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Abstract— Driver Assistance Systems are the key technology to
improve traffic safety and lower the number of deadly accidents.
Direct communication between cars will further enhance this field
of driver safety. In the context of foresighted driving, Bayesian
Networks can be used to determine a traffic situation at the
current position of a car. Communicating this awareness for the
current time and position will help other traffic participants.
However, situations change dynamically and cars cannot trust
all the information provided by other cars over time. Reasoning
with this information is difficult as Bayesian Networks cannot
use spatial and temporal data in an appropriate way. This article
outlines the spatial and temporal problems in predictive driver as-
sistance and demonstrates how they can be solved by considering
spatial and temporal influences by applying weighting techniques.
The pre-processed information is utilized by a Bayesian Network
for further refinement. Thus, the proposed approach enables
the detection and correct prediction of traffic situations. The
approach is evaluated by predicting hazardous rain fields in a
car by means of information received from other cars.

I. INTRODUCTION

Inter-vehicle-communication offers new opportunities to the
world of cars. Especially active safety systems will greatly
benefit from car-2-car communication. Being aware of a
hazard situation, a car may notify other cars in advance [1].
Thus, cars having access to remote information are able to
foresee a hazardous situation and warn the driver accordingly
in time. In order to accomplish this task, the following three
steps are necessary:

• Detection of a local hazardous situation (i.e., at the
current position of the car) without interaction of the
driver, utilizing only widely deployed on-board sensor
systems.

• Exchanging corresponding information with other vehi-
cles by means of car-2-car communication techniques.

• Predicting remote hazardous situations along the route by
means of that received information.

Research concentrates so far on wireless information ex-
change between vehicles [1], and on detecting hazardous
situations with on-board sensor systems [2]. For the latter,
one of the main challenges is to deal with temporal aspects of
sensor information and uncertainty. We showed in our previous
work [2] that in many cases Dynamic Bayesian Networks
(DBN) are a suitable means to infer both the current driving
situation and its causes from standard on-board sensor systems.

However, in order to effectively inform the driver about the
situation to come, the future driving situation of a vehicle
has to be forecasted. Consolidating a variety of observations
from different vehicles at different locations can thereby
significantly improve this forecast. This consolidation process
raises the following additional research issues:

• By sharing individual knowledge, vehicles get access to
sensor information from other cars. However, different
and potentially conflicting observations of those vehicles
have to be fused to a consistent model of the individual,
future driving situation.

• The environmental conditions and, thus, the individual
observations are subject to a continuous change. There-
fore, temporal aspects of situations and observations have
to be taken into account.

• In particular critical weather conditions such as areas of
heavy rain or fog have a spatial extension. Consequently,
the critical conditions are not limited to the reported
locations. Thus, spatial influences and dependencies have
to be considered.

A stable prediction of hazards using observations provided
by other vehicles requires the consideration of all available
evidences. These evidences have properties which distinguish
them by their relative position to each other (space) and
their timeliness. In a nutshell: It makes a difference for a
prediction whether an evidence is old and far away or new
and near. Bayesian Networks (BN) cannot handle those spatial
interdependencies properly. They can only reason upon given
evidence. They cannot distinguish if evidence comes from
north or south of a current position without introducing two
separate nodes for those positions. They also cannot handle
evidences grouped in the west of a position or following
a route from west to east without introducing new nodes.
However, inserting a large amount of additional nodes worsens
the accuracy.

Relative spatial information concerning evidences of one
kind is a key issue for a precise recognition of hazard
situations. However, information related to different kinds of
hazard situations influence each other as well. For example,
with a rain evidence the probability of hydroplaning rises, too.
BNs are predestined to deal with these causal dependencies.
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In this article we present a fast and accurate method taking
into account the specific spatial and temporal properties of
distributed sensor information. All the fused evidences are fed
into a BN again. Consequently, the accuracy of the resulting
prediction increases.

After presenting related work in Section II, we will present
a new solution for spatio-temporal information fusion, dis-
cussing various problems and their solution in detail (Section
III). Section IV shows our experimental results and finally we
summarize our conclusions in Section V.

II. RELATED WORK AND PRELIMIARIES

Research in inter-vehicle-communication became very ac-
tive recently. This is a result of national and international
projects [3], [4], [5], [6], focusing on enhancing driver safety
and traffic throughput. However, so far research focused on
communication issues and not on driver-assistance.

Concerning the forecast of a situation, similar work was
published by Kennet et al [7], who were able to predict weather
conditions in a sea bay using Bayesian techniques. But this
scenario was not mobile and the forecast used almost complete
data to predict statically for one day at one place, i.e., an
influence of an evidence is not moving and can be modeled in
a BN as a single node. This node represents a position in the
bay. However, in the application domain of vehicles, evidence
is randomly distributed in the plain and may be incomplete
and sparse.

Kriging is a commonly used technique to estimate spatially
dependent aspects. It is capable of using spatially accumulated
data as well as sparse data [8]. This is accomplished by
clustering and weighting the inputs and interpreting occurring
patterns in the data with an established variogram. In fact, the
approach presented in this article is similar to kriging. How-
ever, the specific characteristics of foresighted vehicle safety
impose additional requirements. First, temporal dependencies
have to be considered, too, because a prediction of rain heavily
depends on timeliness. In addition, probability and trust of
different evidences must be regarded. Clustering is not used
in our approach because traffic situations may change rapidly
and do not behave as the data kriging was originally intended
for (mining purposes). Finally, the presented approach accom-
plishes a fast forecast for a lot of different situations along the
route while the car is driving. Comprehensive calculations for
all possible traffic situations and for every bit of the route are
not possible.

Bearing that in mind, we adapted our prior work from [2],
[9] which continued to investigate aspects from [1]. Detection
of a hazardous situation is possible by using BNs which only
use sensor data or data derived from them. Thereby we do
not rely on Dynamic Bayesian Networks (DBN), because of
their need for memory and calculation time. In those networks,
the time series expansion of sensor data is encoded in the
structure itself. Building that structure and rebuilding it in each
time slice is costly. For this reason, we introduce an additional
type of BN nodes, which does not handle the direct output
of sensors but the change underlying the data, i.e., the first

derivation of a time series. Figure 1 delineates the structure of
the BN, comprising two nodes for speed: one for the current
speed and one for the change of speed. As a consequence, the
propagation of temporal influences is much faster compared to
DBN. On top, exploiting higher derivations of the time-series
increases accuracy.

Fig. 1. The intern net for fog detection. Input nodes: current speed, change
of speed, front fog light, and rear fog light.

For each kind of hazard which can be detected, there exists
a so called internal BN, which uses only local data from a
car’s own on-board sensor systems. This information can be
transmitted to other cars. In order to derive a stable picture of
the situation to come, it is necessary to process and consolidate
all received evidences. However, it is not sufficient to only
compute the mean of all evidences. Instead, interdependencies
of observations and evidences have to be considered. Further,
both the spatial position of evidences relative to each other
and the temporal decay of the timeliness of an information are
important issues. BNs lack the possibility of modeling spatial
dependencies. If there is an evidence for rain in one place, it
is more likely to rain in a nearby location, i.e., the probability
of rain increases for a particular location, if there are rain
evidences close to that location. The same evidence can be far
away and in that case the influence must be small. This form
of influence is mutual: If one place is adjacent to another it is
influencing this place, the same way as it is influenced by it.

In addition, according to the Bayes theory a BN must
be acyclic (a directed acyclic graph – DAG). That property
contradicts real requirements as mentioned above. Influences
in a DAG cannot be mutual, i.e., cyclic (see Figure 2). Thus,
it is only possible to model influences from one position to
another but not vice versa.

Even with probabilistic paradigms which do not require
directionality such as Markov models, such spatial dependen-
cies cannot be modeled appropriately. Directionality makes it
difficult to predict whether or not there is rain at a certain
location. It makes a difference if rain observations are only
reported in the north-west of a vehicle’s location, or both in
the west and east of it. In the first case, a rain area may be
still far away. In the latter case, it is more likely that the rain
area has a greater dimension and is overlaying the vehicle’s
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Fig. 2. Imposible spatial interconnection.

route. Thus, those situations have to be distinguished.
Dividing the area around the desired point of prediction

into sectors and dividing these sectors in different ranges
will provoke loss of reality and the resulting BN would
be huge. This is due to the fact that for each of those
areas there must be a node in the BN. If an evidence is
observed for an area, evidence for the corresponding node
would be set. This spatial unfolding would be required for each
kind of hazardous situations, such as rain, fog, hydroplaning,
blockade, or reduced friction. In addition, those nodes need to
be densely interconnected. Figure 3 shows the first step of a
spatial unfolding.

Fig. 3. Spatial unfolding for one kind of information without radial
interconnections.

The resulting network cannot be interconnected in all de-
sired directions. It may be convenient to link only dependen-
cies from outer nodes to the center, but again, cycles would not
be possible. Therefore, the influences between some evidences
is lost, depending on their relative location.

In addition, most of the nodes would remain without evi-
dence or evidences would fall more than once into the same
area. Therefore, only one of the evidences could be put in one
node. However, the probability and the plausibility for an evi-
dence should increase if there are many evidences supporting
each other. On the other hand, if evidences contradict each
other, diminishing those properties would be necessary.

The fact that only one evidence per node can be treated
leads to the problem that given information is not used.
In order to solve this problem for the temporal aspects of

evidences, usually DBN are used. These networks clone the
whole network in each time slice and then connect these clones
from one time slice to the next, realizing a temporal unfolding
(see Figure 4).

Fig. 4. Temporal unfolding for one node.

Together with the spatial unfolding, the temporal unfolding
leads to even bigger networks which are densely connected,
but have only few evidences. Thus, propagating the probabili-
ties within the BN depends on only very few evidences. As a
consequence, the result mainly depends on the already given
a-priori probabilities in most of the nodes.

III. NEW METHOD FOR SPATIO-TEMPORAL FUSION OF
VEHICLE SENSOR INFORMATION

To avoid the above mentioned problems of BNs in the
context of spatial and temporal sensor interpretation, we
propose a different concept. Still, this concept relies on the
local detection of hazards and critical driving conditions at
the car’s current location and time. Doing so, space- and
time-dependent characteristics are not required. Results are
shared with all vehicles within a certain area and saved
within the receiving vehicles. The received information is
interpolated depending on its spatial and temporal properties.
These interpolations are used to estimate the future driving
situations of the cars, i.e., whether or not a driver has to
be warned of hazards or critical environmental conditions. In
order to take the interdependencies of evidences into account,
the results of this interpolation are refined using so-called
external BNs. These external networks typically have the same
structure as the internal BNs that are used to derive the current
driving situation. The terminology of external BNs should
emphasis the fact that the consolidation of observations is done
with respect to a remote location.

It is possible to predict moving hazards noticed and an-
nounced by moving vehicles with evidences, although we do
not know in advance in what quantity those evidences exist.

A. Local Detection of Hazards

BNs are used to detect hazard areas such as rain at the
current position at the present time. This prediction does not
require spatial information. Every car has its own sensors
whose outputs can be used to feed a small, intern BN. Only
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direct observations of the current situation are processed.
Therefore, the spatial problems of BNs do not affect this
calculation.

For each critical driving condition or hazardous event that
should be detected there exists one dedicated BN. The struc-
ture of those BNs is made up of one input node for each sensor
involved in the corresponding recognition, and exactly one out-
put node representing the hypothesis concerning the targeted
condition or event. The output node is directly linked with the
input nodes. In this way, evidences are not thinned out too
much over numerous layers of nodes. Although this structure
does not reflect a detailed view of real-world dependencies
between causes and effects, it is still a valid model, assuming
that casual dependencies can be automatically generated from
a large set of recorded real-world trace data.

As justified before, we avoid temporal unfolding in such a
network introducing special input nodes which do not use the
sensor data directly as input. Those nodes will use the change
of data input and therefore catch the temporal development of
a situation. So, after breaking from 100 km/h to 80 km/h, in
such a node we will not set “speed = 80” but “speed = -20”,
thus realizing the first derivative of the speed function. It is
also possible to use the second derivative to get an even more
accurate temporal model. As explained before, this is similar
to the concept set out in [9].

B. Sharing of Local Knowledge

In order to provide access to remote vehicle sensor in-
formation, local observations have to be communicated to
other vehicles using wireless communication links. As already
mentioned in Section II, there is a variety of research ac-
tivities in the field of vehicular ad-hoc networks. Note that
the prediction of the future driving conditions by means of
distributed vehicle sensor data is basically decoupled from the
specific communication technology used in the vehicles. The
latter is beyond the scope of this paper. However, the resulting
accuracy of the prediction depends on the both the specific
message content and the number of reported and received
evidences about specific observations.

Message Content: The impact of hazard events and crit-
ical road conditions and, therefore, the importance of related
information for other drivers is event-specific and differs to
a great extent. As a consequence, the type of the observed
hazard must be transmitted. Furthermore, a time stamp and
GPS coordinates must be included in order to calculate the
time which has passed (= temporal distance) and the distance
between the reported observation and the location it influences.
In addition to these basic properties, a detailed description of
the specific observation is necessary comprising the follow-
ing parameters: First, a quantification of the intensity of an
observed driving condition is necessary. This is in particular
important for critical weather conditions. Obviously, the metric
quantifying the intensity must be standardized. Rain could, for
example, be quantified by liter per hour and square-meter, or,
if sufficient, in discrete values such as none, light, medium,
or hard. Second, the probability of an observation must be

transmitted. Obviously it makes a difference whether a hazard
event has a probability of 100% or only 40%. In that context
we want to stress the difference between probability and
intensity. In a Bayesian node, the state for, e.g., temperature
= -20 can be most likely with 80%. Third, it is also important
for the inference to measure how the conclusion was reached.
It makes a difference whether the car concludes hard rain,
but is equipped only with an active sensor for wiper speed,
or it concludes the same by means of an additional moisture
sensor. Therefore, also a value that expresses the trust into a
conclusion must be transmitted. For simplicity, we calculate
the trust as follows: A BN with 4 input nodes of which only
3 have evidence would have a trust of 75%. Note, that this is
just a straightforward estimation of trust. The corresponding
trust value could be also derived using Dempster-Shafer theory
[11] instead of BNs, for instance. All these parameter values
can be derived from a BN. As mentioned, the type of the
hazard to be detected corresponds with a specific output node.
The probability corresponds with the state of the output node.
Finally, the trust into a result is the percentage of input nodes
that have evidence. Altogether, a message consists of:

• type: the type of hazard (e.g., rain, temperature, block-
ade),

• intensity: the amount which has been calculated,
• probability: the probability for this intensity in the

Bayesian node,
• trust: the plausibility of a conclusion,
• position: GPS coordinates,
• time: global unique time from GPS signal.

For the following considerations we assume that each message
contains all these informations.

Limited Bandwidth: The available bandwidth of the wire-
less communication channels is obviously limited. Therefore,
not all raw sensor information can be shared among all
vehicles within a certain area. In addition, sensor systems have
typical update rates in the order of milliseconds, making it
impossible to communicate every update event. Instead, only
conclusions about hazards or road conditions are transmitted.
As a consequence, also overall computing time is saved,
because conclusions from sensor data are only computed once
in a car and will not have to be computed in every car receiving
the raw sensor data. Furthermore, we cannot assume that our
application is the only one which uses the wireless capabilities
of the car. Instead, the wireless communication capabilities of
vehicles will serve as a basis for a great variety of different
applications. A further restriction of the amount of data which
is broadcasted is necessary for that reason, too. Assuming
an ad-hoc network with a non-optimal and non-collision free
medium access strategy such as IEEE802.11 wireless LAN
as suggested in [3], [4], [5], [6], the critical parameter is the
number of messages rather than the average message size.
Therefore we assume that each car continuously calculates the
above mentioned parameters (intensity, probability, trust) for
all types of hazards, but only send them to other vehicles if the
corresponding values change significantly. Hazard areas such
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as rain move and change their intensity and extension. Thus,
a transmission when the own values change is not enough.
All cars passing through such an area would indeed encounter
different circumstances as expected, but would not send this
new information as their own sensor data might not have
changed. Therefore, an information is also sent if the forecast
for a certain location differs from the actual local observation
when the vehicle reaches the reported location. This has the
effect that over time, newer information are broadcasted. Due
to the dynamic of situations, newer evidences obviously have
greater influence on a prediction as old evidences. Therefore,
they enable an implicit update strategy leading to a more
accurate prediction.

C. Storage and Retrieval of Messages

In our implementation, the spatially distributed data is
stored using a quadtree data structure. This data structure has
superior performance properties, as it can identify data by its
coordinates. A quadtree divides an area into four quadrants:
northwest, northeast, southeast, southwest. These quadrants
correspond to nodes of the quadtree. So, a quadtree is a four-
ary tree.

Fig. 5. A quadtree of an area with some data [12].

As Figure 5 shows, a node has only children if it is not
empty and not completely filled. But if it contains data in
a subarea, the node containing those data is divided into
quadrants again. As a consequence, only those children have
successors that have more than one item to store.

D. Situation Prediction 1: Weighting Evidence

The availability of remote evidences from other cars fi-
nally enables the effective individual in-vehicle prediction of
hazards and critical road conditions on the vehicles’ routes.
Therefore, the effects of spatial and temporal distance (Figure
6) have to be considered.

Evidences obviously have more influence if spatial or tem-
poral distance is low and vice versa, and less influence if
the evidence is old or far away. In addition, there might be
other parameters with similar influences on the prediction,
such as for example trust or plausibility. In general, the
desired behavior can be achieved by weighting an evidence
depending on multiple, related properties. Basically, the value
of the evidence is multiplied with different weighting factors,
summed up, and finally normalized by dividing this sum with
the sum of all weighting factors. Therefore, the weighted

Fig. 6. Spatial positions create different influences.

average value is dominated by those evidences with higher
influence:

weightedVal . =

#evid.∑
i=0

#factors∑
j=0

weightFactor i,j · evid .Val .i

#evid.∑
i=0

#factors∑
j=0

weightFactor i,j

.

There exists a weighting factor for all properties of the
evidence (Section III-B) which need to be weighted. Therefore,
there must be a weighting factor for time, distance, probability,
and trust. We want to emphasize that there is no special
difference in spatial or temporal distance. Both are represented
as influence factors such as probability or trust. Even though,
in our simulation those two factors differ in that the space
factor is calculated linearly and the time factor non-linearly
(see below).

Choosing the weighting factors and their calculation can be
done easily and individually as needed. The factors for proba-
bility and trust are the values themselves. The specific function
for the other factors is dependent on the characteristic dynamic
of a certain hazard type. Two of them have proven to be very
useful for the reason of their simplicity and effectiveness. First,
linear interpolation: This interpolation decreases the factor of
influence slowly but linearly from the current point of interest
(the position we want to know the value for) to the horizon
of the maximum influence range:

linearFactor = 1− distance
max .distance

.

On the other hand, a non-linear behavior might be interest-
ing as well, depending on the influence to be modeled. That
is, evidences from nearby locations have disproportionately
high influence compared to evidences rather far away. This is
accomplished with the reciprocal value of the distance:

asymptoticFactor =
1

distance
.

The curves of these two weighting factors are shown in
Figure 7.
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Fig. 7. Curves of the weighing factors.

Important for the weighting with these factors is to multiply
them with an additional factor to match the range of the
evidence value. As our evidences are within a range from 0
to 100 the weighting factors must be in that range as well.
So they are multiplied by 100. Without this measurement, the
weighting by values from 0 to 1 is not effective.

The following short example demonstrates the behavior of
the weighting process by using only one weighting factor
assuming two evidences: One with the intensity of 40 and
probability of 80% and the second evidence with the value
80, but only 40% probability. With linear weighting we obtain
53, 33. As intended, the value drifts towards 53, which is
nearer to 40 because 40 had the higher probability.

E. Situation Prediction 2: Inter-Hazard-Influence

Spatial and temporal characteristics of separated hazard
types or critical road conditions are considered by calculating
the weighted value for any type of hazard or condition at a
certain location. However, interdependencies of the various
types of hazard observations (such as rain, snow, hydroplaning,
temperature) are not considered so far. For example, rain and
hydroplaning can be detected using their evidences, but if a car
has only rain evidences, it has to presume a certain probability
for hydroplaning as well.

As the purified values resulting from the interpolation do
not contain direct spatio-temporal characteristics, we can feed
those weighted values again into a BN. This enables a selec-
tive cross-attribute refinement of the results already obtained.
The weighting process already accounts for the spatial and
temporal influences. As a consequence, the refinement can be
treated in a way very similar to the local hazard detection (see
Section III-A). Note that not all types of hazards have the
same magnitude of influence. For example, spatial influence
of rain evidences is typically larger than evidences of a street
blockade. Therefore, the specific weighting factors depend on
the specific type of hazard. Figure 8 delineates a spike through
the layers of evidences taking the corresponding value of each
layer for the related hazard type.

Fig. 8. Spike through the layers of hazards.

The values extracted from the layers are put again into an
external BN which uses only external information as input
(remember that the internal networks use only sensor data from
within the car). Figure 9 shows an exemplary external rain BN.
Note that this time the BN comprises two rain nodes. On the
one hand, the lower node is an input, where the interpolated
value for rain is applied. On the other hand, the upper node
is the output node, determining the refined result.

Fig. 9. Extern BN for rain prediction (two rain nodes for input and output).

The proposed three-step approach of interpolation and re-
finement enables both the integration of spatial and temporal
effects and the interdependencies of individual observation of
different hazard types and road conditions.

IV. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the proposed
approach, we simulated an area of approximately 3 km × 4
km in the center of Munich. In this area, 200 cars are equipped
with communication and sensing capabilities. These cars are
moving along the streets following the Krauss mobility model
[13]. Additionally, road conditions and hazards such as rain,
fog, or a street blockade (as result of an accident) can be
introduced into the simulated scenario. Those conditions affect
the on-board sensors of cars in a specified manner. The hazards
can be configured to move randomly, in a certain pattern, or
not at all.

The cars equipped with the proposed system can predict
a hazard situation in the course of the drive. The distance
between a car and a potential hazard has no influence on the
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prediction, as the prediction relies only on received remote
evidence and not on own sensor data.

Thereby the accuracy of the achieved prediction decreases
with decreasing availability of remote observations. This is
because the hazard area may move meanwhile the predicting
car approaches. In a worst case scenario a car may predict
the future road condition using only a few and rather old
evidences (of course, then with little trust and probability,
which is accomplished by the interpolation process). It should
be noted that the cooperative system as described can never
predict a critical situation that has not been encountered by any
means before. However, sharing new information with other
cars significantly improves the safety for following cars.

We evaluated the proposed three-step prediction by simu-
lating a variety of different scenarios. For example, we used a
moving rain field with sharp edges, which means that a sensor
would jump from a value of 0 to a value of 50 at the moment
the car enters that rain field. We also simulated scenarios with
seamless transitions where the sensors report values increasing
towards the center of the rain field, but with a slight and
random discrepancy (simulating white noise and imperfect
sensors). We also equipped cars with defective sensors that
deliver wrong information. Nevertheless, the prediction works
well, depending on the number of locally available evidences
in the predicting cars. This in turn depends on the number of
vehicles that pass and encounter a critical condition per time,
the communication range, and the available channel capacity.

Figure 10 shows the prediction ahead of a car. The smooth
line is the actual value for rain at the given position ahead.
While the car passes through the rain area it predicts the
rain values ahead on the road. The stepped line indicates the
prediction compared to the real value at the same position.
In this case we predicted the situation 20 seconds ahead of
the car. This forecast horizon is considered sufficient to warn
the driver appropriately in time. The shown values represent
the actual and the predicted values at a location 20 seconds
ahead of the car along its most probable route. While the car
is moving, the location of forecast also moves ahead.

Fig. 10. Prediction of the rain values far ahead of a car.

We see that the predictions are very close the real values.
The steps are due to a discretization of the rain values, as
the rain prediction only foresees discrete values such as none,
light, medium, or hard, which we consider sufficient for the
task of driver notification. These discrete values are encoded in
the simulation as scalar values 0, 30, 50 and 80. These numbers
represent sections of all possible outcomes. That is, 0 stands
for any value between 0 and 5. The other states represent
the intervals 5 – 35, 35 – 70 and 70 – 100, respectively. We
encoded rain as a value between 0 and 100, but a different
encoding is possible. To minimize the error produced by this
discretization we can introduce a bigger number of states with
smaller intervals. It is not considered an error, if the real value
at a position is 65, for instance, and the prediction equals 50,
as this is only a matter of discretization in that case.

In the following, we focus on real (not discretization) errors.
Due to the dynamic movement of rain fields, the prediction
may still rely on comparable, old evidences. Therefore, it
differs from the real value by at least one state. But as the
rain field moves slowly and there are enough cars to update
the position frequently, these changes are noted. In that way
the cars are feeding the weighted interpolation for the external
BN with newer evidences. Those evidences will have more
influence in the prediction as the old evidences.

In a different set of scenarios the number of sensors installed
in a car was reduced. Thus, the installed internal BNs could
not use most of their input nodes, which led to less trust
in the observation. In such scenarios the accuracy of the
prediction did not decrease significantly. The corresponding
graph is almost equal to that of Figure 10. This can be
explained by the fact that the trust value is taken into account
as weighting factor for the weighted interpolation. Vehicles
which do no have all sensors installed put a low trust in
their own findings. Therefore, evidences from vehicles with
many sensors and therefore higher trust in their observations
are given more weight in the interpolation. Although if there
are only few evidences in the internal network, the network
would detect hazards with an intensity based on the sensor
data available. Only accuracy will degenerate depending on the
missing sensors. As long as there exists at least one evidence,
the prediction will work. This can be explained by the direct
feedback of evidences. In the proposed network, the input
nodes are directly linked to the targeted output node. Thus,
already one evidence influences the outcome.

In another set of scenarios we removed all internal networks
for hydroplaning detection. With this step, no hydroplaning
evidences where shared among the vehicles. Nevertheless, the
cars predict an hydroplaning hazard based on the other kind
of hazards for which evidences are given, showing the benefit
of external BN. Even if there are no direct evidences for
a situation, rain evidences, for example, are influencing the
hydroplaning probability and intensity.

As mentioned before we could deteriorate the prediction
by moving the hazards faster and providing less or false
evidences. But with additional parameters this could be com-
pensated. The moving direction of a hazard could be modeled
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as parameter and take influence in a prediction as well.
We were able to adjust parameters such as the maximum
validity of an evidence or its range of influence to enhance
the prediction in a given set of scenarios. It seems possible
that these parameters could be adjusted automatically and
dynamically during a simulation (and in practical use).

In general, faulty sensors or faulty information introduced
by attackers decreased the accuracy of the forecast most
drastically. Basically, there exist two classes of false detection.
First, the presence of critical road condition is not observed.
Second, a critical road condition is detected although no
such situation exists. A vehicle would, for example, forecast
a rain field based on the remote evidences of other cars.
But upon arriving this vehicle would not detect any rain,
because of a faulty rain sensor. Thus, the car interprets this
circumstance as if the rain had stopped, and transmits this (in
this situation) false information. If now the car puts a high trust
in this, the prediction of the other traffic participants would
be influenced negatively. The same occurs with attacks, where
an attacker consciously transmits false information. However,
this kind of misinformation can also be compensated due to
the cooperative characteristic of the overall system. Other cars
will again detect the difference in prediction and received
evidence and, therefore, correct the information. Note that we
assume that the majority of participating vehicles have neither
faulty sensors nor are they an attacker to the system. Also,
the influence of misinformation can be reduced if a certificate-
based reputation system is used. Doing so could influence the
system’s internal trust (plausibility) in an evidence received
from other cars by adjusting the transmitted value according
to the reputation of the originating node.

V. CONCLUSION

The cooperative sharing of individual probe vehicle sensor
information (probe data) among vehicles enables access to
remote sensor information and, therefore, enables effective
foresighted driving. Thereby, one of the main challenges is
the consolidation of this spatially and temporally distributed
vehicle sensor information. Although BNs perform poorly
using spatial information and cannot handle sparse temporal
information in a densely connected network, they can be used
by converting the spatial and temporal characteristics into the
evidences itself. In particular, spatial and temporal effects can
be taken into account using a multi-dimensional weighted
interpolation. We therefore proposed a three-step approach.
First, the current situation at the current vehicle location is
detected using BNs to handle the inherent uncertainty. Critical
observations are transmitted to other cars in the affected
area. Second, a forecast concerning the road conditions on
the vehicles’ routes is accomplished by consolidating the
available remote sensor information from other vehicles. In
order to gain knowledge from locations on the route where no
observations are available, the spatial and temporal influence
of certain observations, as well as its trust and probability
are interpolated. Third, the calculated values are fed into
a BN again to refine the conclusions, taking into account

the interdependencies between different hazard events and
observations.

We showed in a variety of simulated set of scenarios that
the resulting prediction mirrors the simulated conditions very
well. Thereby, the accuracy of the prediction is dependent
on the number of available observations, their accuracy, and
trust. However, even with few equipped vehicles and available
sensor systems the approach performed well in most of the
cases. Using additional information, for example from third
party remote services such as weather forecasts, may further
increase the accuracy.
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