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Abstract— We propose a new one-shot collaborative filtering
method. In contrast to the conventional methods, which predict
unobserved ratings individually and independently, our method
predicts all unobserved ratings simultaneously and with mu-
tual dependence. With the proposed method, first for observed
ratings, we compute empirical marginal distributions of the
ratings over users and/or items. Then, for unrated data, these
marginal distributions are represented as a function of unknown
ratings, and the unknown ratings are predicted by minimizing
the Kullback-Leibler (KL) divergence between both the rated
and unrated rating distributions. We evaluate the prediction
performance and the computational time of our method by using
real movie rating data. We confirmed that the proposed method
could provide prediction errors comparable to those provided by
the conventional top-level methods, but could significantly reduce
the computational time.

I. INTRODUCTION

The recommender system is an information filtering tech-
nique that can help users by providing only relevant informa-
tion. It automatically selects items according to each user’s
preference, and presents them for each user. Research on the
recommender system started as an independent research area
in mid-1990s, and a lot of work was undertaken in both the
academic and industrial fields [1]. There have been a number
of applications such as Amazon.com [2], GroupLens [3], and
Ringo [4]. Recommender systems are usually categorized into
the three groups described below.

• Content-based filtering
This method recommends items that are similar to those
that the user preferred in the past, and uses the preference
data of only one user for whom we want to make a
recommendation. Therefore it tends to recommend items
in the same category.

• Collaborative filtering (CF)
This method uses not only the preference data of the
user for whom we want to make a recommendation, but
also the preference data of the other users. Items are
recommended that were preferred in the past by “like-
minded” users, who have similar taste. Therefore it is
likely that items will be recommended that the user has
not previously seen or heard. This method has been
already used in, for example, Amazon.com.

• Hybrid approach
This method recommends items by combining both
content-based filtering and collaborative filtering methods
[5], [6], [7].

Further, CF methods are classified into two major approaches.

• Nearest-Neighbors (NNs) based CF
This approach makes recommendations by finding K-
Nearest-Neighbors (nearest-users who have similar taste
or nearest-items that have similar trends) and by ag-
gregating the preference data of the Nearest-Neighbors.
Nearest-Neighbors are extracted from the preference
database with a certain similarity measure, such as the
Pearson correlation coefficient, vector similarity or ad-
justed cosine similarity [3], [8], [9], [10].

• Probabilistic model based CF
This approach assumes that the preference data are
generated from a probabilistic model. The probabilistic
model is learned from the observed preference data with
a statistical method and is used for predicting the future
preference data [11], [12], [13].

As for the details, see the Ref.[1], [14].
The conventional CF methods mentioned above predict each

unknown rating independently. In other words, such methods
predict unobserved ratings by using only the observed ones.
However, we think that the predicted values for the unrated
data have more than a little effective information on the
prediction for the other unrated data. We expect that the
prediction performance will improve if we take account of
the predicted values of the other unobserved ratings when
predicting a particular unobserved rating. Based on this idea, in
this paper, we propose a new collaborative filtering method in
which all unrated ratings are dependently and simultaneously
predicted. We call the proposed method one-shot collaborative
filtering.

As Marlin [12] pointed out, all existing collaborative filter-
ing methods assume that the preference data are Missing At
Random (MAR). Our method is also based on this assumption.
Under the MAR assumption, it is reasonable to think that the
preference data distribution of the observed data is similar to
that of the unobserved data. Therefore, in our method, we
try to predict unobserved ratings by minimizing the distance
between these two distributions. More specifically, we refer
to preference data distribution as users and/or items marginal
rating distributions. Then, for unrated data, these distributions
are represented as a function of unknown ratings, and the
unknown ratings are predicted by minimizing the Kullback-
Leibler (KL) divergence [15] between both distributions. Since
the prediction results in optimizing an objective function with
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respect to the unobserved ratings, our method predicts all
unknown ratings simultaneously and dependently.

The contributions of this paper are as follows:
• We first present a new objective function for the one-

shot collaborative filtering prediction and present a simple
practical algorithm to minimize the objective function.

• We show that the proposed method can provide a predic-
tion performance comparable to that of the conventional
top-level methods.

• We show that the one-shot prediction can significantly
reduce the computational time.

This paper organized as follows. In section II, we formulate
the CF problem, which we deal with in this paper. In section
III, we present the CF method based on a new objective
function. In section IV, we report experimental results and
evaluate the performance of the proposed method. Finally,
section V provides some conclusion remarks.

II. FORMULATIONS

A. Definitions and Notations

We assume that there are N users and M items, and use
i and j to denote a user and an item index, respectively
(i = 1, 2, . . . , N , j = 1, 2, . . . ,M ). We will denote the user
for which we want to make a recommendation as the active
user, and use index a to distinguish this user from the others.
Similarly, we will denote the item that we want to recommend
as the target item, and use index t to distinguish it from the
other items.

A user i provides a preference about an item j by assigning
it a numerical rating ri,j from the ordinal scale 1, 2, . . . , V .
Here, 1 (V ) is the lowest (highest) score. We will use v to
denote a rating value (v ∈ {1, 2, . . . , V }) and r̂i,j to denote the
predicted value of ri,j . R denotes an N by M rating matrix
whose (i, j) element corresponds to ri,j . Namely, ri,j = 0
indicates that user i has not rated item j.

We assign the set of ratings that the user i has (not) given
as Ri

obs (Ri
mis), and the set of ratings that the users have (not)

given for the item j as Rj
obs (Rj

mis), respectively. Moreover,
for convenience, we also use Robs (Rmis) to denote a set of
ratings that has (not) been rated in R.

Here, we define the subset of Ri
mis which consists of the

target ratings we want to predict as Ri
tar. Similarly, Rj

tar and
Rtar denotes the subset of Rj

mis and Rmis, which consists
of the target ratings, respectively.

Note that the number of ratings already given by users,
#{Robs}, is usually very small compared with the number of
ratings not yet given by users, #{Rmis}. Here, #{} denotes
the element count of the set. In addition, we assume that
there is a little difference between the element counts of the
set of target ratings and the observed ratings, for example
#{Rtar} and #{Robs}. In the movie rating data that we used
in the experiment, almost 95% of the elements of R are not
given (sparsity problem [1]). This indicates that #{Robs} ¿
#{Rmis} and we assume that #{Robs} ≈ #{Rtar} ¿
#{Rmis}.
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Fig. 1. Rating Matirx R (N = 6, M = 5, V = 5). Our method is based on
the assumption that the rating data are missing at random.

B. Task of CF problem
The goal of the CF problem is to find and recommend items

that an active user may favor. There are two types of goal:
prediction and recommendation.

• Prediction is to predict the rating of an item for which
the active user has not provided a rating.

• Recommendation involves presenting a list of top-l items
that the active user will like the most.

If we predict all unobserved ratings, we can present a top-
l list by ranking items based on the predicted rating value.
Therefore, the task of the CF problem is reduced to the task
of rating prediction problem. We specify our task in this paper
as follows:

Given a rating matrix R, predict {ri,j ∈ Rtar}.

Although there are some CF methods [7], [16], [5] that take
account of the following additional information,

• User demographic information: age, gender, etc.,
• Item profile information: genre, year of publication, etc.,

here, we restrict ourselves to CF methods that use only rating
matrix R.

C. Performance Measures
As a measure of the prediction accuracy we employ Nor-

malized Mean Absolute Error (NMAE) [12] defined by,

NMAE =
MAE

E[MAE]
,

MAE =
1

#{Rtar}
∑

ri,j∈Rtar

|ri,j − r̂i,j |.

E[MAE] is the expected value of the MAE when we predict
rating values randomly. E[MAE] can be easily computed
depending on the V value. The smaller NMAE is, the better
the prediction performance becomes. An NMAE value of less
(greater) than one means the method is performing better
(worse) than random prediction. Since the highest rating value
V differs from the data sets, normalizations enable us to
compare across data sets.
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(a) Marginal rating distributions
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Fig. 2. Marginal rating distributions in matrix R with V = 5. (a) P̃i(i = 1, 2, . . . , 6) is a distribution of observed ratings marginalized in rows, while
Q̃j(j = 1, 2, . . . , 5) is a distribution of observed ratings marginalized in columns. S̃ is a distribution of all observed ratings in matrix R. (b) just as (a),
Pi(i = 1, 2, . . . , 6) and Qj(j = 1, 2, . . . , 5) are the distributions of unobserved ratings marginalized in rows and columns, respectively. S is a distribution of
all unobserved ratings in matrix R. The unknown ratings are predicted by minimizing the KL divergence between the rated and unrated rating distributions.

III. PROPOSED METHOD

A. Missing At Random

As mentioned above, all existing CF methods explicitly
or implicitly assume that the preference data are missing at
random (See Fig.1). We propose the CF method based on
this MAR assumption. If the data are missing at random,
then it seems reasonable to suppose that the preference data
distribution of the observed data is similar to the preference
data distribution of the unobserved data. Therefore, we can
evaluate the plausibility of the predicted value for unobserved
preference data by the similarity between the preference data
distributions of the observed and unobserved data. As the
preference data distributions we employ user’s and/or item’s
marginal rating distributions.

B. Marginal Rating Distributions

Our method predicts unrated ratings based on the simi-
larities between rating distributions. We consider the three
following types of rating distributions (See Fig.2):

• Rating distributions marginalized in rows of R,
• Rating distributions marginalized in columns of R,
• Rating distributions of all ratings in R.

In the proposed method, first, we compute empirical marginal
distributions of the observed ratings over users and/or items,
P̃i(i = 1, 2, . . . , N), Q̃j(j = 1, 2, . . . ,M) and S̃. Then,
we try to obtain unobserved ratings such that empirical
marginal rating distributions over users and/or items, Pi(i =
1, 2, . . . , N), Qj(j = 1, 2, . . . ,M) and S, are consistent with

the corresponding marginal rating distributions of the observed
ratings.

The empirical marginal distributions, P̃i, Q̃j and S̃, are
calculated as follows:

P̃i(v) =

∑
ri,j∈Ri

obs
δ(ri,j = v) + η∑

l

∑
ri,j∈Ri

obs
δ(ri,j = l) + ηV

, v = 1, . . . , V.

(1)

Q̃j(v) =

∑
ri,j∈Rj

obs
δ(ri,j = v) + η∑

l

∑
ri,j∈Rj

obs
δ(ri,j = l) + ηV

, v = 1, . . . , V.

(2)

S̃(v) =

∑
ri,j∈Robs

δ(ri,j = v) + η∑
l

∑
ri,j∈Robs

δ(ri,j = l) + ηV
, v = 1, . . . , V.

(3)
Here, P̃i(v) denotes the probability that the user i gives the
rating value v. Q̃j(v) denotes the probability that the rating
value v is provided for the item j. S̃(v) denotes the probability
that the rating value v occurs. We introduce the smoothing
parameter η to assign a non-zero probability to the unseen
rating values, and we set η = 1. δ() is an indicator function
that takes the value 1 if the argument is true and 0 otherwise.
It is obvious that

∑
v P̃i(v) =

∑
v Q̃j(v) =

∑
v S̃(v) = 1.

The empirical marginal distributions of unobserved data, Pi,
Qj and S, are also calculated in the same manner as eqs.(1)-
(3), respectively. Note that Pi is obtained by replacing Ri

obs

in eq.(1) with Ri
tar. Similarly, Qj and S are obtained by

replacing Rj
obs and Robs with Rj

tar and Rtar, respectively.
The “dissimilarity” between both rated and unrated distri-

butions is calculated by the KL divergence, which is a pseudo
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distance measure between two probability distributions,

KL(P̃i(v)||Pi(v)) =
V∑

v=1

P̃i(v) log
P̃i(v)
Pi(v)

,

KL(Q̃j(v)||Qj(v)) =
V∑

v=1

Q̃j(v) log
Q̃j(v)
Qj(v)

,

KL(S̃(v)||S(v)) =
V∑

v=1

S̃(v) log
S̃(v)
S(v)

.

Here, for example, KL(P̃i(v)||Pi(v)) denotes the KL diver-
gence between P̃i(v) and Pi(v). KL(P̃i(v)||Pi(v)) is nonneg-
ative, and is zero if Pi is exactly the same as P̃i. Therefore,
we can use this measure to evaluate the plausibility of the
predicted value for unrated data. We define the following
equation as an objective function of a set of unrated data:

J ({ri,j ∈ Rtar}) =

1
N

N∑
i=1

KL(P̃i||Pi) +
1
M

M∑
j=1

KL(Q̃j ||Qj) + KL(S̃||S). (4)

Here, 1/N and 1/M in eq.(4) are adopted for computing
the consistency per distribution. We consider that if the set
of ratings for the unobserved ratings {ri,j ∈ Rtar} has a
smaller value for the objective function J , this set has a better
prediction accuracy.

As a result, the CF problem becomes an optimization
problem that minimizes the objective function J (eq.(4)) with
respect to unobserved ratings {ri,j ∈ Rtar}. Unlike the con-
ventional CF methods, our method predicts each unobserved
rating by considering the predicted values for the rest of the
unobserved ratings, thus, the proposed method can predict all
unknown ratings simultaneously (one-shot prediction).

C. Prediction Algorithm

We can think of several techniques that minimize the
objective function J :

• We can apply the combinatorial optimization techniques,
which find one or more best sets of ratings in a discrete
rating space. However, we need to find the best set from
an enormous amount of the number of combination of
the unobserved ratings. Therefore this approach may be
unsuitable for practical use.

• We can also apply constrained nonlinear optimization
techniques, such as Newton’s method, when we consider
the rating values as being continuous. Here the constraint
is that the rating value is in [1, V ]. However, we found
that it was very difficult to find the optimal set we wanted
to obtain since there were many local minima.

Although there may be a number of other optimization algo-
rithms, optimization is not the point in question. In addition,
in this paper, we attach great importance to the scalability for
practical use.

Therefore, we present a heuristic and easy-to-use approach
for obtaining a set of predicted ratings {r̂i,j ∈ Rtar}, where

the objective function J in a discrete rating space has a
comparatively low value. Roughly, we first assign a set of
ratings that has a relatively small J value as the initial set of
unobserved ratings. Then, the rating values of this initial set
are replaced one by one by new rating values to reduce the
value of the objective function J . This replacement continues
as long as the value of the objective function J decreases. The
prediction algorithm is presented below.

[Prediction Algorithm]
Inputs: {ri,j |ri,j ∈ Robs}
Outputs: {ri,j |ri,j ∈ Rtar}

Initialize {ri,j |ri,j ∈ Rtar}.
for all ri,j ∈ Rtar do

Compute,

αP
i,j ← arg min

ri,j

KL(P̃i||Pi),

αQ
i,j ← arg min

ri,j

KL(Q̃j ||Qj),

βP+Q
i,j ← min

ri,j

KL(P̃i||Pi) + min
ri,j

KL(Q̃j ||Qj).

end for
Sort {ri,j |ri,j ∈ Rtar} in ascending order of βP+Q

i,j .
while The value of the objective function J decreases. do

Update the rating in sorted order,

ri,j ← αP
i,j only if αP

i,j = αQ
i,j . (5)

end while

Here, arg minx f(x) denotes the argument x that minimizes
f(x).

As the initial set {ri,j |ri,j ∈ Robs}, we use the average of
both user average r̄i and item average r̄j ,

ri,j = (r̄i + r̄j)/2. (6)

Here, user average r̄i and item average r̄j are computed by,

r̄i =
∑

ri,j∈Ri
obs

ri,j/#{Ri
obs},

r̄j =
∑

ri,j∈Rj
obs

ri,j/#{Rj
obs},

respectively, and we round the continuous value to nearest
integer one for use. Since the prediction accuracy of eq.(6) is
relatively good, we use it as a baseline for evaluation.

In the prediction algorithm, before the rating update we sort
all the target ratings by βP+Q

i,j to select those that substantially
reduce the first and second terms of the objective function J
when the rating value is updated by the new rating value αP

i,j

or αQ
i,j . Note that we decompose the objective function J into

its individual terms when we compute the new rating, αP
i,j and

αQ
i,j . αP

i,j (αQ
i,j) is the rating value that minimizes the objective

function J with respect to ri,j in rows (columns) of R.
The rating update (eq.(5)) reduces the first and second terms

of the objective function J . Here, we introduce the update
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condition in eq.(5) so that the rating values that minimize the
first and second terms of the objective function J in both the
rows and columns of R are consistent with each other. If we
continue this rating update, the objective function J increases
at a certain moment. This is because we do not consider the
third term of the objective function J . Therefore, we stop
the rating update when the value of the objective function
J increases.

IV. EXPERIMENTS
A. Data Sets and Evaluation Protocols

To evaluate the proposed method, we constructed experi-
mental data sets from the following movie rating data sets,
which are widely used in CF research: MovieLens data
(ML1,ML2), EachMovie data (EM). MoveLens data are dis-
tributed by GrouLens Research at the University of Minnesota,
and EachMovie data were collected by the Compaq System
Research Center from 1995 through 1997. With the EM, we
extracted users who had rated more than 20 movies. The top
of Table I summarizes the global statistics of these data sets.

TABLE I
THE CHARACTERISTICS OF MOVIELENS AND EACHMOVIE DATA SETS

ML1 ML2 EM
# of Users 943 6,040 35,280

# of Items (Movies) 1,682 3,706 1,622
# of Ratings 100,000 1,000,209 2,314,777

Sparsity 93.7% 95.5% 96.0%
Point Scale 5 5 6

E[MAE] 1.6 1.6 1.944
# of Training Users 800 5,000 20,000

# of Test Users 143 1,040 15,280

We employed the experimental setup used in [12]. More
specifically, for each data set we randomly divided the users
into a set of training users and a set of test users as shown
at the bottom of Table I. We created three independent the
training & test data sets. Note that the number of training
(test) users is the same for the three sets. Each of the three
data sets, we tested by the same evaluation protocols as in
[12]: weak generalization and strong generalization.

• Weak generalization (closed test) : The available known
ratings of each training user are split into observed ratings
and held out ratings. The evaluation is performed for
each of the held out ratings. When predicting each of
the held out ratings of an active user, we can employ all
the observed ratings of all the training users including the
active user. In this evaluation protocol, following [12], we
did not employ test users.

• Strong generalization (open test): The available known
ratings of each test user are split into an observed set
and a held out set. As with weak generalization, each
of the held out ratings is evaluated. But, unlike with
weak generalization, when predicting each of the held out
ratings of an active user, we can employ all the available
known ratings of the training users and the observed

ratings of the active user. Namely, we cannot employ
the observed ratings of test users other than the active
user. This protocol evaluates the prediction performance
for the new user.

In both types of generalization, the splitting is done by
the AllBut n protocol: For each user, n ratings are randomly
selected from the available ratings for a held out item set. We
set n = 10%, 20% and utilize “AllBut 10%”, “AllBut 20%”,
respectively. We created three independent held out item sets
for each n and data set.

B. Conventional CF methods

We evaluated the prediction performance and the computa-
tional time of our method by comparison with the conventional
representative CF methods: Nearest-Neighbors (NNs) based
CF methods and probabilistic model based CF methods. In
the following we briefly describe the conventional methods
used in our experiments.

1) Nearest-Neighbors Approach: This approach tries to
predict ra,t based on ratings already given by other users
who have similar tastes to the active user. This like-minded
user is called a ”Nearest-Neighbor”. While the traditional NNs
based CF methods [3] measure the similarity between users
(user-to-user similarity), recent methods measure item-to-item
similarity [2], [9], [17]. Below, we refer to the user-to-user
(item-to-item) similarity version as user-base (item-base).

There are a wide variety of similarity measures, including
the Pearson correlation coefficient [3] and the adjusted cosine
similarity [17]. Since the number of items M is usually fewer
than the number of users N , a nearest item search needs much
less time than a nearest user search. Therefore item-base has
a practical advantage over user-base in terms of scalability.

• kNNs methods (kNNs) [2], [3], [17]
Once we find k NNs (users or items) for any similarity

measure, the predictive rating of the target item for the
active user is computed by the following weighted average of
deviations from the average rating of the corresponding user
(item) over k NNs.

user-base : r̂a,t =
∑k

i=1 W i
a(ri,t − r̄i)∑k

i=1 |W i
a|

+ r̄a, (7)

item-base : r̂a,t =

∑k
j=1 W j

t (ra,j − r̄j)∑k
j=1 |W

j
t |

+ r̄t. (8)

Here, W i
a is the similarity between active user a and user i.

Similarly, W j
t is the similarity between target item t and item

j.
Clearly, the best choice of user-base or item-base, the best

choice of similarity measure, and the best choice of k were
mutually dependant and also sensitive to a given data set. To
evaluate the best potential of NNs based CF, for each data
set, we showed the best performance from the results obtained
by changing user-base, item-base, similarity measure (Pearson
and adjusted cosine), and k = 100, 200, . . . , 500.

• Unified method with Similarity Fusion (SF) [8]
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This approach is a hybrid method employing user-base and
item-base kNNs. Both the nearest-users and the nearest-items
are searched for by using any similarity measure as with kNNs.
In the prediction phase, each rating in these nearest sets is
weighted by the corresponding similarity. Furthermore, the
“nearest user-item ratings,” which are the common ratings of
both the nearest items and the nearest users except for the
active user and target item ratings, are also weighted by the
similarity computed from the corresponding user-to-user and
item-to-item similarities. In the result, each rating ri,j in the
nearest-users/items/user-item set Rnns is weighted by each
similarity W i,j

a,t :

r̂a,t =
∑

ri,j∈Rnns

W i,j
a,tfa,t(ri,j), (9)

fa,t(ri,j) = ri,j − (r̄i − r̄a) − (r̄j − r̄t).

As in eq.(7) and (8), the normalized rating fa,t(ri,j) is used
instead of ri,j in eq.(9). In our experiments, according to [8],
we used the cosine similarity for the nearest-user search and
the adjusted cosine similarity for the nearest-item search. Note
that we have to set the weight ratio of the user-base/item-
base/user-item-base prediction in advance. This is described
in detail in [8].

2) Probabilistic Model Approach: This approach assumes
that the rating data are generated from a probabilistic model
[11], [12], [13]. Therefore user index i, item index j and rating
ri,j are treated as random variables. The unknown parameters
included in the model are estimated with the statistical learning
methods. All methods used in our experiments are based on
a multinomial distribution, and therefore after model learning,
the median rating defined by,{

v

∣∣∣∣Pr{ra,t < v} ≤ 1
2
, and

1
2
≤ Pr{ra,t > v}

}
,

is used to predict ra,t. The expected value can also be used
as the prediction value. But we employed the median rating
because of its superior performance.

• Multinomial Model (MULTI) [12]
This model assigns one multinomial distribution for each

item and the ratings of the same item are generated from the
same multinomial distribution. The parameters of this model
(the probabilities that the rating v generates for the item j) are
computed by eq.(2). The joint distribution of user i’s ratings
is given by,

p(ri,1, ri,2, . . . , ri,M ) =
M∏

j=1

p(ri,j |j)δ(ri,j 6=0).

p(ri,j |j) is the multinomial distribution of item j.

• Mixture of Multinomials Model (MIXMULTI) [12]
This model assumes that there are C latent classes of

users (z1, z2, . . . , zC) and that users in the same class have
similar preferences. The user ratings are generated from the
multinomial distribution assigned to the class to which the user

belongs. The joint distribution is given by,

p(ri,1, ri,2, . . . , ri,M ) =
C∑

c=1

p(zc)
M∏

j=1

p(ri,j |j, zc)δ(ri,j 6=0).

Here, p(zc) denotes the probability that class zc occurs, and
p(ri,j |j, zc) denotes the multinomial distribution of item j in
class zc. Clearly, the prediction performance depends on C.
In our experiments, we selected the best C from the results
obtained by changing C = 5, 10, 15. Moreover, we stopped
the iteration when the model learning had been repeated a
maximum of 100 turns to avoid overfitting.

• Aspect Model (AM) [12]
This model assumes that there are C latent communities of

users, and that the like-minded users are in the same communi-
ties. This model might be called probabilistic Latent Semantic
Analysis (pLSA) [11], which was originally developped in
the context of information retrieval [18]. It differs from the
Mixture of Multinomials Model in that the user ratings are
generated from multiple multinomial distributions. This model
allows the users to belong to more than one class. The joint
distribution is given by,

p(ri,1, ri,2, . . . , ri,M ) =
M∏

j=1

C∑
c=1

p(zc|i)p(ri,j |j, zc)δ(ri,j 6=0).

(10)

Note that this model is not a correct generative model since
we need to estimate all the parameters in this model again
whenever a new user comes in. C was chosen in the same
manner as in MIXMULTI. As in MIXMULTI, we stopped
the iteration when the model learning had been repeated a
maximum of 100 turns to avoid overfitting.

• User Rating Profile Model (URP) [12], [13]
This model is a correct generative model version of AM. In

URP, p(zc|i) in eq.(10) is replaced with p(zc|θ)p(θ;α). Here,
p(θ;α) is Dirichlet distribution with the hyper parameter α.
The joint distribution is given by,

p(ri,1, ri,2, . . . , ri,M )

=
∫

θ

p(θ;α)
M∏

j=1

C∑
c=1

p(zc|θ)p(ri,j |j, zc)δ(ri,j 6=0)dθ.

The model parameters of MIXMULTI, AM and URP are
learned by the Expectation-Maximization (EM) algorithm
[12], [19]. C was chosen in the same manner as in MIX-
MULTI. Although this model can make a prediction for the
new user without relearning the model parameters, the learning
algorithm is more complex and requires more computational
time than that of AM. In addition, we found that this model
suffered greatly from the local optima problem. Therefore,
following [12], we used the result provided by MIXMULTI
as the initial prediction values. Moreover, to avoid overfitting,
we stopped the learning iteration at 10 turns (much less than
in AM).
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TABLE II
THE PREDICTION PERFORMANCE OF EACH CF METHOD: A SMALLER VALUE MEANS BETTER PREDICTION PERFORMANCE.

(a) Weak Generalization
OSCF kNNs SF MULTI MIXMULTI AM URP BASE LINE

ML1 AllBut10% 0.456 0.468 0.477 0.488 0.489 0.470 0.487 0.498
AllBut20% 0.457 0.470 0.479 0.490 0.492 0.486 0.492 0.499

ML2 AllBut10% 0.443 0.440 0.459 0.464 0.445 0.416 0.464 0.481
AllBut20% 0.446 0.441 0.459 0.465 0.444 0.419 0.468 0.482

EM AllBut10% 0.445 0.419 0.451 0.463 0.409 0.403 0.465 0.469
AllBut20% 0.447 0.421 ∗ 0.463 0.411 0.405 0.465 0.469

(b) Strong Generalization
OSCF kNNs SF MULTI MIXMULTI AM URP BASE LINE

ML1 AllBut10% 0.450 0.456 0.463 0.477 0.464 - 0.474 0.488
AllBut20% 0.458 0.461 0.469 0.480 0.476 - 0.486 0.493

ML2 AllBut10% 0.446 0.449 0.460 0.467 0.448 - 0.472 0.483
AllBut20% 0.447 0.452 0.461 0.468 0.446 - 0.470 0.484

EM AllBut10% 0.445 0.428 0.456 0.462 0.407 - 0.465 0.469
AllBut20% 0.446 0.430 0.451 0.462 0.406 - 0.464 0.469

TABLE III
THE COMPUTATIONAL TIME OF EACH CF METHOD: A SMALLER VALUE MEANS BETTER SCALABILITY.

(a) Weak Generalization
OSCF kNNs SF MULTI MIXMULTI AM URP BASE LINE

ML1 AllBut10% 0.67 s 1.24 m 5.10 m 0.22 s 11.0 s 5.74 m 4.42 m 0.22 s
AllBut20% 1.00 s 2.19 m 8.67 m 0.21 s 8.33 s 6.40 m 4.39 m 0.22 s

ML2 AllBut10% 11.9 s 2.36 h 22.4 h 4.22 s 10.3 m 1.65 h 1.20 h 4.33 s
AllBut20% 15.0 s 3.82 h 40.4 h 4.11 s 12.8 m 1.67 h 4.00 h 4.22 s

EM AllBut10% 41.3 s 12.2 h 220 h 13.9 s 3.98 h 5.35 h 3.54 h 14.1 s
AllBut20% 50.6 s 21.5 h ∗ 13.8 s 4.71 h 5.48 h 3.18 h 14.2 s

(b) Strong Generalization
OSCF kNNs SF MULTI MIXMULTI AM URP BASE LINE

ML1 AllBut10% 0.44 s 15.8 s 1.01 m 0.18 s 17.0 s - 11.3 m 0.22 s
AllBut20% 0.56 s 31.3 s 1.95 m 0.18 s 17.7 s - 10.2 m 0.11 s

ML2 AllBut10% 8.44 s 11.1 m 4.57 h 3.78 s 11.4 m - 1.48 h 4.08 s
AllBut20% 9.11 s 18.9 m 7.42 h 3.89 s 15.1 m - 1.66 h 3.96 s

EM AllBut10% 29.7 s 1.21 h 59.9 h 12.8 s 4.73 h - 5.13 h 13.8 s
AllBut20% 31.8 s 1.62 h 145 h 12.8 s 4.20 h - 4.20 h 13.4 s

C. RESULTS & DISCUSSION

Tables II and III show the results obtained with a Dual Xeon
3.60GHz CPU and 2GB memory machine. The prediction
performances are shown in Table II and the computational
times are shown in Table III. We refer to our method as
One-Shot Collaborative Filtering (OSCF). BASE LINE is a
prediction method using only eq.(6). Since AM needs to learn
the model parameteres whenever the new user comes in, it
is not applicable for strong genelarization case. Therefore the
corresponding entries are indicated by “-”. In Table III, s,
m and h denote seconds, minutes and hours, respectively.
The figures in these tables are the average values over three
test data sets. Note that the symbol “∗” in Tables II and
III indicates that since the method could not predict ratings
in reasonable time (less than two weeks), we gave up the
computation.

1) Prediction Performance Results: As shown in Table II,
all the methods were able to obtain smaller NMAE values

than BASE LINE for both weak and strong generalizations.
Moreover the prediction performances by all the methods for
large data (EM) were better than those for small data (ML1).
The tendency was particularly dominant with the probabilistic
models (MIXMULTI and AM). This is intuitively reasonable
since larger data have more information than smaller data, and
larger data consist of some similar clusters. Note that the best
C varied in the model and data sets.

From the results, it would be hard to say which method was
the best for all data sets, but we can mention the following
interesting results. In both cases ((a) & (b)), the proposed
method (OSCF) obtained the best performances for small
data (ML1). This indicates that, as we expected, dependent
prediction worked effectively, particularly when the numbers
of users and items were small.

In contrast, for large data (EM) OSCF was worse than the
other methods excluding SF. In particular, the probabilistic
models (MIXMULTI and AM) significantly outperformed the
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other approaches for EM data. This means that the introduction
of the latent classes or communities into the model was
certainly successful for large data sets.

Note that the results of MIXMULTI, AM and URP are
the best results obtained by manually selecting C, and model
initialization of URP are accomplished by using the MIX-
MULTI result, as mentioned before. That is, these models
were advantageous for comparing the best performances of
the models with the proposed method.

The OSCF results for EM were slightly better than those for
ML1 and ML2. However, it is clear that OSCF was the most
stable method. Although MULTI performed relatively stable
for all data, it was worse than OSCF in all cases.

SF was worse than kNN. The main reason is that the SF
parameters were sensitive to the data set and we have to adjust
the SF parameter values according to the data set.

2) Computational Time Results: As shown in Table III, the
larger the data scale became, the more computational time we
needed. However, the increase in the computational time with
respect to data scale varied greatly according to the method.
In both cases ((a) & (b)), OSCF could predict all unobserved
data in significantly less time than the other methods excluding
MULTI and BASE LINE. Although the computational times
of MULTI and BASE LINE were less than that of OSCF, the
differences were negligible compared with that of the other
approaches. In contrast, the computational time of kNNs, SF,
MIXMULTI, AM and URP increased rapidly as the data scale
increased.

The main reason for OSCF being able to provide a predic-
tion in a very short time is that the OSCF prediction algorithm
dose not depend on the matrix scale (N or M ) but on the
number of the target ratings #{Rtar}, while the others depend
on the matrix scale (N or M or NM ).

Here, SF requires a long computational time since this
method has to search for both the nearest-users and the nearest-
items. If we searched for the both nearest-neighbors in parallel,
we would obtain the SF prediction result faster.

It is clear that if we continue the iteration for the parameter
estimation in MIXMULTI, AM and URP more than 100 turns,
it will require more computational time. The scale of the
data set in the real world is incomparably larger than that
of this experiment. Therefore, simply because the prediction
performance is the best, it does not follow that the method is
the best.

V. CONCLUSIONS

We proposed a CF method that predicts all target ratings
simultaneously. Our method predicts one unobserved rating
taking the predicted values for the other unrated data into
consideration, while the conventional methods predict the
unobserved rating individually. Experimental results showed
that the proposed method provides a comparable prediction
performance to the conventional CF methods in a significantly
shorter time. As our method needs only the MAR assumption,
we can use it for a wide variety of missing data.
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