the values of a difference function diff()
given x, H and M as shown in equation 6..

⎪
⎩

⎪
⎨

⎧

≠
=

−
=

, &nominal is A if 1

 , & nominal is A if 0

numeric, is A if ||

),,(

21i

21i

i21

21

ii

ii

ii

iii

xx

xx

xx

xxAdiff (6)

C. Classification Algorithms

One of the goals of this study was to pinpoint the
classification algorithm that provides the highest level of
detection accuracy. We employed four commonly used
Machine Learning algorithms: Decision Trees, Naïve Bayes,
Bayesian Networks and Artificial Neural Networks, in a
supervised learning approach, in which the classification
algorithm learns from a provided training set, containing
labeled examples.

While the focus of this paper is not on classification
algorithm techniques, but on their application in the task of
detecting worm activity, we briefly describe the
classification algorithms we used in this study.

1) Decision Trees
Decision tree learners [24] are a well-established family of

learning algorithms. Classifiers are represented as trees
whose internal nodes are tests on individual features and
leaves are classification decisions. Typically, a greedy
heuristic search method is used to find a small decision tree
that correctly classifies the training data. The decision tree is
induced from the dataset by splitting the variables based on
the expected information gain. Modern implementations
include pruning which avoids over fitting. In this study we
evaluated J48, the Weka version of the commonly used C4.5
algorithm [24]. An important characteristic of Decision

Trees is the explicit form of their knowledge which can be
easily represented as a set of rules.

2) Naïve Bayes
The Naïve Bayes classifier is based on the Bayes theorem,

which in the context of classification states that the posterior
probability of a class is proportional to its prior probability
as well as to the conditional likelihood of the features, given
this class. If no independent assumptions are made, a
Bayesian algorithm must estimate conditional probabilities
for an exponential number of feature combinations. “Naive
Bayes” simplifies this process by making the assumption that
features are conditionally independent given the class, and
requires that only a linear number of parameters be
estimated. The prior probability of each class and the
probability of each feature, given each class, is easily
estimated from the training data and used to determine the
posterior probability of each class, given a set of features.
Naive Bayes has been shown empirically to produce good
classification accuracy across a variety of problem domains
[27]. In this study, we evaluated Naive Bayes, the standard
version that comes with Weka.

3) Bayesian Networks
Bayesian networks is a form of the probabilistic graphical

model [28]. Specifically, a Bayesian network is a directed
acyclic graph of nodes with variables and arcs representing
dependence among the variables. Like Naïve Bayes,
Bayesian networks are based on the Bayes Theorem;
however, unlike Naïve Bayes, they do not assume that the
variables are independent. Actually Bayesian Networks are
known for their ability to represent conditional probabilities
which are the relations between variables. A Bayesian
network can thus be considered a mechanism for
automatically constructing extensions of Bayes' theorem to
more complex problems. Bayesian networks were used for
modeling knowledge and implemented successfully in
different domains. We evaluated the Bayesian Network
standard version which comes with WEKA.

4) Artificial Neural Networks
An Artificial Neural Network (ANN) [29] is an

information processing paradigm that is inspired by the way
biological nervous systems (i.e., the brain) are modeled with
regard to information processing. The key element of this
paradigm is the structure of the information processing
system. It is a network composed of a large number of highly
interconnected processing elements, called neurons, working
together in order to approximate a specific function. An
ANN is configured for a specific application, such as pattern
recognition or data classification, through a learning process
during which the weights of the inputs in each neuron are
updated. The weights are updated by a training algorithm,
such as back-propagation, according to the examples the
network receives, in order to reduce the value of error
function. The power and usefulness of ANN have been
demonstrated in numerous applications including speech

206

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

synthesis, medicine, finance and many other pattern
recognition problems. For some application domains, neural
models show more promise in achieving human-like
performance than do more traditional artificial intelligence
techniques. All ANN manipulations in this study have been
performed within a MATLAB(r) environment using Neural
Network Toolbox [30].

IV. EXPERIMENTAL DESIGN

In the first part of the study, we wanted to identify the best
feature selection measure, the best classification algorithm
and the minimal features required to maintain a high level of
accuracy. In the second part we wanted to measure the
possibility of classifying unknown worms using a training set
of known worms. In order to answer these questions we
designed two experimental plans, based on seventeen sets of
subsets which resulted from the four feature selection
measures, from which we extracted the Top 5, 10, 20 and 30,
and the full feature set, in which each set appeared in eight
created datasets (described earlier), for the evaluation. After
evaluating all the classification algorithms on the sets of
datasets, we selected the best feature selection and the top
features to evaluate the unknown worms' detection.

A. Experiment I – Best feature selection

To determine which feature selection measure, top feature
selection and classification algorithm are the best, we had a
wide set of experiments, in which we evaluated each
classification algorithm, feature selection and top selection
combination. In this experiment, called e1, we trained each
classifier on a single dataset i and tested on each one (j) of
the eight datasets. Thus, we had a set of eight iterations in
which a dataset was used for training, and eight
corresponding evaluations which were done on each one of
the datasets, resulting in 64 evaluation runs, for each one of
the combinations of classification algorithm, feature
selection measure and top feature selection. When i = j, we
used 10 folded [10-fold??] cross validation [31], in which
the dataset is partitioned into ten partitions and repeatedly
the classifier is trained on nine partitions and tested on the
tenth. Note, that the task was to classify specifically the exact
worm out of the five or a none (worm) activity, and not
generally to a binary classification of “worm” or a “none”
activity, which was our final goal in the context of an
unknown worm detection. Such conditions, while being more
challenging, were expected to bring more insight.

B. Experiment II – Unknown worms detection

To estimate the potential of the suggested approach in
classifying an unknown worm activity, which was the main
objective of this study, we designed an additional
experiment, called e2, in which we trained classifiers based
on part of the (five) worms and the none activity, and tested
on the excluded worms (from the training set) and the none
activity, in order to measure the detection capability of an

unknown worm and the none activity.
In this experiment the training set consisted of 5-k worms

and the testing set contained the k excluded worms, while the
none activity appeared in both datasets. This process
repeated for all the possible combinations of the k worms.
We did this for k = 1 to 4. In each combination a model was
trained on the training set and test on all the other seven
datasets. The test set included only the excluded worms and
not the worms presented in the training set since we wanted
to measure specifically the detection rate of the unknown.
Note that in these experiments, unlike in e1, there were two
classes: (generally) worm, for any type of worm, and none
activity. This experiment was evaluated on each
classification algorithm, using the outperforming top selected
features from e1.

C. Evaluation Measures

For the purpose of evaluation we used the True
Positive (TP) measure presenting the rate of instances
classified as positive correctly, False Positive (FP)
presenting the rate of positive instances misclassified
(Equation 7), and the Total Accuracy – the rate of the
entire correctly classified instances, either positive or
negative, divided by the entire number of instances, as
shown in Equation 8. The actual (A) amount of
classifications are represented by XYA, where Y
presents the classification (positive or negative) and X
presents the classification correctness (true or false).

AA

A

FNTP

TP
TP

+
= ;

AA

A

TNFP

FP
FP

+
= ; (7)

AAAA

AA

FNTNFPTP

TNTP
AccuracyTotal

+++
+

= ; (8)

We also measured a confusion matrix, which depicts the
number of instances from each class which were classified in
each one of the classes (ideally all the instances would be in
their actual class).

V. RESULTS

A. Experiment I

Our objective in e1 was to determine the best feature
selection measure, top feature subset size, and classification
algorithms. We ran 68 (four classification algorithms applied
to 17 data sets) evaluations (each comprises 64 runs),
summing up to 4352 evaluation runs. Figure 1 shows the
mean performance achieved for each feature selection
measure in each top selection. Based on the mean
performance of the four classification algorithms GainRatio
outperformed the other measures in most of the top features
selection, while the ensemble outperformed at the Top5.
Unlike the independent measures, in which there was a
monotonic growth when features were added, in the

207

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

ensemble a monotonic slight decrease was observed as more
features were used. The Top20 features outperformed in
general (by averaging) and in GainRatio in particular.

Figure 2 shows the same results, but presents the mean
performance of the classification algorithms and the top
feature subset size. Bayesian Networks outperforms for any
amount of top selection, and on average the Top20
outperformed the other top selections. To emphasize the
significant feature types the Top5 of the GainRatio included:
A_1ICMP: Sent_Echo_sec, Messages_Sent_sec,
Messages_sec, and A_1TCP: Connections_Passive and
Connection_Failures, which are windows performance
counters, related to ICMP and TCP, describing general
communication properties.

Fig. 1. The mean performance achieved by each feature selection measure,
and the top ranked features. While Top20 outperforms for most of the
measures, Top5 outperforms for the Ensemble.

B. Experiment II

Based on the results achieved in e1, in which the Top20 from
GainRatio outperformed on average, we used only this
features subset in e2.

Fig 2. The performance achieved by each classification algorithm and the
top ranked selection. Bayesian Networks outperformed across all
categories. While for most of the algorithms Top30 and Top20 achieved
similar performance, in the Bayesian Networks the Top30 outperformed.

Figure 3 presents the results of e2, in which a monotonic
increase in the accuracy is shown, as more worms are
included in the training set. Note that the number of worms
in the x axis refers to the number of excluded worms, which
were in the test set. In general the ANN outperformed all the
other algorithms, while the BN kept on showing very good
results. Note that testing on the seven datasets separately had
decreased slightly the mean accuracy. In addition, when only
one worm was excluded, in specific worms we observed
99% accuracy and very low false positive rate of 0.005.

Fig 3. The performance monotonically increases as fewer worms are
excluded (and more worms appear in the training set)

VI. CONCLUSIONS AND FUTURE WORK

We presented the concept of detecting unknown computer
worms based on a host behavior, using Data Mining
algorithms. Based on the results shown in this study using
Data Mining concepts, such as feature selection and
classification algorithms, it is possible to identify the most
important computer features in order to detect unknown
worm activity, currently performed by human experts. Based
on the initial experiment (e1), the GainRatio feature
selection measure was most suitable to this task. On average
the Top20 features produced the highest results. Bayesian
Networks commonly outperformed other classification
algorithms. In the detection of unknown worms (e2), the
results show that it is possible to achieve a high level of
accuracy (exceeding 90% in average); As more worms were
in the training set the accuracy improved. In this set of
experiments the Artificial Neural Networks outperformed in
general. These results are highly encouraging and show that
worms, which commonly spread intensively, can be stopped
from propagating in real time. The advantage of the
suggested approach is the automatic acquisition and
maintenance of knowledge, based on inductive learning. This
avoids the need for a human expert who is not always
available and familiar with the general rules. This is possible
these days, based on the existing amount of known worms, as
well as the generalization capabilities of classification
algorithms.

208

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

We are currently in the process of extending the amount of
worms in the dataset, as well as extending the suggested
approach to other types of malicious code using temporal
data mining.

REFERENCES

[1] Craig Fosnock, Computer Worms: Past, Present and Future. East
Carolina University (2005)

[2] Kabiri, P., Ghorbani, A.A. (2005) "Research on intrusion detection
and response: A survey," International Journal of Network Security,
vol. 1(2), pp. 84-102.

[3] Schultz, M., Eskin, E., Zadok, E., and Stolfo, S. (2001) Data Mining
Methods for Detection of New Malicious Executables, Proceedings of
the IEEE Symposium on Security and Privacy, 2001, pp. 178--184.

[4] Abou-Assaleh, T., Cercone, N., Keselj, V., and Sweidan, R. (2004) N-
gram based Detection of New Malicious Code, Proceedings of the
28th Annual International Computer Software and Applications
Conference (COMPSAC'04)

[5] Kolter, J.Z. and Maloof, M.A. (2004). Learning to detect malicious
executables in the wild. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
470–478. New York, NY: ACM Press.

[6] Moore D., Paxson V., Savage S., and Shannon C., Staniford S., and
Weaver N. (2003) Slammer Worm Dissection: Inside the Slammer
Worm, IEEE Security and Privacy, Vol. 1 No. 4, July-August 2003,
33-39.

[7] Kienzle, D.M. and Elder, M.C. (2003) Recent worms: a survey and
trends. In Proceedings of the 2003 ACM Workshop on Rapid
Malcode, pages 1--10. ACM Press, October 27, 2003.

[8] Moore, D., Shannon, C., and Brown, J. (2002) Code Red: a case study
on the spread and victims of an internet worm, Proceedings of the
Internet Measurement Workshop 2002, Marseille, France, November
2002.

[9] Weaver, N. Paxson, V. Staniford, and S. Cunningham, R. (2003) A
Taxonomy of Computer Worms, Proceedings of the 2003 ACM
workshop on Rapid Malcode, Washington, DC, October 2003, pages
11-18

[10] CERT. CERT Advisory CA-2000-04, Love Letter Worm,
http://www.cert.org/advisories/ca-2000-04.html

[11] Lee, W., Stolfo, S.J. and Mok, K.W. (1999). A data mining
framework for building intrusion detection models. In Proceedings of
the 1999 IEEE Symposium on Security and Privacy, May 1999

[12] Richard P. Lippmann, Isaac Graf, Dan Wyschogrod, Seth E. Webster,
Dan J. Weber, and Sam Gorton, "The 1998 DARPA/AFRL Off-Line
Intrusion Detection Evaluation,"
First International Workshop on Recent Advances in Intrusion
Detection (RAID), Louvain-la-Neuve, Belgium, 1998.

[13] Barbara, D., Wu, N., Jajodia, S. (2001) “Detecting novel network
intrusions using bayes estimators,” in Proceedings of the First SIAM
International Conference on Data Mining (SDM 2001), Chicago,
USA

[14] Ste. Zanero and Sergio M. Savaresi, “Unsupervised learning
techniques for an intrusion detection system,” in Proceedings of the
2004 ACM symposium on Applied computing, pp. 412–419, Nicosia,
Cyprus, Mar. 2004. ACM Press.

[15] H. Gunes Kayacik, A. Nur Zincir-Heywood, and Malcolm I.
Heywood, On the capability of a som based intrusion detection
system, in Proceedings of the International Joint Conference on
Neural Networks, vol. 3, pp. 1808–1813. IEEE, IEEE, July 2003.

[16] J. Z. Lei and Ali Ghorbani, “Network intrusion detection using an
improved competitive learning neural network,” in Proceedings of the
Second Annual Conference on Communication Networks and
Services Research (CNSR04), pp. 190–197. IEEE-Computer Society,
IEEE, May 2004.

[17] P. Z. Hu and Malcolm I. Heywood, Predicting intrusions with local
linear model, in Proceedings of the International Joint Conference on
Neural Networks, vol. 3, pp. 1780–1785. IEEE, IEEE, July 2003.

[18] John E. Dickerson and Julie A. Dickerson, “Fuzzy network profiling
for intrusion detection,” in Proceedings of NAFIPS 19th International
Conference of the North American Fuzzy Information Processing
Society, pp. 301–306, Atlanta, USA, July 2000.

[19] Susan M. Bridges and M. Vaughn Rayford, “Fuzzy data mining and
genetic algorithms applied to intrusion detection,” in Proceedings of
the Twenty-third National Information Systems Security Conference.
National Institute of Standards and Technology, Oct. 2000.

[20] M. Botha and R. von Solms, “Utilising fuzzy logic and trend analysis
for effective intrusion detection,” Computers & Security, vol. 22, no.
5, pp. 423–434, 2003.

[21] (133/2006) Robert Moskovitch, Ido Gus, Shay Pluderman, Dima
Stopel, Yisrael Fermat, Yuval Shahar and Yuval Elovici, Host Based
Intrusion Detection Using Machine Learning, Faculty of Engineering,
Ben Gurion University, Israel (2006).

[22] Lorch, J. and Smith, A. J. (2000) The VTrace tool: building a system
tracer for Windows NT and Windows 2000. MSDN Magazine,
15(10):86–102, October 2000.

[23] Witten, I.H. and Frank E., Data Mining: Practical machine learning
tools and techniques, 2nd Edition, Morgan Kaufmann, San Francisco,
2005.

[24] Quinlan, J.R. (1993). C4.5: programs for machine learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[25] Mitchell T. (1997) Machine Learning, McGraw-Hill.

[26] H Liu, H Motoda and L Yu, A Selective Sampling Approach to
Active Selection, Artificial Intelligence, 159 (2004) 49-74.

[27] Domingos, P., and Pazzani, M. (1997) On the optimality of simple
Bayesian classifier under zero-one loss, Machine Learning, 29:103-
130.

[28] Pearl J., (1986) Fusion, propagation, and structuring in belief
networks. Artificial Intelligence 29(3):241–288.

[29] Bishop, C.(1995) Neural Networks for Pattern Recognition.
Clarendon Press, Oxford.

[30] Demuth, H. and Beale, (1998) M. Neural Network toolbox for use
with Matlab. The Mathworks Inc., Natick, MA.

[31] Kohavi, R., (1995) A Study of Cross-Validation and Bootstrap for
Accuracy Estimation and Model Selection, International Joint
Conference in Artificial Intelligence, 1137-1145, 1995

209

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

