
Data Mining based Query Processing using Rough
Sets and Genetic Algorithms

Srinivasa K G and Jagadish M
Dept. of Computer Science

M S Ramaiah Institute of Technology
Bangalore 560 054

kgsrinivas@msrit.edu, jagadish88@gmail.com

Venugopal K R
Dept. of Computer Science

UVCE, Bangalore University
Bangalore 560 001

venugopalkr@gmail.com

L M Patnaik
Microprocessor Applications Laboratory

Indian Institute of Science
Bangalore, India

lalit@micro.iisc.ernet.in

Abstract—The optimization of queries is critical in database
management systems and the complexity involved in finding
optimal solutions has led to the development of heuristic ap-
proaches. Answering data mining query involves a random search
over large databases. Due to the enormity of the data set
involved, model simplification is necessary for quick answering
of data mining queries. In this paper, we propose a hybrid
model using rough sets and genetic algorithms for fast and
efficient query answering. Rough sets are used to classify and
summarize the datasets, whereas genetic algorithms are used for
answering association related queries and feedback for adaptive
classification. Here, we consider three types of queries, i.e.,
select, aggregate and classification based data mining queries.
Summary tables that are built using rough sets and analytical
model of attributes are used to speed up select queries. Mining
associations, building concept hierarchies and reinforcement of
reducts are achieved through genetic algorithms. The experiments
are conducted on three real-life data sets, which include KDD 99
Cup data, Forest Cover-type data and Iris data. The performance
of the proposed algorithm is analyzed for both execution time
and classification accuracy and the results obtained are good.

Index Terms—Rough Sets, Genetic Algorithms, Query Answer-
ing, Optimization.

I. INTRODUCTION

Major issues in data mining are the mining methodology and
user interaction issues. The mining methodology is concerned
with coverage of wide spectrum of data analysis and user inter-
action deals with interactive mining of knowledge at multiple
levels of abstraction with reference to the domain knowledge.
Just as relational query languages allow users to pose ad-
hoc queries, data mining query languages(DMQL) have been
developed to describe ad-hoc mining tasks by facilitating the
specification of the relevant knowledge, kinds of knowledge to
be mined and the condition and constraints to be enforced on
discovered patterns. Some of the commands used in knowledge
discovery to specify the kinds of knowledge to be mined
include (i) Generalized relations (ii) Characteristic rules (iii)
Discriminant rules (iv) Classification rules (v) Association
rules.

The syntax of DMQL is close to that of SQL and is
generally of the form,

use database <database_name>
{use hierarchy <hierarchy_name>
for <attribute>}

<rule_spec>
related to <attr_or_agg_list>
from <relation(s)>
[where <conditions>]
[order by <order list>]
{with [<kinds of>] threshold=<value>
[for <attribute(s)>]}

The optimization of queries is critical in aspect of database
management and the exponential complexity involved in find-
ing optimal solutions has led to the development of heuristic
approaches. Here, we experiment with the concepts of rough
sets and genetic algorithms in order to reduce the query
execution time with approximate reasoning of data, without
going into exact statistical measures. Related work can be
found in [6]–[12].

II. PROBLEM DEFINITION

Assume that the entire database is represented as a single
relational table R with attributes A1, A2, A3, . . . An. Let the
number of tuples in R be N with each tuple identifiable by a
tuple− id, where ti represents the ith tuple. The objective of
this paper is to efficiently answer the queries belonging to the
following three categories.

1) An information retrieval query whose purpose is to
search the tuples satisfying one or more conditions
usually specified by the WHERE clause

2) An aggregate query which involves the extraction of
statistical information that does not exist as it is, but
have to be derived from the existing attributes.

3) The third type of queries are those that exist for the
discovery of knowledge and patterns in an information
system. These involve mining characteristics, identifying
associations, dynamic classification defining hierarchies
and visualization among others.

Assumptions:
1) The proposed framework works in conjunction with the

existing information systems.
2) Only the queries belonging to the categories as men-

tioned above are executed by the proposed framework,
whereas, other types of queries are executed by the
existing information systems.

275

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

Rough Sets

MathematicalCompressed

Data Model of
Attributes

Alternate Data Catalog

Runtime
Database
Processor

System

Catalog

OLAP
using
GA

Mining

Query Complier /

Query Optimizer Transaction

Queries

Feedback

a

b

Dataset

Fig. 1. Architecture of the Proposed Model

3) The entire dataset is represented as a single relational
table.

III. ARCHITECTURE

A data mining query language that allows ad-hoc mining
is used for this purpose. The DMQL adopts SQL like syntax
so that it can be seamlessly integrated with relational query
language SQL.

Figure 1 shows the block diagram of the proposed frame
work {Upper Section(a)} in conjunction with the existing
information system{Lower Section(b)}. Here, a classification
based information rich alternate data catalog is built using
roughsets on the primary data source. Only the essential
features that best describe the database are stored in the
catalog in the form of summary tables. Genetic algorithm-
based approach is used for association and concept hierarchy
queries, in which the summarized models are used in order to
reduce the execution time. Genetic algorithms are also used as
feedback to improve the accuracy of classification. Only the
queries belonging to the three categories as mentioned in the
problem definition are answered by the proposed framework
(Figure 1, section (a)) , whereas, the remaining queries are
answered by the existing system (Figure 1, section (b)).

The proposed framework as shown in Figure 1, seeks to
speed up the processing time required to produce results for
all the three types of queries, where the results obtained from
the proposed system slightly differ from those obtained by
querying the actual database.

For the first type of query, the performance is measured by
the commonality between the results obtained. If T is the set
of tuple − ids that are retrieved for an actual query and T’
is the set obtained from the proposed framework; the quality
can be measured as, α = |T ∩ T ′|/|T | and β = |T − T ′|/|T |
where α represents the relevance factor and β signifies the
margin of error. For other types of queries, the deviation of
the obtained result from the actual one is quantifiable and can
be flexibly changed by the user. Mining related queries such
as finding association, characteristics, concepts hierarchies are
evaluated based on the percentage of data sets that are correctly
classified. The approach given here focuses on efficient results
with lower query-execution times.

A. Rough Sets

The rough set theory, despite being relatively simple, has
the capability to deal with imperfections, such as noise and
unknown values. Some of the concepts that are relevant to this
article are briefed here. Details can be referred from [1]–[3]
and [4].

1) Information System: An Information System is a set of
objects with attributes related to it.

An example of decision system is shown in Table 1, with
income being the decision attribute.

Table 1: An Example of Decision System
studies education works income

1 no good yes high
2 no good yes high
3 yes good yes none
4 no poor no low
5 no poor no medium

2) Indiscernibility: With every subset of attributes B ⊆ A
in the IS A = (U,A), an equivalence relation IND(B) called
an Indiscernibility Relation is associated: which is defined as
follows:

IND(B) = {(x, y) ∈ U2|a(x) = a(y)∀a ∈ B }

By definition, U/IND(B) is the set of all equivalence
classes in relation IND(B). From Table 1, it can be observed
that,

U/IND({studies, education,works}) = {{1, 2}, {3}, {4, 5}}

The objects that are grouped together cannot be discerned
between one another when using the selected set of attributes.
The equivalence class is formed with such a group. In Table 2,
it can be observed that, class E1 comes from objects 1 and 2,
class E2 from object 3, while class E3 comes from objects 4
and 5.

Table 2 : Equivalence classes
studies education works

E1 no good yes
E2 yes good yes
E3 no poor no

The equivalence classes induced by Indiscernibility relation
are known as granules. The partition induced by equivalence
relation can be used to build new subsets of the universe.

3) Reducts: Indiscernibility relation reduces the data by
identifying equivalence classes, using the available attributes.
Only one element of the equivalent class is needed to represent
the entire class. The minimal set of attributes minA are
taken from initial relation A, such that minA induces same
partition on the domain of DS as done by A. The above set of
attributes are called reducts. Reducts have been appropriately
characterized in [4] by discernibility matrices and discernibil-
ity functions. For a set of attributes B ⊆ A in A = (U , A),
the Discernibility Matrix MD(B) = mD(i, j)nxn 1 ≤ i, j ≤

276

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

n = |U/IND(B)|, where

mD(i, j) = {a ∈ B|a(Ei) �= a(Ej)}for i, j = 1, 2, . . . , n.

The entry mD(i, j) in the discernibility matrix is the set
of attributes from B that discern object classes Ei, Ej ∈
U/IND(B).

Table 3 : Discernibility Matrix
E1 E2 E3

E1 - studies education
works

E2 studies - studies
education

works
E3 education education -

works works
studies

The Discernibility Function f(B) of a set of attributes B ⊆
A is

f(B) =
∧

i,j∈{1...n}

∨
mD(Ei, Ej)

where n = |U/IND(B)|, and mD(Ei, Ej) is the dis-
junction taken over the set of boolean variables mD(i, j)
corresponding to the discernibility matrix element mD(i, j).
The relative discernibility function f ′(B) computes the min-
imal sets of attributes required to discern any equivalence
class from all the others. Similarly, the relative discernibility
function f ′(E,B) computes the minimal sets of attributes
required to discern a given class E from the others.

The following relative discernibility functions can be calcu-
lated:

f ’(E1, C) = studies ∧ (education ∨ works)
f’(E2, C) = studies ∧ (studies ∨ education ∨ works)
f’(E3, C) = (education ∨ works) ∧

(studies ∨ education ∨ works)

Dispensibility : An attribute a is said to be dispensable
or superfluous in B ⊆ A if IND(B) = IND(B − {a}),
otherwise the attribute is indispensable in B.

From Table 3, it can be noted that, IND(C) = IND(C −
{works}) = IND(C − {education}). The only dispensable
attribute is studies.

It is clear that all the attributes are not needed to determine
the classification of the dataset. Dispensable attributes should
be mapped to the attributes from which its value can be
derived. The attribute mapping table (Table 4) is constructed
so that the query containing any of these attributes can be
translated if needed, before execution. For example, the query

select ... from <table> where works="yes";

can be translated to

select ... from <table>
where education="good";

Table 4: A mapping of attributes to reducts
A R
A1 R1

A2 R1

A3 R1

A6 R2

A7 R2

The above methodology is described for discrete attributes,
whereas slight modifications are required to make the rough set
to work for continuous attributes. The difficulty of continuous-
type attributes arises due to the fact that they cannot be used
to partition the data set into classes based on their values since
the number of values they assume are nearly the same as the
number of tuples present in the dataset.
The usual approach taken during the cleaning process is to
quantize the values into classes and then treat the attributes
like a discrete valued function [13]. However in this case the
complexity is increased by the fact that the classifier needs
to produce efficient results for user-invoked SQL-like queries.
The approach taken here is predominantly analytical in nature
described in section V.

B. Information Streaks

1) TupleID: Assume that each of the tuples in the data
table is identified by a unique identifier called TupleID.
The primary attribute can also be used as unique identifier.
However, for the explanation we assume TupleID to be just an
integer identifying the position of the tuple. The objective of
finding information streaks(consecutive tuples) is to identify
TupleID-ranges such that tuples within the range belong
predominantly to an information class. Each range value
contains the summarized information about the attributes it
is built upon.

The pseudocode used to find the information streaks is
given in Algorithm 1. Its purpose is to find tuple-ranges of
size ≥ l in the entire dataset such that tuples in the range
can be considered to belong to an information class(E). In
order to avoid fragmentation, w is used as a weighing factor
which proportionally increases with the length of the current
streak. The sensitivity of classification can be considered by
constants β and β′; p denotes the number of samples taken
at each iteration and thus determines the resolution of the
classification.

It can be observed that the above algorithm resembles
clustering with proximity consideration. Clustering takes into
account all the classes and hence tuples are bound to be well
distributed in the entire data space. Accessing tuples belonging
to one cluster would mean many blocks of data being read,
causing time overhead. Information Streaks would overcome
this problem with some sacrifice being made to the accuracy
of classification. Figure 2 depicts a typical scenario. Left side
of Figure 2 shows the data block accesses by the clustering
algorithm. Consider the highlighted tuples belonging to a
particular information class. The clustering algorithm would

277

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Algorithm 1 Obtaining tuple-ranges
p : number of samples to be taken at each iteration
l : the minimum length for a tentative information range to
be accepted
α :the tolerance level for a sample belonging to a different
class to be included in the current streak
β, β′:constants to determine the nature of exponential aver-
aging
w: information to store the weight associated with each
class
Ek:information class to be included in the current streak
tl : store the tentative length of the streak
Ec : current information class
pA : a pseudo tuple fragment

s← 1
tl← 0
while s ≤ lastTupleID do

sample tuples with TupleID’s from s to s + p
produce pA whose attribute values are obtained from
averaging over the sample set
Classify pA based on rules deducted earlier(say Ek)
if tl = 0 then

wk ← β + (1− β)wk

Ec ← Ek

else if Ec �= Ek then
w ← (1− β)wk − β′

if wk > α then
Add the current sample range to the streak
tl← tl + p

else
if tl > l then

current streak to the range table with summarized
information

else
s← s + tl
tl← 0

end if
end if

end if
end while

retrieve all the tuples resulting in four block accesses, whereas
only one block is accessed using the information streaks.

IV. MODELING OF CONTINUOUS-TYPE DATA

Continuous-type attributes which were not included in the
reduct table are individually represented as mathematical func-
tions. This might seem like an unreasonable assumption to
make since real-world data scarcely lend themselves to be fit
into analytical deductions. However, it is a feasible concept
to use when attributes change gradually over a period of time
such as daily temperature, traffic flow, stock index, etc. If A
is an attribute that has been represented by a mathematical
function f(tid), then any query involving condition checking

5 Block Access

1 Block Access

5

4

3

2

1

Fig. 2. Comparison of Clustering against Information Streaks

on values of A can be answered by solving f(tid), to find the
corresponding tuple-id ranges.

All the functions shown in Figures 3 through 6 are obtained
by approximating the exchange rates to function of sine and
cosine components of three frequencies. The Figure 3 depicts
single valued selection for tupleID versus exchange values.
The points of intersection give the tupleID satisfying the
condition for exchange-rate = 1.2. In Figure 4, the query
involving the range function is given. The corresponding tuple
ranges are t1− t′

1
, t2− t′

2
and t3− t′

3
(shaded regions in Figure

4) for satisfying the range between 1.2 to 1.4.
A combination of interval-based sampling and analytical

treatment can be obtained if patterns are found in classes [13].
The smoothness of data can be achieved by taking the mean
for each of τ values, where τ is an user defined value for
smoothning the data values.

Fig. 3. A single-valued selection

Some of the parameters involved in projection of tuples
are given below:

278

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Fig. 4. Range query involving “ SELECT . . . WHERE1.2 <=

EXCHANGE < 1.4

(i) Marginal error width (me) : Since the projections are
not accurate enough to pick single-values, the number of
adjacent tuples to be included is determined by m. Selection
in Figure 4 cannot be accurate. Therefore, adjacent tuples
around the point of selection are also considered. The width
of the selection defines the marginal error. This scenario is
shown in Figure 5.

(ii) Snap factor (sn) : A width lower than which two
adjacent projection ranges can be merged, sn appears to
achieve the same function as that of τ in attempting to coalesce
closely split tuples. However, a closer look would reveal that
τ is a parameter used when the attribute model is built and
hence a change in τ would require that data blocks are re-read,
whereas sn is a tunable factor that can be set at the time of
execution of a query. Figure 6 shows the effect of snap factor,
where the two tuple ranges with the distance lesser than sn

are merged into a single range.

Fig. 5. marginal error selection

Fig. 6. Snap factor

V. GENETIC ALGORITHM MODEL

A genetic algorithm uses mechanics of natural selection to
guide search. A search algorithm balances the need for explo-
ration to avoid local optima. Genetic algorithms dynamically
achieve this balance through the recombination and selection
operators [5], [15]. The steps taken by a genetic algorithm in
the context of classification or association rule discovery are:

• The input to the algorithm is a collection of training data.
• The set is encoded into a structure capable of being used

for genetic algorithms.
• An initial population is randomly generated.
• The evolution process on populations brings out a set of

class models.

A. GA and query languages

The search bias during genetic search depends on the
kind of problem solved, the structure of search space and
the genetic operators. There are two possible ways to build
meaningful blocks

1) Search through possible encodings for a good one while
searching for a solution.

2) Expand the number of good encodings by increasing the
types of building blocks considered meaningful.

Here, task-based specific queries are posed in form of DMQL
queries. Some of the popular mining characteristics sought
are comparison, classification, associations and concept hier-
archies.
The specification of each query may be given as:

<Mine_Knowledge_Specification> ::=
<Mine_Char> |
<Mine_Discr> |
<Mine_Assoc> |
<Mine_Class>

In general initial population is created consisting of ran-
domly generated rules. Each rule represented by a string of
bits. For example, if the training set consist of two attributes

279

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

A1 and A2 and a class C, then the rule “IF A1 AND NOT A2

THEN C” can be encoded as 101. Attributes with more values
can be encoded using more bits, while continuous attributes
can be encoded after interval-based classification. The fitness
of a rule is assessed by its classification accuracy on the
dataset. The general structure of GA is as follows :

t=0;
P(t) = Initialize Random Population

(no_attributes, attribute_domains);
while (t < max_generations)

Evaluate fitness (P(t), dataset)
t = t+1
P(t) = select(P(t-1))
Crossover(P(t));
Mutate(P(t))

end while

the modified version is,

t=0;
P(t) = Generate biased Population

based on query attributes
while (t<max_generations)

Evaluate fitness(P(t), summarized data)
t = t+1
P(t) = select(P(t-1))
Crossover(P(t));
Mutate(P(t))

end while

1) Associations: Each rule can be represented as a string.
In generation of rules along with the support of a pattern, the
number of set positions are also important. A pattern full of
don’t cares will gain a support of 100% but has no meaning
in terms of knowledge discovery. Each discovered rule in the
rule set is usually represented in the form

IF < condition1 > & < condition2 > . . . & < conditionn >

THEN < action >

There are various representation methods for conditions and
actions in terms of rule properties (fuzzy or non-fuzzy) and
the attribute properties(continuous or discrete). A rule set
supposed to be the solution for a classification problem.
Processing a query which is of the form,

<Mine Assoc> ::= mine associations
[as <pattern name>]
[match <meta-pattern>]

involves the extraction of rules consisting of two parts: search-
ing for hidden patterns and generation of rules based on
those patterns. After the validation of candidates, the rules are
selected based on expected lends of support and confidence.
Let the attributes selected to form a classification rule Ri are
< A1, A2, . . . >, out of which b attributes are of boolean type,
and k of continuous and pi denotes the number of intervals
of Ath

i attribute and d the number of discrete attributes with

each taking at the most di values. The length of the binary
chromosome is given by :

lb = b + log

(
k∑

i=0

pi

)
+ log

⎛
⎝ d∑

j=0

dj

⎞
⎠+ m

where m is the length of the consequent.
The fitness of a chromosome reflects the success rate

achieved and the corresponding rule set is used for classi-
fication. The GA operators use this information to evolve
better chromosome over the generations. The fitness function
actually measures the collective behavior of the rule set.
The evaluation of the fitness can be speeded up using the
summarized table built from the reduct rules and information
streaks. In case of rules exactly matching the reduct rules, the
support and confidence measures of earlier classification can
be directly used with a new threshold value. The decomposi-
tion of a query in order to find rules already computed is a part
of query relaxation. Query relaxation involves the rewriting of
query to form a new query. Some of the main reasons for
relaxation are

• the query is too general or too specific
• some of the query terms may not be used in the database
• one or more query terms have multiple meanings subject

to context.

One approach used to deal with the above scenarios is gen-
eralization which involves rewriting of a query to a more
generalized term based on information found in association
mappings and attribute transformation. It is also possible to
reduce associated clauses in the query to a single generalized
attribute based on reduct table.

2) Concept Hierarchies: A frequently used and an impor-
tant type of query is the concept hierarchy query, which usually
takes the form

<Concept_Hierarchy_Definition_Statement>
::= define hierarchy< hierarchy_name>

[for <attribute_or_dimension>]
on <relation_or_cube_or_hierarchy>
as <relation_description>
[where <condition>]

Concept hierarchies allow the mining of knowledge at
multiple levels of abstraction. They define a sequence of
mappings for a set of a low-level concepts to higher-level more
general concepts. A concept hierarchy is represented as a set of
nodes organized in a tree, where each node in itself, represents
a concept. The common types of hierarchies are

• schema hierarchies which express semantic relationship
between attributes.

• set-grouping hierarchies that organizes values for a given
attribute or dimension into groups of constants, typically
used for defining small sets of object relationships.

• operational-derived hierarchies is based on operations
specified by users, experts or the data mining systems.

280

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

• rule-based hierarchies that occur when either the whole
concept hierarchy or a portion of it defined by a set of
rules.

Since problem of concept hierarchies involve classification
of attribute values with multiple levels of abstraction genetic
algorithm can be used with a slight modification of including
multiple types of chromosomes each defining the strength of
classification for each level of abstraction.
It can be observed that the number of features that have
to be used to describe a particular class in the hierarchy
may be different from one another. Consider the example
of classification of connection types in KDD99-Cup Dataset,
the number of attributes(features) that are needed to predict
a normal connection is only four, while predicting the exact
class of attack requires more than six attribute values. The
concept hierarchy for KDD99-Cup dataset is shown below.

Connection

Attack

probe DOS user-to-root R2L

Normal

The difference in the number of bits to represent features
demands the use of chromosomes with different length and a
non-conventional type of crossover. A simple approach to take
is to consider each path of the concept hierarchy as a series
of classification where the support for a lower level concept
‘p’ is based on the percentage of data objects belonging to
its immediate higher level concept. The automatic building of
concept hierarchies is close to concept maps and ontologies
[14], [16].

VI. EXPERIMENTAL RESULTS

Experiments are performed on three real-life data sets taken
from UCI Machine Learning Archive [17]. The characteristics
of data sets are summarized below:

1) KDD 99 Cup data: The competition task was to build a
network intrusion detector, a predictive model capable
of distinguishing between “bad” connections, called
intrusions or attacks, and “good” normal connections.
The attacks fall into four categories as DOS(denial of
service), R2L, U2R and probing. The datasets contain a
total of 24 training attack types. The attributes describe
the basic features of TCP connections, content features
within the connection suggested by domain knowledge
and traffic features.

2) Forest Cover-type: It is a Geographical Information Sys-
tem data representing forest cover type like pine, fir, etc.
found in US. The variables are cartographic and remote
sensing measurements. It contains 10 dimensions, seven
classes and 586,012 samples. All the attribute values are
numerical.

3) Iris: A data set with 150 random samples of flowers
from the iris species setosa, versicolor, and virginica.
There are four features all of which are numeric.

A. Classification

The classification accuracy is defined as the percentage of
data points whose class labels are correctly predicted. The
classification accuracy of the datasets considered above is
shown in Table 5.

Table 5: Classification Accuracy of all datasets

Dataset Accuracy(%)
KDD 99 98.3

Covertype 64.2
Iris 97.6

The size of summarized tables expressed as percentage of
size of the original dataset is shown in Table 6. na denotes
the number of attributes that are the part of the summarized
tables.

Table 6: The sizes of summarized tables

Dataset na size
KDD 99 12 7.1%

Covertype 6 6.8%
Iris 4 2.6%

(i) Relation between l and classification accuracy

Figure 7 shows the variation of classification accuracy
versus minimum streak length l for KDD99 Cup data, Forest
Cover-type data and Iris databank. As the minimum length
of the information streak is increased the resolution of the
classification decreases, hence the drop in accuracy.

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0 5 10 15 20 25 30

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(K
D

D
99

)

The minimum streak length (l)

Fig. 7. Variation of Accuracy versus minimum streak length

(ii) Aggregate functions

A random set of queries were generated involving
aggregate functions count, aggregate and max/min to test
the performance of the proposed methods. For count and
aggregate operations the error is the difference between
the values obtained, while for max/min operations it is the
percentage of times the correct max/min value was returned.
Table 7 shows the comparison of execution times for three
aggregate functions. t denotes the average time that was
taken to execute the queries directly on the database and ts

281

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

is the average time of execution when summarized tables
were used. The last column shows the % error which is the
deviation of the numerical value obtained from the actual
value.

Table 7: Comparison of execution times for Aggregate
Function

Dataset query-type t (secs) ts (secs) % Error

KDD 99 count 40.3 2.1 10.2
avg 51.3 2.2 11.6

max/min 43.3 2.1 23.0
height

Cover count 63.1 5.1 14.3
avg 71.3 6.2 13.6

max/min 61.3 5.2 29.6
height

Iris count 0.5 0.02 10.1
avg 0.45 0.02 9.6

max/min 0.32 0.02 14.1

B. Accuracy of Concept Hierarchies

The accuracy of the hierarchies is calculated with respect
to each level. If pij denotes the set of tuples at jth class in
the ith level and cij the corresponding number that have been
classified correctly, then the accuracy of ith level is∑n

j=1
Cij/Pij

n

where n is the number of classes at that level. Overall
hierarchy accuracy is expressed as average of all the levels.
The experiments are performed on only two of the data sets,
the results of which is shown in Table 8.

Table 8: Average concept hierarchy accuracy
Dataset Accuracy

KDD 99 95.9%
Covertype 61.2%

C. Analysis of improvement with GA feedback

The datasets are increased by 10% and experimented with
GA feedback. A slight improvement is seen in two data sets
and there is no change observed in Iris dataset due to the
absence of formation of new rules. The results are tabulated
in Table 9.

Table 9: Classification Accuracy with GA feedback
Dataset Classification Accuracy

KDD 99 98.9
Covertype 66.2

Iris 97.6

VII. CONCLUSION

In this paper we have proposed an intelligent query an-
swering system using rough sets and genetic algorithms. The
flexibility involved in building the summary tables of rough
sets makes the system more scalable. The system is fast

even with acceptable level of accuracy as justified in the
experiments. Reinforcement of reducts with genetic algorithms
leads to adaptive classification. The proposed framework can
be used as alternative to system catalog. In future work, the
system can be extended to other types of DMQL queries, since
it is handling only a subset of queries.

ACKNOWLEDGMENTS

The Project is partially supported by the AICTE, as a part of
Career Award of Young Teachers(AICTE File No.: F. No.1-
51/FD/CA/(9)2005-06) to Mr.K.G. Srinivasa, who is presently
working as a faculty in Department of Computer Science
and Engineering, M. S. Ramaiah Institute of Technology,
Bangalore – 560 054, India.

REFERENCES

[1] Z. Pawlak,“Rough Sets,” Int’l J. Computer and Information Sciences,
Vol.11, 1982.

[2] Lingras. P,“Application of Rough Patterns,” Rough Sets in Data Mining
and Knowledge Discovery, Series Soft Computing, Physics Verlag, 1998.

[3] Lingras. P and Davis. C, “Application of Rough Genetic Algorithms,”
Computational Intelligence, 2000.

[4] A. Skowron and C. Rauszer, The Discernibility Matrices and Func-
tions in Information Systems, Intelligent Decision Support, Handbook
of Applications and Advances of the Rough Sets Theory, pp.331-362,
Dordrecht:Kluwer Academic, 1992.

[5] Holland. J. H, “Adaption in Natural and Artificial Systems,” Series Soft
Computing, Physics Verlag, 1975.

[6] S. M. Weiss and C. A. Kulikowski, Computer Systems that
Learn:Classification and Prediction Methods from Statistics, Neural Nets,
Machine Learning, and Expert Systems. San Maeto, CA: Morgan
Kaufmann, 1991.

[7] S. U. Guan and S. Li,Incremental Learning with Respect to New Incoming
Input Attributes, Neural Processes. Lett., Vol 14, no. 3, pp.241-260, 2001.

[8] L. Su, S. U. Gain, and Y. C. Yeo, Incremental Self-Growing Neural
Networks with the Changing Environment, J. Intell. Syst., Vol.11, No.
1, pp.43-74, 2001.

[9] K. A. DeJong and W. M. Spears, Learning Concept Classification
Rules using Genetic Algorithms, in Proc. 1991 Int. Joint conf. Artificial
Intelligence, 1991, pp.651-656.

[10] T.Y.Lin and R. Chen,“Finding Reducts in Very Large Databases,” Proc.
Joint Conf. Information Science Research, p.350-352, 1997.

[11] Sheng-Uei Guan and Fangming Zhu, “An Incremental Approach to
Genetic-Algorithms-Based Classification,” IEEE Trans.Systems, Man and
Cybernitics-Part B:Cybernitics, Vol.35, No.2, April 2005.

[12] Dominik Slezak and Jakub Wroblewski “Order Based Genetic Algo-
rithms for the Search of Approximate Entropy Reducts” Springer-Verlag
Berlin Heidelberg, 2003.

[13] R. H. Shumway.Applied Statistical Time Series Analysis. Englewood
Cliffs, NJ: Prentice Hall, 1988.

[14] Franciso Edson Lopes da Rocha, Julio Valente da Costa Jr and Eloi Luiz
Favero “A New Approach to Meaningful Assessment using Concept Maps
Ontologies and Genetic Algorithms,” Proc. of the first Intl.Conference
on Concept Mapping.

[15] Srinivasa K G, Karthik Sridharan, P Deepa Shenoy, Venugopal K R
and L M Patnaik, “Dynamic Migration Model for Self Adaptive Genetic
Algorithms,” In Proc. of Intl. Conf. on IDEAL, 2005, pp. 555-562.

[16] Costa Jr. V., Rocha F. E. L., and Fevero E. L., “Linking Phrases in
Concept Maps in Study on Nature of Inclusivity,” In Proc. of First Intl.
Conf. on Concept Mapping, Navarra, Spain, 2004.

[17] C. L. Blake and C. J. Merz, t“UCI Repository of Machine Learning
Databases,” Univ of California, Irvine, Dept. of Information and Com-
puter Sciences, http://www.ics.uci.edu/ mlearn/,1998.

282

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

