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Abstract— The Gaussian process latent variable model 
(GPLVM) is a novel unsupervised approach to nonlinear low 
dimensional embedding proposed by Lawrence (2005). This paper 
presents the development of a framework for the implementation 
of the GPLVM for fault detection. A series of experiments have 
been carried out comparing and combining the GPLVM to the 
conventional and widely used linear dimension reduction 
technique of Principal Component Analysis (PCA). The inclusion 
of the GPLVM for the visualisation and data analysis, led to a 
considerable improvement in the classification results. 

Index Terms—Fault detection, Dimensionality reduction, 
Principal Component Analysis. 
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I. INTRODUCTION 

An increasingly massive amount of data is being generated 
by the use of modern technologies in a multitude of domains, 
such as engineering. These modern technologies and the 
growing concern of the health monitoring and product condition 
monitoring concepts lead to large scale, highly complex, 
multivariate systems. Early and accurate fault detection and 
diagnosis for these systems can minimize down time, and 
reduce manufacturing costs. Industrial products are becoming 
more heavily instrumented, resulting in more data becoming 
available for use in detecting and diagnosing faults. It is 
therefore critical to many businesses to have adequate means in 
place for transforming the vast volumes of data into information 
relevant for decision-making. 

By projecting the data into a lower-dimensional space that 
accurately characterizes the state of the analysed system, 
dimensionality reduction techniques can greatly simplify and 
improve health monitoring and fault detection procedures. In 
this paper, the Gaussian process latent variable model 
(GPLVM) is used for fault detection purposes and it is 
compared against the Principal component analysis (PCA), 
technique that has been studied and implemented by several 
academic and industrial engineers for fault detection [1]. 

The GPLVM [2], [3], [4] is a novel unsupervised approach 
to nonlinear low dimensional embedding. It has been tested in a 
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number of applications with satisfactory results, as in [5]. This 
paper presents the results of using it in a fault detection 
environment. The different experiments carried out and 
explained throughout the paper show considerable improvement 
over PCA for the obtained visualisation and classification 
results. 

The layout of the paper is as follows: Section 2 describes 
briefly the main characteristics of the original data used for the 
analysis and the pre-processing stage realised to it. Section 3 
outlines the theory behind the two techniques used for 
dimensionality reduction. Section 4 shows the experiments 
realised to compare and combine the two used techniques, and 
gives the results obtained. The paper concludes with a 
discussion in Section 5. 

II. ORIGINAL DATA FORMAT AND THE PREPROCESSING OF IT 

The main purpose of the work presented on the paper is to 
show the fault detection capabilities of the novel dimensionality 
reduction technique GPLVM. For this reason and due to 
confidentiality requirements we will not focus on giving 
detailed information of the nature of the data analysed. 
However, for the better understanding of the work carried out 
some key facets must be explained. The data analysed within 
this paper is from an extremely reliable product type where 
operational failure events are rare, and so for this particular 
analysis, an artificially balanced dataset with good and bad 
product tests has been used, with 400 tests in total from 200 
product serial numbers. 

An example of the product test type used for this analysis is 
shown in Fig. 1. This type of test is designed to monitor the 
performance characteristics of the product and it consists of 
running the product through seven predefined steady-state 
stages over the whole range of operating conditions the product 
can provide. 

For the analysis reported in the paper, information from 
twelve parameters of the tests have been used. The nature of the 
variables used was multifaceted, going from vibration 
information of high dynamics to various temperatures and 
pressures where the dynamics are slower. 

A. Data Pre-processing: 
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The whole dataset used for the analysis goes through a pre-
processing stage in order to get it ready for the posterior 
analysis. Our aim is the transformation of the measurement 
signals into a set of multi-dimensional features retaining as 
much relevant information as possible. The pre-processing 
stage of the data needs various steps: 

Data Segmentation: As mentioned before the analysed tests 
are divided into seven well defined steady state stages where the 
performance of the products through their power ranges are 
monitored. This test is one manoeuvre out of a number of 
manoeuvres applied to the product for testing different 
characteristics, so in one first step of the segmentation, the 
particular selected manoeuvre where the performance 
characteristics of the product are analysed must be identified. 
Once these manoeuvres are identified, they are segmented into 
different stages depending on the variation of the power 
indicator signal. This means that after the two steps of the 
segmentation, seven independent portions of time-series data 
will be identified from each test. 

Fig. 1. Example of a data file used for the analysis 

Feature extraction: From each of the 7 segments of the 
tests, and for each one of the 12 measured parameters, various 
standard statistical features for time-series classification are 
extracted. Those features are the mean value, 
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the maximum value, and minimum value. These features are 
selected because they are simple and easy to implement and 
although more elaborated features may lead to better results, 
statistical features are a starting point for the evaluation of the 
method, and the improved methods of feature selection should 
be addressed in future work. 

Considering there are 7 segments with 12 parameters 
recorded in each segment and 4 features extracted out of each 
one of the recorded parameter, as a result and for each test we 
obtain a summary table of 7 columns by 48 rows as in Fig. 2. 

Fig. 2. Example of summary table with extracted normalised features from 
each test. (S1… S7) refers to the seven segments of each test. (P1 … P12) refers 

to the 12 measured parameters in each test.  

Normalisation: The value ranges of the parameters vary a 
lot depending on their nature. Considering that the methods 
used for this work will aim to correlate the information 
extracted from these parameters across all the tests, and in order 
to avoid the influence of this variation of values between 
parameters, a normalisation process of each extracted feature 
independently across all the tests has to be done. The translation  
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is used for the normalisation and as a result the features across 
the tests will be normally distributed with a mean of zero and a 
standard deviation of 1. 

III. METHODS OF ANALYSIS 

It is the first time where the GPLVM have been used for 
fault detection purposes within a complex system of an 
industrial environment. This paper presents the work done to 
evaluate its performance, comparing it with the conventional 
and widely used PCA. Both of these techniques are 
dimensionality reduction techniques originally introduced as a 
way to overcome the curse of the dimensionality when dealing 
with vector data in high-dimensional spaces and as a modelling 
tool for such data. 

Dimensionality reduction is defined as the search for a low 
dimensional manifold that embeds the high-dimensional data. A 
manifold (a coordinate system) that will allow projection of the 
data vectors on it and obtain a low-dimensional, compact 
representation of the data. 

The two compared methods are described in this section. 
Throughout the rest of the paper, vectors in the measured data 
space will be denoted by {y} and the dimension of the space by 
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d. Vectors in the reduced (or latent) space will be denoted by 
{x} and the dimensions of that space will be q. 

A. Principal Component Analysis (PCA) 
This method is perhaps the most widely used technique for 

obtaining a lower dimensional representation of a dataset, 
probably due to its conceptual simplicity. The relatively 
efficient algorithm seeks orthogonal linear projections of the 
data with maximum variance, looking for a linear embedding of 
the data which is optimal under linear reconstruction for a 
quadratic loss [6]. 

Only the briefest description will be given here. The 
principal components algorithm seeks to project by a linear 
transformation, the data into a new d-dimensional set of 

Cartesian coordinates ),,,( 21 nxxx K . The new coordinates 

have the following property: 1x  is the linear combination of the 

original iy  with maximal variance, 2x  is the linear 

combination which explains most of the remaining variance and 
so on. It should be clear, that if the d-coordinates are actually a 
linear combination of q<d variables, the first q principal 
components will completely characterize the data and the 
remaining d–q will be zero. In practice, due to measurement 
uncertainty, the principal components will all be non-zero and 
the user should select the number of significant components for 
retention. 

The required computation steps are as follows: Given data 
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from the sample vectors, where }{y  is the vector of means of 

the y data, and then perform an eigenvalue decomposition of it 
using, 

TVVC Λ= ,   (5) 

where the diagonal matrix Λ contains the non-negative real 
eigenvalues. 

The transformation from data space to the coordinate system 
defined by the principal components is computed as,
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Considered as a means of dimension reduction then, PCA 
works by discarding those linear combinations of the data that 
contribute least to the overall variance or range of the dataset. 

B. Gaussian Process Latent Variable Models (GPLVM) 
The GP-LVM [2], [3] is a fully probabilistic, non-linear, 

latent variable model that generalizes principal component 
analysis. The model was inspired by the observation that a 

particular probabilistic interpretation of PCA is a product of 
Gaussian process models each with a linear covariance 
function. Through consideration of non-linear covariance 
functions a non-linear latent variable model can be constructed.  

The probabilistic approach to dimensionality reduction is to 
formulate a latent variable model, where the latent dimension, 
q, is lower than the data dimension, d. The latent space is then 
governed by a prior distribution p(X), where the points in latent 

space are given by T
NxxX ][ 1K= . The latent variable is 

related to the observation space through a probabilistic 
mapping, 

nnini exfy += )(

where niy  is the ith feature of the nth data point and ‘e’ is a 

noise term that is typically taken to be Gaussian. 
The GPLVM places the prior distribution over the mappings 

rather than the latent variables as in the probabilistic PCA 
(PPCA) proposed in [7]. The mappings may then be 
marginalised and the marginal likelihood, 
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optimised with respect to the latent variables. 
This technique provides a smooth probabilistic mapping 

from latent to data space. That means that while most 
approaches to non-linear dimensionality methods focus on 
preserving local distances in data space, the GPLVM focuses on 
exactly the opposite, keeping things apart in latent space that 
are far apart in data space. 

However, as shown in [4], the GPLVM can be generalized, 
through back constraints, to additionally preserve local 
distances. In the back-constrained GPLVM, the likelihood is 
optimised with the constraint of local distance preservation. 
This constraint is implemented learning the mapping from the 
data space to the latent space. This means that there will be two 
models working simultaneously: a dissimilarity preserving, 
probabilistic GPLVM mapping from latent to data space, and a 
local distance preserving mapping from data to latent space. 

In the experiments realised on this work the back-
constrained GPLVM was used, considering important local 
distance preservation from data to latent space. 

(See http://www.dcs.shef.ac.uk/~neil/gplvm for the 
MATLAB code of the GPLVM) 

IV. FRAMEWORK FOR EXPERIMENTS 

Having explained the main characteristics of the data used 
for the analysis, the pre-processing stage and the basics of the 
two different dimensionality reduction techniques compared in 
this work, the various experiments carried out, and summarised 
in Fig. 3, will be introduced in this section.

289

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



Fig. 3. Framework designed for the comparison and combination of the dimension reduction techniques, GPLVM and PCA, in fault detection applications.

To begin with, the whole dataset is divided into 2 different 
sets, one the training data (300 tests) and the other one the 
testing data (100 tests). The training data is needed to 
characterise the behaviour of the product family and learn the 
conversion rules for the correspondent dimension reductions. 
Fig. 3 shows the framework used for the experiments. The 
objective of the dimensionality reduction techniques is to 
project the summary data table, with the extracted features, of 
the original data files down to a bi-dimensional space where its 
performance state will be summarised into two coordinates, and 
then the K-Nearest Neighbour (K-NN) classification algorithm 
is applied to evaluate the fault detection capabilities of each 
technique for this particular dataset. 

After the pre-processing stage and before the data of a 
particular data file gets reduced to 2 dimensions, there are two 
independent projection stages.  

A. 1st Projection Stage 
The original data files have seven pre-defined steady state 

segments and from each one a full feature column is extracted 
(Fig. 2). In this first projection stage all of the seven segments 
are considered as independent data measurements and they are 
projected individually down to 2 dimensions. An example of 
the projection obtained is shown in Fig. 4 where it is clear the 
division of the data into 7 classes, each one representing one of 
the independent segments of the original data files. This stage is 
part of the product data analysis and apart from representing a 
powerful visualisation functionality where the tests are 

presented as curves of 7 points, information about most 
influential segments and variables for the projections can be 
established. 

Four different approaches have been considered for this first 
projection stage. These approaches determine the four 
experiments realised and analysed for the comparison of the 
two used reduction techniques. In all of them, from an initial 
2100x48 matrix available for training data (300 tests each with 
7 segments), we get a new 2100x2 matrix. 

Fig. 4. Example of the result obtained after the first projection stage. The 
figure shows the projection obtained applying the PCA to the data. There are 

2100 points divided in 7 classes. 
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Fig. 5. (a, b, c, d) are some example figures obtained in the second projection stage of the analysis. (a) represents the projection of the training dataset using 
GPLVM for both projection stages. (b) shows the testing data projected into the latent space with the mappings learned from the reduction realised for (a). (c) 

represents the projection of the training dataset using PCA for both projection stages. (d) shows the testing data projected into the latent space with the mappings 
learned from the reduction realised for (c). 

PCA: Linear PCA is applied to the data available after the 
pre-processing. Fig. 4 shows the projection of the data obtained 
from it. 

Piecewise PCA: In this approach, an independent PCA is 
applied for each one of the seven steady state segments of the 
original files. E.g.: First segment information from the 300 
training sets (300x48) are reduced to a 300x2 matrix, and so on. 
Fig. 4 shows that the first principal component information, 
applying a simple PCA to the whole data, is equivalent to 
saying which of the seven segments within the test the point 
belongs to. With this new approach more meaningful principal 
components of each segment independently are intended. 

GPLVM: The GPLVM is applied to the data available after 
the pre-processing. 

Piecewise GPLVM: Likewise the Piecewise PCA, in this 
approach, an independent GPLVM is applied for each one of 
the seven steady state segments of the original files. 

B. 2nd Projection Stage 
After the first projection stage the original data files are 

reduced to (7x2) matrices. In the second projection stage, these 
(7x2) matrices will be grouped as (1x14) vectors, and they will 
be reduced to a single point (two coordinates). Examples of 
projections obtained in this second stage are shown in Fig. 5a, 
and 5c, where each point represents one product test. 

Effectively, this is the stage used for the comparison of the 
GPLVM and the PCA. Both techniques will have the same data 
input, which comes from the first projection stage, and it 
represents the ideal framework to compare and evaluate the 
quality of the dimension reduction capabilities of both 
techniques. The analysed dataset has two known classes. The 
technique with best fault detection capabilities will be the one 
that separates best the two classes, so the one that after applying 
some classification algorithm gives the best result. 

For the projection of testing data the mappings learned from 
the training data are used. With the PCA technique, the 
projection of the testing data is a straightforward task where (6) 
needs to be applied with the eigenvectors obtained from training 
data. For the GPLVM the projection of test data is more 
complicated because the mapping learned from the training data 
is from latent (projection) to data space. However, the use of 
back constraints in order to preserve local distances in data 
space means that a mapping from data to latent space is also 
learned and so the additional advantage of using back 
constrained GPLVM is the straightforward task of projecting 
the testing data. . Fig. 5b and 5d are some examples of the 
testing data projected with the obtained conversion rules, in this 
case the conversion rules obtained from Fig. 5a and 5c 
respectively. 
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TABLE I 
EXPERIMENTAL RESULTS 

Experiment 
Number 

First 
Projection 

Method 

Second 
Projection 

Method 

Classification 
Results for 

Training Data 
(%) 

Classification 
Results for 

Testing Data 
(%) 

GPLVM 90.3 84.9 1) PCA 

PCA 90 75.6 

GPLVM 90.7 75.6 2) Piecewise  
PCA PCA 90 70.9 

GPLVM 92 76.7 3) GPLVM 

PCA 88.7 79.1 

GPLVM 91.3 75.6 4) Piecewise 
GPLVM PCA 88 86.1 

The results obtained from the different experiments are 
shown in Table I, where the classification results for two classes 
is presented. The K-Nearest Neighbour algorithm is used for 
this classification. 

V. DISCUSSION 

This paper presents the results of the analysis comparing the 
GPLVM against PCA for fault detection purposes. The reading 
of these results show the clear benefit of including the GPLVM 
within the analysis framework developed. Any dataset obtained 
from an industrial process, will always have some kind of non-
linearity in it because of the elements included (sensors, etc) 
that not being perfect always introduce little errors and so 
nonlinearities e.g.: the hysteresis effect. With the inclusion of 
the GPLVM for the analysis and fault detection of this 
industrial processes, the nonlinearities are considered and as a 
result the final result improves. Taking into account 
experiments 1 and 2, where variations of PCA are applied for 
the first projection stage. This stage could be considered as part 
of the linear pre-processing stage. In the second projection 
stage, the GPLVM improves the classification results obtained 
with respect to the PCA, and for testing data in particular this 
improvement is considerable. It definitely shows the added 
value of using the GPLVM. 

Taking into account experiments 3 and 4 where variations of 
GPLVM were used in the first stage, the use of PCA for the 
second projection gives better results than the GPLVM. It 
seems that the nonlinearities of the dataset are modelled in the 
first projection stage and a linear technique for the second stage 
gives better results. However, the really interesting thing in the 
3 and 4 experiments is that if PCA performance is compared to 
PCA performance in the 1 and 2 experiments, the results in 3 

and 4 have improved dramatically, again showing the added 
benefit of using the GPLVM. 

Out of the 4 experiments presented within the paper, the best 
results are obtained with a combination of reduction techniques. 
(PCA + GPLVM) and (Piecewise GPLVM + PCA) are the 
models with better results. 

It is clear that using the GPLVM at some stage of the data 
analysis improves considerably the final results, obtaining better 
separation in the projections and so better fault detection results 
comparing to PCA. 
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