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Abstract 
Automated planning is a combinatorial problem that is 
important to many NASA endeavors, including ground 
operations and control applications for unmanned and 
manned space flight.  There is significant value to 
integrating planning and data mining to create better 
planners. We describe current work in this area, covering 
uses of data mining to speed up planners, improve the 
quality of plans returned by planners, and learn domain 
models for automated planners.  The central contribution of 
this paper is a snap shot of the state of the art in integrating 
these technologies and a summary of challenges and open 
research issues. 

1. Introduction  
Automated planning and scheduling has been applied to a 
wide variety of endeavors across NASA, including the 
scheduling of ground-based, aircraft-based and space-
based telescopes; on-board scheduling of deep space craft; 
and ground-based planning of deep space missions such as 
the Mars Exploration Rovers Spirit and Opportunity. Plans 
and schedules are generated in the face of constraints on 
activity time and resource needs.  Automated planning and 
scheduling systems are designed to search for plans or 
schedules that achieve a set of goals and also obey a set of 
constraints.  These constraints are provided as inputs to the 
automated planning system in the form of a declarative 
model. The goal of the planner can be to produce short 
plans, plans that minimize resource use, or plans that 
maximize an objective, e.g. collect the maximum number 
of science targets.   The intent is to build general purpose 
automated planners and schedulers that can solve problems 
for any model; that is, the algorithms are designed to 
accept as input any model described using a specific 
language.  While there are important distinctions to make 
between planning and scheduling, we will refer to such 
systems as planners throughout.  Planning problems can be 
computationally easy to solve, but most planning problems 
of interest are either NP-complete or PSPACE-complete.  
A complete discussion of techniques for a variety of 
automated planning problems can be found in [Gh04]. 
 

Data mining is sorting through data to identify patterns and 
establish relationships. Data mining is considered 
“inductive learning” (data intensive process) vs “deductive 
learning” (knowledge intensive.)  Data mining parameters 
include: 
    * Association - looking for patterns where one event is 
connected to another event. 
    * Sequence or path analysis - looking for patterns where 
one event leads to another later event. 
    * Classification - looking for new patterns.  
    * Clustering - finding and visually documenting groups 
of facts not previously known. 
    * Forecasting - discovering patterns in data that can lead 
to reasonable predictions about the future.  

 
In this paper we will focus on how data mining 
techniques have been used to create better automated 
planners.  We first describe a variety of ways in which 
data mining can improve various types of planning, then 
describe current work in this area, and finally describe 
some outstanding challenges.  Those interested in 
planning and learning in general should refer to the 
International Conference on Planning and Scheduling 
2004 tutorial by Borrajo and Veloso. 

2. Automated Planning and Scheduling 
The simplest formulation of planning employs the 
STRIPS formalism [Fi71].  In this formalism, a planning 
domain model consists of a set of propositions P and a 
set of actions A.  The propositions in P can be true or 
false, and implicitly describe a state space S such that 
the set of true propositions s in 2P.  The actions A form a 
mapping from S to S.  Each action a in A is concisely 
described by three lists of propositions: a precondition 
list, an add list and a delete list.  If action a is executed 
when the propositions on the precondition list (and 
possibly others) are true, then the propositions on the 
add list are made true (regardless of their prior value), 
and the propositions on the delete list are made false 
(regardless of their prior value).  The outcome of 
executing the action under other circumstances is 
undefined.  A planning problem consists of a planning 

251

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE



domain model, a set of propositions that are assumed to 
hold, and a set of propositions all of which must be true 
after execution of an action sequence.  The problem is to  
find such an action sequence or prove that no such 
action sequence exists.  A sample is shown in Figure 1. 
 
 

Figure 1. A simple planetary rover domain and its 
STRIPS model.  The domain consists of static locations 
at which the rover can be, routes between locations that 
can be navigated by the rover, and goals for the rover to 
achieve, e.g. take images or drill samples at different 
locations. 
 
STRIPS is somewhat inconvenient for formulating 
models in which metric time and resources are required; 
propositions must capture the exact time actions occur, 
or the exact amount of available resource.  Modern plan 
domain description formalisms such as PDDL [Fo03] 
allow richer description of conditions and effects that 
allow concise declarations of resource availability, 
action concurrence, and arbitrary temporal constraints 
between actions (e.g. action a must start 5 minutes after 
b ends).  Further refinements allow specification of plan 
quality functions such as minimization of makespan or 
plan steps, maximization of the value of achieved goals, 
and other more elaborate goals.  Additional refinements 
permit specification of planning problems in which 
actions have uncertain outcomes and the initial state may 
not be known with certainty. 
 

Figure 2. A partial plan-graph for the planetary rover 
domain.  This plan-graph is limited to propositions that 
mention the camera, rover position and take-image 
goals.  It is limited to 4 levels.  Arcs indicate mutual 
exclusions between propositions or actions, and arrows 
indicate action preconditions and effects. 
 
We introduce some concepts that will appear later in the 
paper.  Many planners assume all actions are totally 
ordered; such planners can find feasible plans, but 
ignore the possibility that two actions can be concurrent.  
Partial order planners account for action concurrency, 
and are superior when the makespan of the plan (longest 
path of totally ordered actions) must be minimized, but 
have proven to be slow when searching for feasible 
plans.  The plan-graph [BlFu97] is a commonly used 
tool in automated planning; it is a compact 
representation of a superset of all feasible plans, and can 
be used in many ways to provide heuristic guidance to 
planners.  The plan-graph is constructed as follows.  The 
first level consists of the propositions defining the initial 
state.  The next level consists of all applicable actions 
(an action is applicable if all propositions in the 
precondition list appear in the previous level, and no two 
are marked as mutually exclusive).  Actions a and b 
cannot be concurrent if b deletes a precondition of a or a 
proposition on the add list of a.  Actions that cannot be 
concurrent are marked as being mutually exclusive.  The 
following level consists of all the propositions in the 
initial level, as well as all effects from actions in the 
second level.   Pairs of propositions that can only be 
achieved by mutually exclusive actions are marked as 
mutually exclusive.  This process continues until the set 
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of propositions and mutual exclusion annotations does 
not change between successive levels.  A plan-graph for 
the planetary rover domain is shown in Figure 2.  
Feasible plans must be extracted from the plan-graph, 
but the calculation of the plan-graph has been shown to 
significantly reduce the work of finding such plans.  The 
plan-graph cannot produce minimum makespan plans 
directly since it assumes all actions at level k precede all 
actions at level k+1, but can produce plans of low 
makespan. A relaxed plan-graph [Ho01] is a plan-graph 
for a problem instance in which the delete lists for all 
actions have been omitted.  While both plan-graphs and 
relaxed plan-graphs can be calculated in polynomial 
time, the relaxed plan-graph can be computed much 
faster, and have been used extensively in heuristics for 
planners.  A relaxed plan-graph for the planetary rover 
domain of Figure 1 using the same initial propositions as 
those used in Figure 2 is shown in Figure 3.  

3. Habeas Datum: The Operators’ Perspective 

Planning is employed in operational settings ranging 
from human decision makers deciding on courses of 
action to controllers generating actions for robots or 
automated systems.  Data mining can improve planning 
in one of several ways: 
 
 *  Data mining can be employed to increase the speed 
of planners. 
 * Data mining can be employed to improve the 
quality of results returned by planners. 
 * Data mining can be used to learn the rules for 
domains in which there is inherent uncertainty. 
 
In this section we will discuss how the operational use of 
planners influences the sources of data used to improve 
planners. 
 
The principal source of data used to improve a planner will 
come from running that planner.  Running the planner 
generates plans; it may also generate large amounts of 
other information such as planning decisions and the 
output of simulations, checkers or human validation of 
final plans.  Data generation and data mining can be done 
“offline” i.e. prior to the use of the planner in operations, 
or “online”, i.e. while the planner is operating.  Plan 
generation can be “cheap”, in the sense that many plans 
can be created in a short period of time, or “expensive”; 
while cheap for academic settings, plan generation is often 
expensive in real applications.  In some circumstances, 
especially when learning domain rules, plans may not be 
generated by automated planners, but provided from some 
other source to the data mining system. 
 

Figure 3. A partial plan-graph for the planetary rover 
domain.  This plan-graph is limited to propositions that 
mention the camera, rover position and take-image 
goals.  No new propositions are achieved after 3 levels.  
Arrows indicate action preconditions and effects. 
 
Making use of data gathered in online settings is critical.  
By some measure, the best examples will be gathered in an 
online setting, as it is here that the most relevant planning 
problems are solved.  At design time, this may require 
accepting some costs to ensure that relevant information is 
collected from applications for use by offline data mining 
systems as part of the revision process.  This is especially 
important when considering the use of data mining to 
speedup planning; users will have little idea how to control 
combinatorial search in planning, although they will 
generally be able to suggest plans they believe to be valid 
or optimal, which provides clues to domain specific 
heuristics. The issue of labeling examples plays into this 
design decision.  Some data collected during planning can 
be labeled with no action on the part of users (e.g. valid vs 
invalid plans, decisions leading to backtracking, plan 
quality measurements).  However, this is not universally 
the case.   Most planners and domain models are imperfect, 
requiring users to modify automatically generated plans.  
For example, the plan quality function may be missing a 
critical feature. Users of planners will often not have time 
to suitably label examples.  Such unlabeled examples are 
suitable for driving clustering algorithms; data mining can, 
for example, be used to suggest changes to the plan quality 
function based on the plans chosen by the user instead of 
the suggested “optimal” plan. 
 
While most of this paper will focus on planners used by 
people, it is worth mentioning that planners used onboard 
robots or as parts of control systems will be severely 
resource constrained; while this does not preclude data 
mining, it significantly limits the types of online data 
mining that can be used to improve planner performance.  
Memory and processor time are often at a premium; as a 
consequence, most data mining enhancements will have to 
be done offline. 
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A significant advantage of data mining applied to planning 
is that there are few to no challenges due to missing data: 
the data collection is almost completely under the control 
of the application developer.  One exception to this is 
explicit user labels of plan quality, but this can often be 
circumvented; plans that are discarded, modified or 
actually used can easily be labeled with little or no burden 
on users.  Furthermore, if time is available, classifiers can 
be rebuilt any time after new examples are generated, 
allowing for much finer control in response to new data.  
Finally, data mining systems can potentially invoke the 
planner to generate new instances, an issue we will return 
to at the end of the paper.  

4. Speeding up Planners using Data Mining 

The use of data mining to generate macros or plan libraries 
is a common method of speeding up planning.  Macros  are 
interpreted as real actions; that is, they must be formally 
derived so that they can be used in plans with the same 
guarantees as the actions in the original domain model. 
Plans from a library intended for reuse, however, are 
subject to fewer restrictions; they can be interpreted as 
heuristics in that the planner can modify the plan from the 
library arbitrarily.  We will describe work on macros, and 
observe that similar issues apply to generating plans for 
reuse.     
 
The MacroFF planner of Botea et al. [Bo05] employs a 
three step process for generating macros: 1) generation of 
types, 2) generation of macros using types, 3) evaluation of 
macros for relevance. The solutions to the simplest 
problems in a domain are mined to evaluating macros. For 
these simple problems, all macro operators are added to the 
domain, giving each macro a chance to participate in a 
solution plan and increase its weight. For ranking, each 
macro operator is assigned a weight that estimates its 
efficiency. All weights are initialized to 0. Each time a 
macro is present in a plan, its weight is increased by the 
Figure 4. number of occurrences of the macro in the plan 
(occurrence points), plus 10 bonus points. The occurrence 
points decide the relative ranking of common macros. 
 
Local search is often confounded by plateaus, which are 
regions of the search space where neighboring solutions 
have identical quality, therefore providing no guidance to 
search algorithms.  Another local search-based planner 
using data is the Marvin system of Coles and Smith 

[Co04], which learns macros that local search planners use 
to escape plateaus.  When the start of a plateau is 
detected—that is, when no successor state with a strictly-
better heuristic value can be found—best-first search 
commences from the current state. During best-first search, 
each successor state stores the actions that have been 
applied to reach it since the start of the plateau: when a 
strictly-better state is eventually found, this list of actions 
is the plan segment that forms the basis of the plateau-
escaping macro-action.  Macro actions are simplified to 
enhance reuse; parallel threads are separated and useless 
actions are eliminated.  Macros are then candidates for 
escaping plateaus that are encountered in the future; they 
are tried after the original actions in the domain.  The 
macros apply to all instances in a domain, and so they can 
be reused on other instances. 
 
A number of issues have been identified when mining 
macros and plan libraries. Large numbers of macros or 
plans may be collected, especially specific ones that are not 
widely applicable.  If added to domain models with 
impunity, increased memory and matching time may result 
in poor planner performance.  Generalization can lead to 
elimination of redundant macros or plans, or they can be 
discarded due to age or likelihood to apply.  However, 
generalization across problems in domains is sometimes 
difficult, and may limit their ultimate utility. 
 
Local search-based planners employ data mining 
techniques to guide search.  An example of such a planner 
is SG-Plan [ChWa03].  This system poses planning as a 
constrained-optimization problem.  This problem is solved 
by transforming the problem into an unconstrained 
optimization problem with an extended set of variables, 
each of which is interpreted as a Largrange multiplier or 
penalty on solutions that violate a constraint.  SG-Plan then 
uses local search to find plans that may violate one or more 
constraints, and adjusts the Lagrange penalties in a manner 
that adjusts the penalty on violated constraints.  
Subsequent searches are less likely to violate these 
constraints in the future.  The central issues with this 
technique is the speed of convergence; memory is not a 
problem.  While theoretically shown to converge, 
significant tuning is required to make such algorithms 
perform well in practice, and by alone the technique is not 
enough to solve large problems. 
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Figure 4. Creating pattern databases for the planetary rover 
domain.  Three different simplified problems are shown: 
one consisting of propositions only mentioning the state of 
drilling goals, one consisting of propositions only 
mentioning locations, and one consisting of propositions 
only mentioning image goals. 
 
Data mining can be used to generate variable and value 
ordering heuristics, which are critical to planner speed. A 
pattern database [Ed01] is constructed by first simplifying 
a planning problem; this can be done by eliminating 
propositions from the domain, thereby simplifying the 
actions.  The resulting simple problems can be solved to 
completion on smaller problems; an example is shown in 
Figure 4.  The pattern database is used to solve larger 
problems by simply determining whether the relevant part 
of the state resulting by application of a candidate action 
matches a plan in the database, and combining the quality 
of the resulting plans as a heuristic estimate.  A useful 
property of pattern databases is that, under certain 
conditions, they can be used to create admissible heuristics.  
This is desirable since the first feasible plan found by the 
A* algorithm using admissible heuristics is also an optimal 
plan.  Since it is difficult to know in advance how to 
construct good pattern databases, they are built by mining 
the set of all possible abstractions.  
 
Yoon et al. [Yo06] also use data mining to learn heuristics. 
Their approach is to generate data from the relaxed plan-
graph for a problem instance. Propositions are annotated to 
create new facts indicating that propositions are present in 
preconditions, add or delete lists of actions in the plan, and 
goals for the instances. Features of the database correspond 

to sets of propositions that have particular properties, e.g. 
the set of observations to schedule in a rover planning 
problem.  The function approximation problem is to learn 
features that are correlated with minimum makespan plans 
that are generated separately.  Thus, the relaxed plans are 
used to generate features that are correlated to minimum 
makepsan plans; this function is used to evaluate plans 
resulting from candidate actions.  
 
Vrakas et al.  [Vr03] used data mining to learn which 
planner solved a problem most effectively.  All planners so 
analyzed were derived from a single A*-based planning 
algorithm; the parameter variations tested included features 
such as heuristic weight settings, whether the planner 
performs progression or regression search, and an agenda 
size setting (allowing beam-search algorithms).  The 
resulting planner was derived from 437 configurations; the 
resulting planner was an improvement over each individual 
configuration. 
 
A number of issues have been identified when using data 
mining to generate heuristics.  The key problem is quality 
of the approximated functions, and the related problem of 
trying to generate data that leads to better heuristics.  
Admissibility can be a problem as well; while pattern 
databases can be used to generate admissible heuristics, 
and “controlling” planners using admissible heuristics 
leads to planners that are admissible, not all data mining 
approaches will guarantee admissibility.  It can also be 
difficult to guarantee accuracy and admissibility in the 
same heuristic.  

In addition to learning heuristics, it is also possible to learn 
“nogoods”, i.e. constraints on the solution space that lead 
to early backtracking, thereby potentially speeding up 
planning. Khambampati [Ka00] describes nogood 
recording techniques from CSPs employed to enhance 
Graphplan-based planning.  The first step in this process 
requires transforming the plan-graph into a constraint 
satisfaction problem (CSP); this is done by recognizing 
that each action at each level of the plan-graph can be 
either present or absent in the final plan, and similarly, that 
each proposition at each level of the plan-graph can be true 
or false in the final plan.  Constraints are derived from the 
mutexes to ensure that only non-conflicting actions and 
propositions are present in the plan.  As dead-ends are 
found in CSP, the planner acquires and minimizes 
nogoods, consisting of sets of actions that lead to constraint 
(mutex) violations. An example is shown in Figure 5.  The 
search for plans normally generates nogoods for a single 
instances. Kambhampati et al. [Ka97] describe a similar 
method for learning nogoods for partial order planners, and 
Selman and Kautz employ transformations of planning into 
propositional satisfiability, making it possible to use SAT-
solvers that learn nogoods [SeKa99]. Upal [Up03] 
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generalized this technique to acquire nogoods for reuse 
across problem instances by including the initial state 
assertions in the nogoods.  Nogood learning can be used in 
the same manner by planners that use propositional 
satisfiability representations instead of CSP formulations 
[SeKa97].  

Figure 5. No-good learning during planning in the 
planetary rovers example.  This example assumes that 
plans are extracted from a plan-graph of level 2. 

The issues with data mining for nogoods are similar to the 
issues with mining for macros or plan library components.  
Small nogoods (consisting of few actions) are more general 
and easier to store, but nogood minimization is 
computationally expensive.  This effort must be balanced 
against simply continuing to search, especially when 
solving a single problem instance.  Large numbers of 
nogoods may be collected, especially specific ones; both 
memory and checking time increases. Generalization can 
lead to elimination of redundant nogoods, or they can be 
discarded due to age or likelihood to apply. 

Planning with local search can be an effective strategy for 
avoiding problems with combinatorial search spaces.  
Local search algorithms work by performing a limited 
number of modifications to a proposed plan, and choosing 
a modification that improves upon the current plan.  This 
strategy works well when there are many feasible plans, 

and the task is to search for optimal plans.  One difficulty 
with local search is to create the set of modification 
operators; it is important to ensure there are sufficient 
modification operators to guide search, but if there are too 
many such operators, search performance will be degraded. 
Ambite and Knoblock [Am00]  describe a way to use data 
mining to automatically generate search control operators 
for a particular planning domain.  They automatically 
generate optimal partial order plans for small problem 
instances for domains, then mine these plans to generate 
plan rewrite rules.  Rules are generated by analyzing the 
differences between initial plan and final plan; facts only 
present in the initial plan form the antecedent of the rule, 
facts only present in the final plan for the consequent of the 
rule.  Proposed rules are evaluated in order of their size; if 
a proposed operator improves at least one plan, it is 
retained, otherwise it is not.  This process terminates when 
no improving rules are found.  

A number of issues have been identified when mining 
plans for controlling local search.  Generation of too many 
local search operators is problematic; either all plan 
modifications must be considered, or some means of 
controlling the time to generate alternatives must be 
considered. 

5. Improving Plan Quality using Data Mining 

Most of the techniques described in the previous section 
have an impact on plan quality as well as planner speed; 
since planning is often computationally expensive, the 
ability to find feasible plans more quickly translates to the 
ability to find better quality plans in the same allotted time. 

Another possible problem in local search is the presence of 
long sequences of unproductive plan modifications.  This 
can result from the presence of local optima from which no 
sequences of purely greedy plan improvements is possible. 
Boyan and Moore [Bo98] attempt to circumvent this 
problem by learning good starting points for local search. 
Figure 6 provides a motivation for why this is a good idea; 
one could simply learn to start so close to the global 
optimum that greedy search will solve the problem.  Boyan 
and Moore mine sequences of local search moves, and 
learn a function that predicts the properties of a starting 
point for local search that will lead to a good solution.  
Search proceeds in two phases: one greedy optimization 
phase selects a good starting plan, and a second greedy 
optimization phase starts at that plan and produces a 
solution to the problem.  They observe that if the local 
search is Markovian, i.e. the successor plan only depends 
on the current plan, then every plan visited can be used as 
training data.  This assumption applies directly to most 
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local search algorithms; with some extensions it also 
applies to tabu search and other search techniques that 
employ memory.  The resulting augmentation outperforms 
other local search algorithms that do not use adaptation on 
some simple scheduling problems.     

 

Figure 6. A simple one-dimensional optimization problem 
with many local minima, and the function that predicts the 
expected value of purely greedy optimization starting at 
any point.  Reproduced from [Bo98]. 

Optimal planning problems in which infeasible plans are 
common offer other challenges to local search; should 
local search enter infeasible regions or not?  If so, how to 
balance repairing constraints and feasible solution quality?  
Rogers et al. [Ro06] mine the trajectories of local search 
operations performed by planners for satellite observation 
scheduling problems and classify trajectories based on the 
presence of cycles, infeasible plans along trajectories, 
proximity of those infeasible plans to the set of feasible 
plans, and the presence of “shortcuts”, i.e. paths from a 
poor quality plan to a better plan that include infeasible 
plans.  The analysis showed that search in infeasible 
regions was a profitable course due to the presence of 
shortcuts; algorithm modifications using tabu lists to allow 
limited search in the infeasible region leads to improved 
search quality.  

6. Learning Domain Rules using Data Mining 

In the previous sections we have implicitly assumed that a 
domain model is available, and correctly represents the 
actual rules of the planning domain.  This is often not the 
case: domain models may be inaccurate, may change as 
time passes, or may not be directly available.  The field of 
data mining has also been applied to learning domain rules 
for planning.  In this section we interpret the notion of 
“learning the domain” loosely, and describe work both in 
learning action rules for planning domains as well as 
learning plan quality functions. 
 
Gervaiso et al. [Ge99] use machine learning to learn a 
user’s preferences for feasible plans.  The system takes as 
input users’ feedback on plans that are generated, and 
learns a function that mimics those preferences.  Using this 

feedback produces a system that, over time, generates 
better responses according to user studies.   
 
Pasula et al. [Pa04] describe a data mining application 
designed to infer the rules of a planning domain in which 
action outcomes are uncertain from a set of plans.  Given a 
data set D, a proper rule set R includes exactly one rule that 
is applicable to every example d in D in which some 
change occurs, and that does not includes any rules that are 
applicable to no examples.  Rule sets are constructed using 
a scoring function that favors rules that fit the data well 
and penalizes overly complex rules, which in this case 
corresponds to many preconditions and many possible 
outcomes.  Rule sets are constructed by generating 
candidate rules from old ones using a small set of 
operators; the new rule maximally increasing the score is 
added to the new set.  The approach is shown to compare 
favourably to using Dynamic Bayes Networks to learn the 
domain rules.  
 
Winnner and Veloso [Wi02] describe a data mining 
approach to generating domain specific planners from 
example plans; planners employ a very limited 
programming language which is nonetheless powerful 
enough to create concise, efficient planners for specific 
domains.  Their DISTILL planner maintains a family of 
domain specific planners which are incrementally built by 
analyzing sample plans.  These plans are transformed into 
programs that use the simple programming language in a 
manner that is biased towards efficient inclusion in an 
existing domain specific planner, then merged with such a 
planner.   

7. Here Be Dragons: Challenges in Applying 
Data Mining to Planning 

 
The problems of poor generalization, over-fitting function 
approximation, feature selection and speed of function 
approximation are not specific to data mining applications 
employed for planning.  However, there are several reasons 
why data mining may be unsuitable or difficult for 
planning due to the peculiarities of planning problems.   
 
When data mining is performed in an offline setting, the 
speed of function approximation and the data storage 
problems of data mining are mitigated to some degree.  
The function utilized by the planner will certainly be more 
compact than the data used to generate the function, and 
planner performance will not be penalized for the time 
spent to perform function approximation.  
 
When used in online settings, efficiency and predictability 
of the behavior of the planner is vital.  Operators are 
trained to expect certain behavior, and so “self-adapting” 
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planners that employ data mining must be built with 
caution. For planners employing data mining techniques 
online, the concerns of speed and memory are even more 
serious; the design of operational planners can be seriously 
impacted if data mining leads to significant slowdowns in 
the time spent planning.  Time and resource constraints 
may preclude expensive data mining operations even if 
future planner behavior may be improved.   
 
If opportunities to revise planner behavior are present, data 
mining can be employed to create the “next release”. Even 
in this setting care must be exercised.  If plans generated 
by users are destined for use by offline data mining, 
applications must be designed to capture these plans 
without impacting the user experience.  This can be done  
even for planners used in onboard control settings. 
 
There are more technical challenges as well.  Algorithms 
such as A* are prominently used in automated planning; 
this is because, when certain representational assumptions 
are made and A* is used with admissible heuristics, the 
first plan returned is the shortest (or otherwise optimal)  
plan.  However, to preserve this feature, data mining 
applications that are used to construct heuristics must 
return admissible heuristics or sacrifice the guarantee.  As 
we have seen, approaches such as pattern databases can 
preserve these guarantees, but this limits the types of data 
mining techniques that can be used. 
 
When employed for learning domain rules and heuristics, 
data mining must work with highly structured data (e.g. 
plans) and output highly structured functions (e.g. rules or 
mappings from rules to quality measures).  Again, while 
the papers referenced here show this is possible, highly 
structured data place special constraints on data mining 
that may preclude the use of some data mining techniques. 
 
Data mining can suffer from the problem of  “insufficient 
examples”.  Curiously, in many of the applications of data 
mining to planning, this problem does not arise or has been 
circumvented.   Nogood recording benefits from dead-ends 
in search, which is the common experience.  Data mining 
applied to local search has focused on leveraging data 
available in average search trajectories (e.g. plateau 
escaping macros, detours and shortcuts to improving 
solutions.)  When solved problems for a domain are 
needed, small planning problems provide such examples; 
there is no concrete evidence suggesting they do not 
generalize. 
 
The International Planning Competition is a forum in 
which automated planners are tested on common problems. 
(Interested readers should refer to the Journal of Artificial 
Intelligence Volume 24, dedicated to the 2004 
competition.)  Awards are given based on planner speed, 
planner coverage (i.e. number of problems and domains 

that they can solve) and solution quality. Given the 
prevalence of data mining techniques applied to planning, 
it is worth pointing out that SG-Plan [ChWa03] and SAT-
Plan [SeKa99] have employed some of the techniques we 
describe in this paper and performed well in the planning 
competition.  However, these planners only use a limited 
number of data mining techniques. Other competitors that 
have performed well have not employed such techniques: 
there is clearly more scope for data mining to improve 
planning in the future.  

8. Challenges for Planning and Opportunities 
for Data Mining 

In closing, we describe some opportunities for data mining 
to improve the quality of planning. 
 
First, we note that many of the techniques we describe 
above employ targeted generation of data that is mined 
using knowledge-intensive techniques to improve 
planning.  These techniques may be complemented by, or 
improved upon, using techniques applied to unstructured 
data.  For example, clustering techniques may improve the 
grouping of predicates used to generate pattern databases, 
and pattern recognition techniques may guide heuristics 
that trigger nogood learning or minimization only when it 
is expected to maximize expected benefit to a planner. 
 
A related opportunity concerns the opportunity presented 
by using the planner to generate more data for data mining.  
Most of the techniques described here, even those 
exploiting a planner to gather data, make no explicit effort 
to influence the dataset.  In an offline setting, the data 
mining system can simply run the planner again in order to 
generate more data if necessary to improve the planner 
even further.  This suggests that the data mining system try 
to limit the effort spent improving the planner by focusing 
on generating data where it will do the most good.  Doing 
so will require trading off exploration and exploitation, in a 
manner reminiscent of experiment generation and k-armed 
bandits problems. 
 
Next, we note that many NASA and industrial planning 
problems require validation of plans produced by AI 
planners.  This is usually because the declarative languages 
used by such planners are inadequate to capture the full 
domain description, or because modeling shortcuts are 
needed to enable automated planning.  Often validation is 
done through the use of process simulations.  Examples of 
such simulation methodologies include Discrete Event 
Simulations (DES), Testability Analysis, and Reliability 
models (e.g., Fault Trees.) A variety of software packages 
have been developed both within NASA and commercially 
based on these simulation methodologies. Commercial 
examples include: Arena, Extend, CORE, Satellite Toolkit 
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(StK); government lab (including NASA) developed 
simulators include Sapphire 7, Mission Simulation Facility 
[Pi04] and ROver Analysis Modeling and Simulation 
(ROAMS) [Ye99]. 
 
Finally, automated planning can incorporate such high 
fidelity simulation while generating plans, but the 
computational expense of such simulations often precludes 
doing so except in the coarsest possible way: validation of 
the complete plan after plan generation is complete.  Such 
loose integration is undesirable since many plans may be 
infeasible, and the high expense of such plan validation 
leads to slow planning.  Even when tight integration is 
possible, expensive validation steps will slow planning.  
Data mining can be used to improve the quality of planning 
in several ways.  First, the validator can be viewed as a 
function that can be approximated in order to speed up the 
planner.  In this case, data mining of the validator can 
produce an efficient, approximate function that can serve 
as a fast, first cut once automated planning is complete.  
Even more valuable would be an approach that can be used 
much earlier in the planning process in a manner similar to 
nogood learning; this approach can lead to early 
termination of planning.  Second, data mining can be of 
use in building heuristics that guide the planner towards 
feasible solutions or higher quality solutions.  
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