

Abstract—In a distributed interactive walkthrough system,
there are two major bottlenecks which cause performance
degradation. One is the server-side workload in the client-server
architecture; the other is the network transmission delay. In this
paper, we present a knowledge-based data management scheme
which takes consideration of both internal (memory) and
external (disk) data storage management to ease server-side
workload and reduce network transmissions. Our system first
analyzes users’ logs to discover the spatial and temporal
semantic patterns in the virtual environment. Using these
patterns, we can determine the proper data layout on disk, and
better improve our caching mechanism. Experimental results
show good prediction rates and achieve improvements in overall
system performance.

I. INTRODUCTION

IRTUAL Reality plays an important role in modern
three-dimensional graphics domain. Based on this

attractive technology, many applications provide a more
pleasing interaction between users and computers. For
example, people can admire virtual exhibits in Virtual
Museum without visiting the real museum; pilots are trained in
simulated aircrafts instead of real planes. But unlike
traditional text and two-dimensional images, a
three-dimensional scene requires more resources. This causes
problems that do not arise in traditional applications.

Usually, Virtual Reality is modeled as a walkthrough
system. In such a system, users control their avatars to explore
the virtual world. Walkthrough systems are often built using a
client-server architecture because of portability. Under this
architecture, the virtual environment data are stored in the
server’s storage base. When client makes a connection to the
server, the server sends required data back to the client. But as
the complexity of the virtual environment grows, the amount
of data becomes very large. As a result, it becomes infeasible
to transmit the whole-world geometrics to the client. Hence, a
scheme that sends only the data needed in current frame is
exploited to reduce the frame construction time [1, 9, 16]. But
once the data resides only on the server, the client has to
request from the server every time the user moves. To prevent
the delay of network, a good prefetching technique should be
employed.

Hsing-Jen Chen is with Department of Computer Science and
Information Engineering, National Chung Cheng University, Chiayi, Taiwan
621, Republic of China (corresponding author: +886-5-272-0411 ext 23101;
fax: +886-5-272-0859; e-mail: chj94@cs.ccu.edu.tw).

Damon Shing-Min Liu is with Department of Computer Science and
Information Engineering, National Chung Cheng University, Chiayi, Taiwan
621, Republic of China. (e-mail:damon@cs.ccu.edu.tw).

Also, how data are organized on server-side is another
important task which should be concerned. In a client-server
architecture, one or more clients make connections with the
server simultaneously. The server has to handle all requests
from the clients and perform all necessary I/O to read the
requested data. Hence, an efficient technique to speed up I/O
access is crucial to the system.

In this paper, we present a data management scheme which
takes consideration of both spatial and temporal coherence.
We utilize previous users’ navigational logs to discover
spatial and temporal semantic patterns of the virtual
environment in the walkthrough system. Our system applies to
both internal and external data management. On the
server-side, we determine the arrangement of data on disk
storage according to the discovered semantic patterns. On the
client-side, the patterns are exploited in buffer replacement.
Our method achieves good prediction quality in buffer
management, and makes a performance improvement to the
system in the conducted experiments.

The rest of the paper is organized as follows: Section 2
surveys previous related research works. Section 3 describes
how we construct the Correlation Array, which we stores the
relation knowledge. Section 4 discusses the influence of disk
layout. The caching scheme is formulated in Section 5.
Section 6 shows the results of our experiments, and Section 7
concludes this paper.

II. RELATED WORK

This section addresses issues caused in walkthrough
systems and discusses approaches proposed in the literature.

Distributed walkthrough systems are designed to provide
remote users to enjoy the immersion in virtual environments.
However, disturbance due to latency of network diminishes
the population of this application. Several approaches, such as
SIMNET [4] and VLNET [6], are proposed to resolve this
problem by replicating the whole virtual environments to the
client side. But these approaches resulted in long setup time.
Other works suggest on-demand transmission [1, 9, 16]. This
design employs partial replication. The server only transmits
necessary data to the client at setup time. After initial setup,
the client requests the server to send other data every time it
takes a movement. Although only part of data is transmitted, it
still needs a good prefetching and caching mechanism to
provide users smooth walkthroughs.

There are two major approaches of prefetching and caching
mechanism. One is LOD (Levels of Detail) based approaches.
LOD-based methods [12, 14, 15] regard a virtual environment

An Efficient Data Management Scheme Based on Spatial and
Temporal Characteristics in Virtual Environments

Hsing-Jen Chen and Damon Shing-Min Liu

V

269

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

as a collection of 3D objects. Each object has one or more
representations, such as several different levels of LOD
models, or image-based imposters. The server’s task is to
dynamically choose one representation which would add most
contribution to the scene currently rendered at the client’s
display and transmit it to the client. A representation with
higher contribution may add more fidelity to the scene, but it
also takes more time to transmit. A benefit function is defined
to balance the contribution and the cost based on current
configuration to choose one representation with most profit.

The other studies are based on spatial distance [3, 5, 16].
These systems design their prefetching strategy or cache
replacement policy based on spatial relationship. They assume
that near objects are more likely to be demanded by the client.
They divide the virtual environments into small cells.
According to which cell the user’s position belongs to, the
system prefetches (or keeps caches of) the neighboring cells [3,
16].

In addition to previous works that exploit only spatial
relationship, Park et al. [7] proposes their approach which
also takes users’ behavior into account. Their method is based
on three parts: user’s navigational behavior, object popularity,
and the spatial relationship. Combining the three factors, they
apply the prefetching and caching policy to users according to
each user’s personal interests. Their work is similar to ours.
However, our approach exploits users’ behavior to generate
the spatial and temporal semantics automatically.

Most of the works consider the problem of internal storage
management, but only a few discuss the efficiency of external
object data storage. Shou et al. states the influence of I/O
bottleneck upon overall system performance [10]. They
propose to optimize I/O performance by incorporating with a
complementary search algorithm. The algorithm reduces I/O
access by performing I/O only for those have not been in main
memory. But they did not discuss the arrangement of objects
on disk. The proposed I/O reduction technique is also
employed in our system.

III. CORRELATION ARRAY

A virtual environment in a walkthrough system consists of
numerous numbers of object geometries. The problem, from
our aspect, is to design a data management scheme that can
efficiently reduce the server overhead and network
transmission delays.

In previous designs [3, 16], the relationships of objects
have to be assigned manually and only spatial relationships
are employed. In our system, we utilize existing user logs to
automatically discover spatial and temporal relationships
between objects. The user logs consist of users’ position
coordinates and motions information. Analyzing these logs
can help to understand user’s navigational preferences and
objects’ relationships both in space and in time.

Knowing which objects are most related is important in
deciding the arrangement of objects and caching policy. In
this section, we explain how we gain and maintain such
knowledge. We analyze the recorded user logs, and construct
a data structure, Correlation Array. This array reveals the

relationships between objects. With this array, we have the
capability to know which set of objects are most related.
Given a certain object, we can also determine those objects
with most relevance.

A. The Walkthrough System

Before describing our method, we define the notions of the
walkthrough system here.

In a virtual environment, users can see objects within some
distance when they explore the virtual environment. The
distance is called Visibility Limit. When the user is at some
position, the objects within that distance form a view. While
the user exploring the virtual environment, we can observe a
sequence of views. The sequence of views, from the view of
the user’s starting position, to the location where the user exits,
is a user’s navigational path. As shown in Figure 1. Formally,
we define a view as v = (o1,o2, …,on), where oi is an object in
virtual world. And the path is an ordered sequence of views p
= v1v2…vl, where l is the length of the path.

B. Correlation Pairs

Correlation pair is a topic in data mining research domain [2,
13]. The problem can be formulated as follows: Given a
user-specified threshold θ and a market database with N items
and T transactions, the aim is to find all pairs of items with
correlation higher than minimum threshold θ. The correlation
is defined as the rate that two items appear together in the
same transaction. The more two items appear together, the
higher their correlation will be. There are some researches
related to this problem, including how to find the pairs
efficiently [13]. But they are beyond our discussion. Here we
only show how we translate the correlation pair problem to
our problem.

For each pre-recorded user’s path, or, a sequence of views,
we divided it into a set of single views, where each view
contains a set of objects. After dividing all the paths we record,
we get a set of views. Then, we treat the views as transactions
in market database mining and feed them into an existing
method that finds correlation pairs. The method returns pairs
of items, or in our case, objects.

Figure 1. An example of a user’s path. The circle is Visibility Limit. Any
object within the circle is inside the user’s view. The observed path is
{(2,3)(2,4)(4)(9,10)(8,12,13)(8,11)(8,11,12)}.

270

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

C. Constructing a Correlation Array

From the above discussions, we have pairs of objects with
correlations higher than θ. These correlation pairs are found
because they often appear together within a view. They have
several important properties: First, any two objects of a
correlation pair is geometrically close to each other. Second,
the frequency of any pair appears together is higher than the
threshold. Using these pairs, we need to construct a
correlation array such that any neighboring objects in the array
have a high correlation.

We formalize the problem as follows: Given a set of
correlation pairs C, the output array should minimize

∑
∈Cji

jidistjicor
),(

),(*),(

, where cor(i, j) is correlation between i and j, dist(i ,j) is
distance of i and j in the output array.

We use a greedy algorithm to construct the correlation array.
The main idea is to put objects with high correlation as close
to each other as possible. Details of this algorithm are
described in Algorithm 1.

Algorithm 1 Form the Correlation Array

Input: the Correlation pair set C

Output: the Correlation Array CA

1: initialize ArraySet = {};

2: while C is not empty

3: choose pair p with maximum correlation from C;

4: if two objects of p are found in different arrays in

ArraySet

5: join the two arrays

6: if only one object is found in ArraySet

7: join the pair with the found array in ArraySet;

8: if no object is found in ArraySet

9: generate an array of pair p and add it to ArraySet

10: remove p from C;

11: end of while

12: CA = concatenate all array in ArraySet;

13: return CA;

Note that in Algorithm 1 we use several array operations.
Below we define these operations.

1. concat(A, B): The concatenation of two arrays is defined
as concat(A, B) = C, where C is an array that expands A
with B. For example, concat([abc], [de]) = [abcde]. For
convenience, we denote it as concat(A, B) = AB.

2. A : The reversion of A. That is,][][dcbaabcd = .

3. A
aI : The index of object a in array A.

4. cost(A, p): A is an array, p is a pair, let p=(a,b), define
that cost(A, p) = || A

b
A
a II − .

5. join(A, B, p): A and B are both arrays, p is a pair, this
operation returns an array Jd ∈ that minimizes cost(d,
p), where },,,,,,,{ BAABABBAABBABAABJ = .

The join operation forms a new array from two existing
arrays. The array here is a sequence of objects. We only care
about the relation between objects within an array. The
absolute position of an object does not matter. Hence, when
joining two arrays, we should consider all the possibilities and
choose the one with minimum cost. Some of the resulting
arrays are equal in our context. Thus, they can be reduced to

},,,{ BABABAABJ = .

The constructed Correlation Array contains valuable
information about relations between objects. We utilize this
information in our disk layout and cache management.

IV. DISK LAYOUT

In a many-to-one architecture, the server which carries all
the geometry data has to perform the I/O requests for many
clients. It could be a bottleneck if numerous clients explore in
the virtual environment at the same time. Therefore, a
technique to speed up I/O access is essential for the overall
performance.

A disk is usually considered as a linear model, which stores
data in a one-dimensional manner. That is, sequential accesses
are much faster than random ones [11]. However, many
applications such as walkthrough systems with strong spatial
coherence require multidimensional data structures to retain
the locality. Other works have shown that efficient
multidimensional data access relies on maintaining locality so
that “neighboring” objects in the multidimensional space are
stored in “neighboring” disk locations [8]. By constructing a
correlation array, the multidimensional locality has been
transformed into a one-dimensional form, which matches the
disk characteristic.

In our disk layout object arrangement, we simply place the
objects of the virtual environment on disk in the order of the
correlation array, such that objects with higher correlation are
arranged together. The relation-oriented organization
efficiently reduces the distance the disk reading head has to
move for a single request, and hence the server can complete
an I/O request faster.

V. THE PREFETCHING SCHEME

In Section 4, we described how we determine data
arrangement on disk according to correlation array. In this
section, we explain how we exploit this array in prefetching
scheme.

We integrate our prefetching with caching mechanism into
a predictive caching scheme. This scheme not only manages
the cache, but does prefetching for quicker response time.

The aim of a prefetching scheme is to fetch the objects
before the system actually demands them. A successful

271

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

prefetching scheme can serve the client a smooth walkthrough
without the latency of network. If objects are not in the client’s
memory when needed, a prefetching failure occurs. A
walkthrough system typically can handle this situation in two
ways. First, the system is stalled to wait for the needed objects
to be retrieved. Second, the system skips the object that is
absent in memory. Both of them are undesirable and cause
system performance degradation.

A. Client-server Architecture

In the client-server architecture, the geometric data of
objects are stored on the server side. When user navigates the
virtual environment, the client sends a request of objects to the
server once it reaches the threshold distance. The request
consists of the client’s current position and direction. The
server uses this information to calculate which objects are
inside the client’s view frustum and transfers those objects to
the client. See Figure 2. A fixed-size buffer is maintained by
the client to store the received data.

The server also keeps track of the client’s buffer. Before
sending object geometries, the server checks its record to
decide whether the data has been residing in the client’s buffer
or not. This process helps to avoid unnecessary network loads.
This technique is exploited in many existing implementations
[5, 10, 16].

B. Predictive Caching Mechanism

Our caching mechanism takes place when the server has
decided which objects are inside the client’s view frustum, see
Figure 3. The mechanism utilizes the constructed correlation

array and predicts the objects which the client may see in the
near future.

When server receives the client’s request, it employs a
culling algorithm to find the objects O which are within the
client’s view frustum. Assume that the size of O is k. Having
these objects, the server checks the correlation array CA and
finds the (ClientBufferSize – k) objects R those are most
related to O and sends them to the client for the replacement
of buffer. As shown in Algorithm 2.

Algorithm 2 Finding Objects to Be Prefetched

Input: a Correlation Array CA, the object set within the
client’s view frustum O, the client’s buffer size N

Output: the object set R to be prefetched

1: initialize w = N - |O|; R = {}; j = 1;

2: while w > 0

3: for each object t ∈O

4: find object Nj(t) that is the jth nearest object of t in CA;

5: if object Nj(t) is not in O or R;

6: if(w == 0)

7: return R;

8: add Nj(t) to R;

9: w--;

10: j++;

11: end of while

12: return R;

Note that Nj(t) is defined as the jth closest object in the
correlation array.

Using correlation array, we can prefetch objects even when
they are not directly related. Consider the situation, object a
and object b have a high correlation, while object b and object
c have a high correlation too. When client sees object a within
user’s view frustum, the server not only prefetches object b
which is correlated to a, but prefetches object c if the client
has more space in the buffer. The hidden (indirect)
correlations are suitable for predicting the client’s future
requests.

VI. EXPERIMENTS

We evaluated our approach on a walkthrough system of a
power plant scene. The power plant model is created by
Walkthrough Laboratory of Computer Science Department of
University of North Carolina. The client-server architecture of
walkthrough system is implemented in Java and the objects
are stored in VRML format. The entire scene consists of
11949 objects and the storage size of objects is 335 MB. All
objects data are stored in the server’s hard disk. The client
uses a VRML browser to navigate the virtual world and
retrieve objects from the server via network. A snapshot of the
system is given in Figure 4.

Figure 2. Mechanism of our client-server architecture.

Figure 3. Mechanism of our client-server architecture with prefetching.

272

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Figure 4. A snapshot of our walkthrough system.

We first evaluated the performance of disk layout. To
measure the performance, we made two assumptions for
simplicity. First, each object occupies one disk track. Second,
moving disk head from one track to its neighboring track costs
one seek distance. The assumptions simplify the complicated
disk model which has many low-level details. Based on the
assumptions, we can measure the performance of a disk layout
by comparing their seek distances. A longer seek distance
implies more time required to move the reading head of disk to
the next demanded data, and hence takes more time for the
server to accomplish the I/O access.

We compared the disk layout before and after our
arrangement. The test dataset is 410 user logs which are
generated by randomly anonymous users. For easy
comparison, we sum the seek distances in the 410 experiments.
As shown in Figure 5, the arrangement significantly reduces
the seek distance. This is not surprising as the disk layout
before our arrangement is randomly distributed. However, our
correlation-based layout coheres objects according to their
relevancy.

To compare the performance of different designs of
caching mechanism, we define a walkthrough quality measure
Miss Ratio - the number of objects those are absent in the
client’s memory when they should be rendered, divided by the
number of all objects inside the client’s view frustum. Miss
ratio can be considered as a fidelity measurement of a virtual

environment. Since a high miss ratio implies more objects are
missing during the navigation.

We compared our caching mechanism to a simple LRU
(Least Recently Used) strategy. LRU always keeps objects
those are accessed recently, and deletes the one which has not
been accessed for the longest time. Due to LRU’s principle
which takes advantage of temporal coherence, it achieves
good prediction quality.

Figure 6 shows the result of our experiment. We tested
LRU and our method with different sizes of buffer. In all the
experiments, our method has lower miss ratio than LRU. As
the buffer size decreases, miss ratio of LRU keeps increasing,
while our method remains constant.

Figure 7 shows another result of our experiments. We tested
the two approaches with different lengths of paths. In all
experiments, our method has lower miss ratios than LRU. The
average miss ratio of LRU is 0.245, while our method is 0.105.
In the experiment of path with 100 steps, the miss ratio of
LRU is even four times that of our method.

It should be noted that at the initialization of a walkthrough,
the client has to request all objects inside the avatar’s initial
view frustum. This is the reason that the miss ratios of both
methods are high in paths with short length. After the
setup-time transmission, our method remains low miss ratio
and hence provides the client a smooth walkthrough.

�

��

���

���

���

�
�
�
�
��
��
�	

�
�
��

��
��
�

�

����	�
���	

����	�
���
���	�
		
�������

Figure 5. Performance comparison before and after our arrangement.

�

���

���

���

���

���

�� �� �� �� �� �� ��

�	

��
����

�
��
��
�
�
��
�

���

���

Figure 6. Caching performance comparison under different buffer size.

�

����

���

����

���

����

���

����

���

����

�� �� �� �� �� �� 	�
� �� ���

�
�����������������

�
��
��
�
�
��
�

���

���

Figure 7. Caching performance comparison under different lengths of
paths.

273

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

VII. CONCLUSION

We have described a client-server based data management
scheme utilizing prior knowledge to efficiently ease server
workload and speed up the client response time. This method
first constructs a correlation array to maintain the correlations
between objects. According the correlation array, we
determine the placement of data on disk. When handling
object requests from the interactive client, the server exploits
this array to get the objects which are highly correlated to
those inside the client’s view frustum for predictive caching.
The experiments show that this technique improves our
walkthrough system performance.

The work is still in progress. We plan to extend the
utilization of the correlation array to improve the walkthrough
system in other different aspects.

REFERENCES

[1] M. Capps, “The QUICK framework for task-specific asset
prioritization in distributed virtual environments,” Proceedings of
IEEE Virtual Reality 2000, 2000, pp. 143-150.

[2] S.K. Kachigan, Multivariate Statistical Analysis: A Conceptual
Introduction. Radius Press, 1991.

[3] V. Koltun, Y. Chrysanthou, and D. Cohen-Or, “Hardware-accelerated
from-region visibility using a dual ray space,” EGWR01: 12th
Eurographics Workshop on Rendering, June, 2001, pp. 204-214.

[4] D. Miller and J. Thorpe, “SIMNET: the advent of simulator
networking,” Proceedings of IEEE, vol.83, 1995, pp. 1114-1123.

[5] C. Ng, C. Nguyen, D. Tran, T. Tan, and S. Yeow, “Analyzing
pre-fetching in large-scale visual simulation,” Computer Graphics
International 2005, 2005, pp. 100-107.

[6] I. Pandzic, T. Capin, E. Lee, N. Thalmann, and D. Thalmann, “A
Flexible architecture for virtual humans in networked collaborative
virtual environments,” Proceedings of Eurographics’97, 1997, pp.
177-188.

[7] S. Park, D. Lee, M. Lim, and C. Yu, “Scalable data management using
user-based caching and prefetching in distributed virtual
environments,” Proceedings of the ACM Symposium on Virtual Reality
Software and Technology, 2001, pp. 121-126.

[8] S. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao, A. Ailamaki,
C. Faloutsos, and G. Ganger, “On multidimensional data and modern
disks,” Proceedings of the 4th USENIX Conference on File and
Storage Technology (FAST '05), 2005.

[9] D. Schmalstieg, and M. Gervautz, “Demand-driven geometry
transmission for distributed virtual environments,” Proceedings of
Eurographics, 1996, pp. 421-433.

[10] L. Shou, J. Chionh, Z. Huang, Y. Ruan, and K. Tan, “Walking through
a very large virtual environment in real-time,” Proceedings of the 27th
International Conference on Very Large Data Bases, 2001, pp.
401-410.

[11] E. Shriver, A. Merchant, and J. Wilkes, “An analytic behavior model
for disk drives with readahead caches and request reordering,” ACM
SIGMETRICS Performance Evaluation Review, Vol.26, Issue 1, 1998,
pp. 182-191.

[12] E. Teler, D. Lischinski, “Streaming of complex 3D scenes for remote
walkthroughs,” Computer Graphics Forum, 20(3), September, 2001,
pp. 17-25.

[13] H. Xiong, S. Shekhar, P.N. Tan, and V. Kumar, “Exploiting a
support-based upper bound of Pearson’s correlation coefficient for
efficiently identifying strongly correlated pairs,” ACM Special Interest

Group on Knowledge Discovery and Data Mining 2004, 2004, pp.
334-343.

[14] C. Zach, “Integration of geomorphing into level of detail management
for realtime rendering,” Proceedings of the 18th Spring Conference on
Computer Graphics, 2002, pp. 115-122.

[15] C. Zach, and K. Karner, “Prefetching Policies for Remote
Walkthroughs,” Technical report 2002-010, VRVis Research Center,
2002.

[16] Z. Zheng, and T. K.Y. Chan, “Optimized neighbour prefetch and cache
for client-server based walkthrough,” Proceedings of the 2003
International Conference on Cyberworlds, 2003, pp. 143-150.

274

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

