
Using Data Mining to Enhance Automated Planning and Scheduling

Jeremy Frank
NASA Ames Research Center

Mail Stop N269-3
Moffett Field, CA 94035-1000

frank@email.arc.nasa.gov

Abstract
Automated planning is a combinatorial problem that is
important to many NASA endeavors, including ground
operations and control applications for unmanned and
manned space flight. There is significant value to
integrating planning and data mining to create better
planners. We describe current work in this area, covering
uses of data mining to speed up planners, improve the
quality of plans returned by planners, and learn domain
models for automated planners. The central contribution of
this paper is a snap shot of the state of the art in integrating
these technologies and a summary of challenges and open
research issues.

1. Introduction
Automated planning and scheduling has been applied to a
wide variety of endeavors across NASA, including the
scheduling of ground-based, aircraft-based and space-
based telescopes; on-board scheduling of deep space craft;
and ground-based planning of deep space missions such as
the Mars Exploration Rovers Spirit and Opportunity. Plans
and schedules are generated in the face of constraints on
activity time and resource needs. Automated planning and
scheduling systems are designed to search for plans or
schedules that achieve a set of goals and also obey a set of
constraints. These constraints are provided as inputs to the
automated planning system in the form of a declarative
model. The goal of the planner can be to produce short
plans, plans that minimize resource use, or plans that
maximize an objective, e.g. collect the maximum number
of science targets. The intent is to build general purpose
automated planners and schedulers that can solve problems
for any model; that is, the algorithms are designed to
accept as input any model described using a specific
language. While there are important distinctions to make
between planning and scheduling, we will refer to such
systems as planners throughout. Planning problems can be
computationally easy to solve, but most planning problems
of interest are either NP-complete or PSPACE-complete.
A complete discussion of techniques for a variety of
automated planning problems can be found in [Gh04].

Data mining is sorting through data to identify patterns and
establish relationships. Data mining is considered
“inductive learning” (data intensive process) vs “deductive
learning” (knowledge intensive.) Data mining parameters
include:
 * Association - looking for patterns where one event is
connected to another event.
 * Sequence or path analysis - looking for patterns where
one event leads to another later event.
 * Classification - looking for new patterns.
 * Clustering - finding and visually documenting groups
of facts not previously known.
 * Forecasting - discovering patterns in data that can lead
to reasonable predictions about the future.

In this paper we will focus on how data mining
techniques have been used to create better automated
planners. We first describe a variety of ways in which
data mining can improve various types of planning, then
describe current work in this area, and finally describe
some outstanding challenges. Those interested in
planning and learning in general should refer to the
International Conference on Planning and Scheduling
2004 tutorial by Borrajo and Veloso.

2. Automated Planning and Scheduling
The simplest formulation of planning employs the
STRIPS formalism [Fi71]. In this formalism, a planning
domain model consists of a set of propositions P and a
set of actions A. The propositions in P can be true or
false, and implicitly describe a state space S such that
the set of true propositions s in 2P. The actions A form a
mapping from S to S. Each action a in A is concisely
described by three lists of propositions: a precondition
list, an add list and a delete list. If action a is executed
when the propositions on the precondition list (and
possibly others) are true, then the propositions on the
add list are made true (regardless of their prior value),
and the propositions on the delete list are made false
(regardless of their prior value). The outcome of
executing the action under other circumstances is
undefined. A planning problem consists of a planning

251

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

domain model, a set of propositions that are assumed to
hold, and a set of propositions all of which must be true
after execution of an action sequence. The problem is to
find such an action sequence or prove that no such
action sequence exists. A sample is shown in Figure 1.

Figure 1. A simple planetary rover domain and its
STRIPS model. The domain consists of static locations
at which the rover can be, routes between locations that
can be navigated by the rover, and goals for the rover to
achieve, e.g. take images or drill samples at different
locations.

STRIPS is somewhat inconvenient for formulating
models in which metric time and resources are required;
propositions must capture the exact time actions occur,
or the exact amount of available resource. Modern plan
domain description formalisms such as PDDL [Fo03]
allow richer description of conditions and effects that
allow concise declarations of resource availability,
action concurrence, and arbitrary temporal constraints
between actions (e.g. action a must start 5 minutes after
b ends). Further refinements allow specification of plan
quality functions such as minimization of makespan or
plan steps, maximization of the value of achieved goals,
and other more elaborate goals. Additional refinements
permit specification of planning problems in which
actions have uncertain outcomes and the initial state may
not be known with certainty.

Figure 2. A partial plan-graph for the planetary rover
domain. This plan-graph is limited to propositions that
mention the camera, rover position and take-image
goals. It is limited to 4 levels. Arcs indicate mutual
exclusions between propositions or actions, and arrows
indicate action preconditions and effects.

We introduce some concepts that will appear later in the
paper. Many planners assume all actions are totally
ordered; such planners can find feasible plans, but
ignore the possibility that two actions can be concurrent.
Partial order planners account for action concurrency,
and are superior when the makespan of the plan (longest
path of totally ordered actions) must be minimized, but
have proven to be slow when searching for feasible
plans. The plan-graph [BlFu97] is a commonly used
tool in automated planning; it is a compact
representation of a superset of all feasible plans, and can
be used in many ways to provide heuristic guidance to
planners. The plan-graph is constructed as follows. The
first level consists of the propositions defining the initial
state. The next level consists of all applicable actions
(an action is applicable if all propositions in the
precondition list appear in the previous level, and no two
are marked as mutually exclusive). Actions a and b
cannot be concurrent if b deletes a precondition of a or a
proposition on the add list of a. Actions that cannot be
concurrent are marked as being mutually exclusive. The
following level consists of all the propositions in the
initial level, as well as all effects from actions in the
second level. Pairs of propositions that can only be
achieved by mutually exclusive actions are marked as
mutually exclusive. This process continues until the set

252

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

of propositions and mutual exclusion annotations does
not change between successive levels. A plan-graph for
the planetary rover domain is shown in Figure 2.
Feasible plans must be extracted from the plan-graph,
but the calculation of the plan-graph has been shown to
significantly reduce the work of finding such plans. The
plan-graph cannot produce minimum makespan plans
directly since it assumes all actions at level k precede all
actions at level k+1, but can produce plans of low
makespan. A relaxed plan-graph [Ho01] is a plan-graph
for a problem instance in which the delete lists for all
actions have been omitted. While both plan-graphs and
relaxed plan-graphs can be calculated in polynomial
time, the relaxed plan-graph can be computed much
faster, and have been used extensively in heuristics for
planners. A relaxed plan-graph for the planetary rover
domain of Figure 1 using the same initial propositions as
those used in Figure 2 is shown in Figure 3.

3. Habeas Datum: The Operators’ Perspective

Planning is employed in operational settings ranging
from human decision makers deciding on courses of
action to controllers generating actions for robots or
automated systems. Data mining can improve planning
in one of several ways:

 * Data mining can be employed to increase the speed
of planners.
 * Data mining can be employed to improve the
quality of results returned by planners.
 * Data mining can be used to learn the rules for
domains in which there is inherent uncertainty.

In this section we will discuss how the operational use of
planners influences the sources of data used to improve
planners.

The principal source of data used to improve a planner will
come from running that planner. Running the planner
generates plans; it may also generate large amounts of
other information such as planning decisions and the
output of simulations, checkers or human validation of
final plans. Data generation and data mining can be done
“offline” i.e. prior to the use of the planner in operations,
or “online”, i.e. while the planner is operating. Plan
generation can be “cheap”, in the sense that many plans
can be created in a short period of time, or “expensive”;
while cheap for academic settings, plan generation is often
expensive in real applications. In some circumstances,
especially when learning domain rules, plans may not be
generated by automated planners, but provided from some
other source to the data mining system.

Figure 3. A partial plan-graph for the planetary rover
domain. This plan-graph is limited to propositions that
mention the camera, rover position and take-image
goals. No new propositions are achieved after 3 levels.
Arrows indicate action preconditions and effects.

Making use of data gathered in online settings is critical.
By some measure, the best examples will be gathered in an
online setting, as it is here that the most relevant planning
problems are solved. At design time, this may require
accepting some costs to ensure that relevant information is
collected from applications for use by offline data mining
systems as part of the revision process. This is especially
important when considering the use of data mining to
speedup planning; users will have little idea how to control
combinatorial search in planning, although they will
generally be able to suggest plans they believe to be valid
or optimal, which provides clues to domain specific
heuristics. The issue of labeling examples plays into this
design decision. Some data collected during planning can
be labeled with no action on the part of users (e.g. valid vs
invalid plans, decisions leading to backtracking, plan
quality measurements). However, this is not universally
the case. Most planners and domain models are imperfect,
requiring users to modify automatically generated plans.
For example, the plan quality function may be missing a
critical feature. Users of planners will often not have time
to suitably label examples. Such unlabeled examples are
suitable for driving clustering algorithms; data mining can,
for example, be used to suggest changes to the plan quality
function based on the plans chosen by the user instead of
the suggested “optimal” plan.

While most of this paper will focus on planners used by
people, it is worth mentioning that planners used onboard
robots or as parts of control systems will be severely
resource constrained; while this does not preclude data
mining, it significantly limits the types of online data
mining that can be used to improve planner performance.
Memory and processor time are often at a premium; as a
consequence, most data mining enhancements will have to
be done offline.

253

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

A significant advantage of data mining applied to planning
is that there are few to no challenges due to missing data:
the data collection is almost completely under the control
of the application developer. One exception to this is
explicit user labels of plan quality, but this can often be
circumvented; plans that are discarded, modified or
actually used can easily be labeled with little or no burden
on users. Furthermore, if time is available, classifiers can
be rebuilt any time after new examples are generated,
allowing for much finer control in response to new data.
Finally, data mining systems can potentially invoke the
planner to generate new instances, an issue we will return
to at the end of the paper.

4. Speeding up Planners using Data Mining

The use of data mining to generate macros or plan libraries
is a common method of speeding up planning. Macros are
interpreted as real actions; that is, they must be formally
derived so that they can be used in plans with the same
guarantees as the actions in the original domain model.
Plans from a library intended for reuse, however, are
subject to fewer restrictions; they can be interpreted as
heuristics in that the planner can modify the plan from the
library arbitrarily. We will describe work on macros, and
observe that similar issues apply to generating plans for
reuse.

The MacroFF planner of Botea et al. [Bo05] employs a
three step process for generating macros: 1) generation of
types, 2) generation of macros using types, 3) evaluation of
macros for relevance. The solutions to the simplest
problems in a domain are mined to evaluating macros. For
these simple problems, all macro operators are added to the
domain, giving each macro a chance to participate in a
solution plan and increase its weight. For ranking, each
macro operator is assigned a weight that estimates its
efficiency. All weights are initialized to 0. Each time a
macro is present in a plan, its weight is increased by the
Figure 4. number of occurrences of the macro in the plan
(occurrence points), plus 10 bonus points. The occurrence
points decide the relative ranking of common macros.

Local search is often confounded by plateaus, which are
regions of the search space where neighboring solutions
have identical quality, therefore providing no guidance to
search algorithms. Another local search-based planner
using data is the Marvin system of Coles and Smith

[Co04], which learns macros that local search planners use
to escape plateaus. When the start of a plateau is
detected—that is, when no successor state with a strictly-
better heuristic value can be found—best-first search
commences from the current state. During best-first search,
each successor state stores the actions that have been
applied to reach it since the start of the plateau: when a
strictly-better state is eventually found, this list of actions
is the plan segment that forms the basis of the plateau-
escaping macro-action. Macro actions are simplified to
enhance reuse; parallel threads are separated and useless
actions are eliminated. Macros are then candidates for
escaping plateaus that are encountered in the future; they
are tried after the original actions in the domain. The
macros apply to all instances in a domain, and so they can
be reused on other instances.

A number of issues have been identified when mining
macros and plan libraries. Large numbers of macros or
plans may be collected, especially specific ones that are not
widely applicable. If added to domain models with
impunity, increased memory and matching time may result
in poor planner performance. Generalization can lead to
elimination of redundant macros or plans, or they can be
discarded due to age or likelihood to apply. However,
generalization across problems in domains is sometimes
difficult, and may limit their ultimate utility.

Local search-based planners employ data mining
techniques to guide search. An example of such a planner
is SG-Plan [ChWa03]. This system poses planning as a
constrained-optimization problem. This problem is solved
by transforming the problem into an unconstrained
optimization problem with an extended set of variables,
each of which is interpreted as a Largrange multiplier or
penalty on solutions that violate a constraint. SG-Plan then
uses local search to find plans that may violate one or more
constraints, and adjusts the Lagrange penalties in a manner
that adjusts the penalty on violated constraints.
Subsequent searches are less likely to violate these
constraints in the future. The central issues with this
technique is the speed of convergence; memory is not a
problem. While theoretically shown to converge,
significant tuning is required to make such algorithms
perform well in practice, and by alone the technique is not
enough to solve large problems.

254

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Figure 4. Creating pattern databases for the planetary rover
domain. Three different simplified problems are shown:
one consisting of propositions only mentioning the state of
drilling goals, one consisting of propositions only
mentioning locations, and one consisting of propositions
only mentioning image goals.

Data mining can be used to generate variable and value
ordering heuristics, which are critical to planner speed. A
pattern database [Ed01] is constructed by first simplifying
a planning problem; this can be done by eliminating
propositions from the domain, thereby simplifying the
actions. The resulting simple problems can be solved to
completion on smaller problems; an example is shown in
Figure 4. The pattern database is used to solve larger
problems by simply determining whether the relevant part
of the state resulting by application of a candidate action
matches a plan in the database, and combining the quality
of the resulting plans as a heuristic estimate. A useful
property of pattern databases is that, under certain
conditions, they can be used to create admissible heuristics.
This is desirable since the first feasible plan found by the
A* algorithm using admissible heuristics is also an optimal
plan. Since it is difficult to know in advance how to
construct good pattern databases, they are built by mining
the set of all possible abstractions.

Yoon et al. [Yo06] also use data mining to learn heuristics.
Their approach is to generate data from the relaxed plan-
graph for a problem instance. Propositions are annotated to
create new facts indicating that propositions are present in
preconditions, add or delete lists of actions in the plan, and
goals for the instances. Features of the database correspond

to sets of propositions that have particular properties, e.g.
the set of observations to schedule in a rover planning
problem. The function approximation problem is to learn
features that are correlated with minimum makespan plans
that are generated separately. Thus, the relaxed plans are
used to generate features that are correlated to minimum
makepsan plans; this function is used to evaluate plans
resulting from candidate actions.

Vrakas et al. [Vr03] used data mining to learn which
planner solved a problem most effectively. All planners so
analyzed were derived from a single A*-based planning
algorithm; the parameter variations tested included features
such as heuristic weight settings, whether the planner
performs progression or regression search, and an agenda
size setting (allowing beam-search algorithms). The
resulting planner was derived from 437 configurations; the
resulting planner was an improvement over each individual
configuration.

A number of issues have been identified when using data
mining to generate heuristics. The key problem is quality
of the approximated functions, and the related problem of
trying to generate data that leads to better heuristics.
Admissibility can be a problem as well; while pattern
databases can be used to generate admissible heuristics,
and “controlling” planners using admissible heuristics
leads to planners that are admissible, not all data mining
approaches will guarantee admissibility. It can also be
difficult to guarantee accuracy and admissibility in the
same heuristic.

In addition to learning heuristics, it is also possible to learn
“nogoods”, i.e. constraints on the solution space that lead
to early backtracking, thereby potentially speeding up
planning. Khambampati [Ka00] describes nogood
recording techniques from CSPs employed to enhance
Graphplan-based planning. The first step in this process
requires transforming the plan-graph into a constraint
satisfaction problem (CSP); this is done by recognizing
that each action at each level of the plan-graph can be
either present or absent in the final plan, and similarly, that
each proposition at each level of the plan-graph can be true
or false in the final plan. Constraints are derived from the
mutexes to ensure that only non-conflicting actions and
propositions are present in the plan. As dead-ends are
found in CSP, the planner acquires and minimizes
nogoods, consisting of sets of actions that lead to constraint
(mutex) violations. An example is shown in Figure 5. The
search for plans normally generates nogoods for a single
instances. Kambhampati et al. [Ka97] describe a similar
method for learning nogoods for partial order planners, and
Selman and Kautz employ transformations of planning into
propositional satisfiability, making it possible to use SAT-
solvers that learn nogoods [SeKa99]. Upal [Up03]

255

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

generalized this technique to acquire nogoods for reuse
across problem instances by including the initial state
assertions in the nogoods. Nogood learning can be used in
the same manner by planners that use propositional
satisfiability representations instead of CSP formulations
[SeKa97].

Figure 5. No-good learning during planning in the
planetary rovers example. This example assumes that
plans are extracted from a plan-graph of level 2.

The issues with data mining for nogoods are similar to the
issues with mining for macros or plan library components.
Small nogoods (consisting of few actions) are more general
and easier to store, but nogood minimization is
computationally expensive. This effort must be balanced
against simply continuing to search, especially when
solving a single problem instance. Large numbers of
nogoods may be collected, especially specific ones; both
memory and checking time increases. Generalization can
lead to elimination of redundant nogoods, or they can be
discarded due to age or likelihood to apply.

Planning with local search can be an effective strategy for
avoiding problems with combinatorial search spaces.
Local search algorithms work by performing a limited
number of modifications to a proposed plan, and choosing
a modification that improves upon the current plan. This
strategy works well when there are many feasible plans,

and the task is to search for optimal plans. One difficulty
with local search is to create the set of modification
operators; it is important to ensure there are sufficient
modification operators to guide search, but if there are too
many such operators, search performance will be degraded.
Ambite and Knoblock [Am00] describe a way to use data
mining to automatically generate search control operators
for a particular planning domain. They automatically
generate optimal partial order plans for small problem
instances for domains, then mine these plans to generate
plan rewrite rules. Rules are generated by analyzing the
differences between initial plan and final plan; facts only
present in the initial plan form the antecedent of the rule,
facts only present in the final plan for the consequent of the
rule. Proposed rules are evaluated in order of their size; if
a proposed operator improves at least one plan, it is
retained, otherwise it is not. This process terminates when
no improving rules are found.

A number of issues have been identified when mining
plans for controlling local search. Generation of too many
local search operators is problematic; either all plan
modifications must be considered, or some means of
controlling the time to generate alternatives must be
considered.

5. Improving Plan Quality using Data Mining

Most of the techniques described in the previous section
have an impact on plan quality as well as planner speed;
since planning is often computationally expensive, the
ability to find feasible plans more quickly translates to the
ability to find better quality plans in the same allotted time.

Another possible problem in local search is the presence of
long sequences of unproductive plan modifications. This
can result from the presence of local optima from which no
sequences of purely greedy plan improvements is possible.
Boyan and Moore [Bo98] attempt to circumvent this
problem by learning good starting points for local search.
Figure 6 provides a motivation for why this is a good idea;
one could simply learn to start so close to the global
optimum that greedy search will solve the problem. Boyan
and Moore mine sequences of local search moves, and
learn a function that predicts the properties of a starting
point for local search that will lead to a good solution.
Search proceeds in two phases: one greedy optimization
phase selects a good starting plan, and a second greedy
optimization phase starts at that plan and produces a
solution to the problem. They observe that if the local
search is Markovian, i.e. the successor plan only depends
on the current plan, then every plan visited can be used as
training data. This assumption applies directly to most

256

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

local search algorithms; with some extensions it also
applies to tabu search and other search techniques that
employ memory. The resulting augmentation outperforms
other local search algorithms that do not use adaptation on
some simple scheduling problems.

Figure 6. A simple one-dimensional optimization problem
with many local minima, and the function that predicts the
expected value of purely greedy optimization starting at
any point. Reproduced from [Bo98].

Optimal planning problems in which infeasible plans are
common offer other challenges to local search; should
local search enter infeasible regions or not? If so, how to
balance repairing constraints and feasible solution quality?
Rogers et al. [Ro06] mine the trajectories of local search
operations performed by planners for satellite observation
scheduling problems and classify trajectories based on the
presence of cycles, infeasible plans along trajectories,
proximity of those infeasible plans to the set of feasible
plans, and the presence of “shortcuts”, i.e. paths from a
poor quality plan to a better plan that include infeasible
plans. The analysis showed that search in infeasible
regions was a profitable course due to the presence of
shortcuts; algorithm modifications using tabu lists to allow
limited search in the infeasible region leads to improved
search quality.

6. Learning Domain Rules using Data Mining

In the previous sections we have implicitly assumed that a
domain model is available, and correctly represents the
actual rules of the planning domain. This is often not the
case: domain models may be inaccurate, may change as
time passes, or may not be directly available. The field of
data mining has also been applied to learning domain rules
for planning. In this section we interpret the notion of
“learning the domain” loosely, and describe work both in
learning action rules for planning domains as well as
learning plan quality functions.

Gervaiso et al. [Ge99] use machine learning to learn a
user’s preferences for feasible plans. The system takes as
input users’ feedback on plans that are generated, and
learns a function that mimics those preferences. Using this

feedback produces a system that, over time, generates
better responses according to user studies.

Pasula et al. [Pa04] describe a data mining application
designed to infer the rules of a planning domain in which
action outcomes are uncertain from a set of plans. Given a
data set D, a proper rule set R includes exactly one rule that
is applicable to every example d in D in which some
change occurs, and that does not includes any rules that are
applicable to no examples. Rule sets are constructed using
a scoring function that favors rules that fit the data well
and penalizes overly complex rules, which in this case
corresponds to many preconditions and many possible
outcomes. Rule sets are constructed by generating
candidate rules from old ones using a small set of
operators; the new rule maximally increasing the score is
added to the new set. The approach is shown to compare
favourably to using Dynamic Bayes Networks to learn the
domain rules.

Winnner and Veloso [Wi02] describe a data mining
approach to generating domain specific planners from
example plans; planners employ a very limited
programming language which is nonetheless powerful
enough to create concise, efficient planners for specific
domains. Their DISTILL planner maintains a family of
domain specific planners which are incrementally built by
analyzing sample plans. These plans are transformed into
programs that use the simple programming language in a
manner that is biased towards efficient inclusion in an
existing domain specific planner, then merged with such a
planner.

7. Here Be Dragons: Challenges in Applying
Data Mining to Planning

The problems of poor generalization, over-fitting function
approximation, feature selection and speed of function
approximation are not specific to data mining applications
employed for planning. However, there are several reasons
why data mining may be unsuitable or difficult for
planning due to the peculiarities of planning problems.

When data mining is performed in an offline setting, the
speed of function approximation and the data storage
problems of data mining are mitigated to some degree.
The function utilized by the planner will certainly be more
compact than the data used to generate the function, and
planner performance will not be penalized for the time
spent to perform function approximation.

When used in online settings, efficiency and predictability
of the behavior of the planner is vital. Operators are
trained to expect certain behavior, and so “self-adapting”

257

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

planners that employ data mining must be built with
caution. For planners employing data mining techniques
online, the concerns of speed and memory are even more
serious; the design of operational planners can be seriously
impacted if data mining leads to significant slowdowns in
the time spent planning. Time and resource constraints
may preclude expensive data mining operations even if
future planner behavior may be improved.

If opportunities to revise planner behavior are present, data
mining can be employed to create the “next release”. Even
in this setting care must be exercised. If plans generated
by users are destined for use by offline data mining,
applications must be designed to capture these plans
without impacting the user experience. This can be done
even for planners used in onboard control settings.

There are more technical challenges as well. Algorithms
such as A* are prominently used in automated planning;
this is because, when certain representational assumptions
are made and A* is used with admissible heuristics, the
first plan returned is the shortest (or otherwise optimal)
plan. However, to preserve this feature, data mining
applications that are used to construct heuristics must
return admissible heuristics or sacrifice the guarantee. As
we have seen, approaches such as pattern databases can
preserve these guarantees, but this limits the types of data
mining techniques that can be used.

When employed for learning domain rules and heuristics,
data mining must work with highly structured data (e.g.
plans) and output highly structured functions (e.g. rules or
mappings from rules to quality measures). Again, while
the papers referenced here show this is possible, highly
structured data place special constraints on data mining
that may preclude the use of some data mining techniques.

Data mining can suffer from the problem of “insufficient
examples”. Curiously, in many of the applications of data
mining to planning, this problem does not arise or has been
circumvented. Nogood recording benefits from dead-ends
in search, which is the common experience. Data mining
applied to local search has focused on leveraging data
available in average search trajectories (e.g. plateau
escaping macros, detours and shortcuts to improving
solutions.) When solved problems for a domain are
needed, small planning problems provide such examples;
there is no concrete evidence suggesting they do not
generalize.

The International Planning Competition is a forum in
which automated planners are tested on common problems.
(Interested readers should refer to the Journal of Artificial
Intelligence Volume 24, dedicated to the 2004
competition.) Awards are given based on planner speed,
planner coverage (i.e. number of problems and domains

that they can solve) and solution quality. Given the
prevalence of data mining techniques applied to planning,
it is worth pointing out that SG-Plan [ChWa03] and SAT-
Plan [SeKa99] have employed some of the techniques we
describe in this paper and performed well in the planning
competition. However, these planners only use a limited
number of data mining techniques. Other competitors that
have performed well have not employed such techniques:
there is clearly more scope for data mining to improve
planning in the future.

8. Challenges for Planning and Opportunities
for Data Mining

In closing, we describe some opportunities for data mining
to improve the quality of planning.

First, we note that many of the techniques we describe
above employ targeted generation of data that is mined
using knowledge-intensive techniques to improve
planning. These techniques may be complemented by, or
improved upon, using techniques applied to unstructured
data. For example, clustering techniques may improve the
grouping of predicates used to generate pattern databases,
and pattern recognition techniques may guide heuristics
that trigger nogood learning or minimization only when it
is expected to maximize expected benefit to a planner.

A related opportunity concerns the opportunity presented
by using the planner to generate more data for data mining.
Most of the techniques described here, even those
exploiting a planner to gather data, make no explicit effort
to influence the dataset. In an offline setting, the data
mining system can simply run the planner again in order to
generate more data if necessary to improve the planner
even further. This suggests that the data mining system try
to limit the effort spent improving the planner by focusing
on generating data where it will do the most good. Doing
so will require trading off exploration and exploitation, in a
manner reminiscent of experiment generation and k-armed
bandits problems.

Next, we note that many NASA and industrial planning
problems require validation of plans produced by AI
planners. This is usually because the declarative languages
used by such planners are inadequate to capture the full
domain description, or because modeling shortcuts are
needed to enable automated planning. Often validation is
done through the use of process simulations. Examples of
such simulation methodologies include Discrete Event
Simulations (DES), Testability Analysis, and Reliability
models (e.g., Fault Trees.) A variety of software packages
have been developed both within NASA and commercially
based on these simulation methodologies. Commercial
examples include: Arena, Extend, CORE, Satellite Toolkit

258

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

(StK); government lab (including NASA) developed
simulators include Sapphire 7, Mission Simulation Facility
[Pi04] and ROver Analysis Modeling and Simulation
(ROAMS) [Ye99].

Finally, automated planning can incorporate such high
fidelity simulation while generating plans, but the
computational expense of such simulations often precludes
doing so except in the coarsest possible way: validation of
the complete plan after plan generation is complete. Such
loose integration is undesirable since many plans may be
infeasible, and the high expense of such plan validation
leads to slow planning. Even when tight integration is
possible, expensive validation steps will slow planning.
Data mining can be used to improve the quality of planning
in several ways. First, the validator can be viewed as a
function that can be approximated in order to speed up the
planner. In this case, data mining of the validator can
produce an efficient, approximate function that can serve
as a fast, first cut once automated planning is complete.
Even more valuable would be an approach that can be used
much earlier in the planning process in a manner similar to
nogood learning; this approach can lead to early
termination of planning. Second, data mining can be of
use in building heuristics that guide the planner towards
feasible solutions or higher quality solutions.

9. References

[Fi71] Fikes and Nilsson. STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving,
Artificial Intelligence, Vol. 2, 1971, pp 189-208.

[Fo03] Fox, M. and Long, D. "PDDL2.1: An extension of
PDDL for expressing temporal planning domains." Journal
of Artificial Intelligence Research. 20, 2003: p. 61-124.

[Sm04] Smith, A, and Coles, A. MARVIN. Proceedings
of the 24th UK Special Interest Group on Planning, 2004.

[Ed01] Edelkamp, S. Planning with Pattern Databases.
Proceedings of the European Conference on Planning,
2001

[Bo05] Botea A., Enzenberger M., Müller M., and
Schaeffer J. Macro-FF: Improving AI Planning with
Automatically Learned Macro-Operators. Journal of
Artificial Intelligence Research, 24, 2005: p. 581-621.

[Ka00] Kambhampati, S. Planning Graph as (dynamic)
CSP: Exploiting EBL, DDB and other CSP Techniques in
Graphplan. Journal of Artificial Intelligence Research 12,
2000 p. 1-34.

[Up03] Upal, M. A. Learning Graphplan Memos through
Static Domain Analysis. Proceedings of the Sixteenth
Canadian Conference on Artificial Intelligence, Springer
Verlag, New York, 2003.

[Ho01] Hoffmann, J. and Nebel, B. The FF planning
system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research, 14:253–302,
2001.

[Gh04] Ghallab, M., Nau, D. and Traverso, P. Automated
Planning: Theory and Practice. Morgan Kaufmann, 2004.

[Ka97] Kambhampati, S., Katukam, S. and Qu, Y Failure
Driven Dynamic Search Control for Partial Order Planners:
An explanation-based approach. Artificial Intelligence.
88(1-2) p. 253-313, 1997

[Vr03] Vrakas, D., Tsoumakas, G., Bassiliades, N., and
Vlahavas, I. Learning Rules for Adaptive Planning.
Proceedings of the 13th International Conference on
Automated Planning and Scheduling, 82-91, 2003.

[Am00] Ambite, J. L., Knobock, C. and Minton, S.
Learning Plan Rewriting Rules. Proceedings of the 5th
International Conference on Artificial Intelligence
Planning and Scheduling Systems, 2000.

[Ro06] Rogers, M.F., Howe, A. and Whitley, D. L.
Looking for Shortcuts: Infeasible Search Analysis for
Oversubscribed Scheduling Problems. Proceedings of the
16th International Conference on Automated Planning and
Scheduling, 2006

[Ge99] Gervaiso, M. and Iba, W. and Langley, P.
Learning User Evaluation Functions for Adaptive
Scheduling Assistance. Proceedings of the International
Conference on Machine Learning, 1999.

[Pa04] Pasula, H. M. and Zettlemoyer, L. S. and Kaelbling,
L. Learning Probabilistic Relational Planning Rules..
Proceedings of the 14th International Conference on
Automated Planning and Scheduling, 2004

[Wi03] Winner, E. and Veloso, M. DISTILL: Towards
Learning Domain-Specific Planners by Example.
Proceedings of the 13th International Conference on
Automated Planning and Scheduling, 2003

[Pi04] Pisanich, G., Plice, L,, Neukom, C., Fluckiger, L,
and Wagner, M. Mission Simulation Facility: Simulation
Support for Autonomy Development. Proceedings of the
42nd AIAA Aerospace Sciences Conference, Reno, NV,
January 2004.

259

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

[Ye99] Yen, J., Jain, A., and Balaram., J. ROAMS: Rover
Analysis, Modeling and Simulation. In proceedings of
Artificial Intelligence, Robotics, and Automation in Space,
1999.

[ChWa03] Y. Chen and B. W. Wah, Automated Planning
and Scheduling using Calculus of Variations in Discrete
Space, Proc. International Conference on Automated
Planning and Scheduling 2003.

[Bo98] Boyan, J. and Moore, A. Learning Evaluation
Functions for Global Optimization and Satisfiability.
Proceedings of the National Conference on Artificial
Intelligence, 1998.

[KaSe99] Henry Kautz and Bart Selman. Unifying SAT-
based and Graph-based Planning Proc. International Joint
Conference on Artificial Intelligence, 1999.

[BlFu97] A. L. Blum and M. L. Furst. Fast planning
through planning graph analysis. Artificial Intelligence
Journal, 90(1-2), 1997, p. 225-279.

260

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

