

Abstract— During knowledge acquisition, a new attribute can
be added at any time. In such a case, rule generated by the
training data with the former attribute set can not be used.
Moreover, the rule can not be combined with the new data set
with the newly added attribute(s) using the existing algorithms.
In this paper, we propose further development of the new
inference engine, UChoo, that can handle the above case
naturally. Rule generated from the former data set can be
combined with the new data set to form the refined rule. This
paper shows how this can be done consistently by the extended
data expression, and also shows the experimental result to claim
the effectiveness of the algorithm.

I. INTRODUCTION
biquitous computing was introduced as the leader of the
third revolution of information by Mark Weiser, in 1989.

Since then, the concept of 'ubiquitous' has been recognized as
the core of the paradigm of the information industry to come.
The governments, the global companies, and the major
research labs in the States, Japan, and Europe are developing
the technologies related to the 'ubiquitousness' intensively in
order to preoccupy the knowledge of this new area and to
strengthen the ability in competition.

Ubiquitous environment means the environment where
people can get free access to network any time, anywhere,
irrespective of time and place, and no matter what devices
they use. Mark Weiser indicated three problems for building
the ubiquitous environment: First, how to design the chips for
low power, Second how to provide the wireless
communication network of high bandwidth for the
communications among several hundreds of devices. Last,
how to interact between user and computer.

Ubiquitous computing environment is meant to be the
wireless communication network of many computers which
are hidden in the environment. The goal of the Ubiquitous
environment is to provide the users with the convenient
services. In order to do that, we need to be able to extract the
specific information for users out of the daily life as quickly
and accurately as possible. Also, we have to be able to give
the appropriate information to the users even by inferring the

Dong-Hun Seo is a Ph.D. candidate at the Department of Computer

Science and Engineering at ChungNam National University (e-mail:
sm1835dh@hanmail.net)

Chi-Hwa Song is a Professor at the Department of Computer Science and
Engineering at ChungNam National University (e-mail: chsong@cnu.ac.kr)

Won Don Lee is a Professor at the Computer Science and Engineering
Department, ChungNam National University, DaeJeon, KOREA since 1987.
(corresponding author to provide phone: +82 42 821-5448 e-mail:
wlee@cnu.ac.kr)

This research is in part supported by Korean post BK program.

information which was obtained from many various sensors
in the ubiquitous environment. This is the identical
classification problem that has been dealt in the fields of
machine learning and data mining.

In this paper, we use the extended data expression of
UChoo, the inference engine proposed by Lee et al. in [1],
which Lee suggested based on the classification algorithm of
Quinlan, C4.5[2][4][7]. In that paper Lee proposed a method
of inference by combining the newly added data into the
existing classifier when a new sensor is added to the
ubiquitous environment. C4.5 is the classification algorithm
which was extended from ID3 and minimizes the usage of
memory and shows a fast and good result. In using UChoo,
we transform the training data into an extended expression
form and construct a decision tree based upon it and generate
a rule from the constructed decision tree. We propose an
algorithm of inference engine that can systematically
construct a decision tree from the data set formed with the
newly added sensor.

II. EXTENDED TRAINING DATA SET EXPRESSION AND
GENERATION OF RULE

A. UChoo : A New Classifier Based on Extended Data
Expression

Table I shows a general expression of the training data set
in C4.5. Table I consists of two discrete attributes, one
continuous attribute and a class. The Outlook attribute has
three outcomes of sunny, overcast and rain. Windy? has two
outcomes of true and false. Both Outlook and Wind? are
discrete attributes. And Temp(OF) is a continuous attribute
whose values ranges from 60 to 80. Finally, Class has two
values with Play and Don’t Play.

Table II shows the modified expression of the training data
set of Table I. Each entry is to be filled with a probabilistic
value range from 0 to 1.

For example, consider Table III. Data in Table III can be
made by an expert in this field or can be generated from a
decision tree. Below we describe how to fill in the table entry
as in Table III using a decision tree in the following section in
detail. In case an expert says that it is sunny and the
temperature is around 70 and the probability to play is 2/3 no
matter it is windy or not, we can express the case as the event
#1 shown on the first row of the Table III.

Here we redefine a tuple or instance as the one represented
as on row entry with weight value of 1 at the above Table III.
In other words, each attribute can have distribution over the
possible class values in a tuple or instance. And each row of

A Classifier Capable of Handling New Attributes
Dong-Hun Seo, Chi-Hwa Song, Won Don Lee

U

323

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

TABLE II
Extended data expression tranformed from Table I

Outlook Temp(OF) Windy? Class Event#
sunny overcast rain 60 70 80 True False Play Don’t Play

1 1 0 0 0 1 0 0 1 0 1
2 1 0 0 1 0 0 1 0 1 0
3 0 1 0 0 0 1 0 1 1 0
4 0 0 1 1 0 0 1 0 0 1
5 0 0 1 0 1 0 0 1 1 0
6 0 0 1 0 0 1 1 0 0 1

TABLE III
Extended data expression with weights

Outlook Temp(OF) Windy? Class
Event# Weight(i)

sunny overcast rain 60 70 80 True False Play Don’t Play
1 30 1 0 0 0 1 0 1/2 1/2 2/3 1/3
2 1 1 0 0 1 0 0 1 0 1 0
3 1 0 1 0 0 0 1 0 1 1 0
4 1 0 0 1 1 0 0 1 0 0 1
5 1 0 0 1 0 1 0 0 1 1 0
6 1 0 0 1 0 0 1 1 0 0 1

TABLE I
Training Data Set Used in Example

Outlook Temp(OF) Windy? Class
Sunny 70 false Don’t Play
Sunny 60 true Play
Overcast 80 false Play

Rain 60 true Don’t Play
Rain 70 false Play
Rain 80 true Don’t Play

Table III has a weight value, which show how much
importance the event has. For example, if expert assume that
each observed instance has weight of 1 for the importance,
the weight value shows how much importance the event has
compared with an instance with a weight of 1. The event at
the first row of the above Table III has the weight value of 30.
In other words, the event has the importance equivalent to
that of 30 instances.

Here, an event is a collection of instances with equal
attribute value distribution and class value distribution. The
event whose weight is 1 can be considered as the instance
itself. Therefore, the number of events may not be equal to
that of all the instances. For example, in Table III the number
of all the instances is 35 while the number of the events is 6.
The number of all the instances in a data set T is denoted as |T|
and the number of the event is p.

Therefore, we can have newly modified entropy equations
by using these weight values as follows.

A is an attribute and k is the number of values of a class and
n is the number of outcomes of an attribute. For a continuous
attribute, n is 2.

Class membership weight :
C1(m), C2(m), ………. Ck-1(m), Ck(m).

Ci(m) expresses how much the mth event belongs to the

class Ci.

Here, 1)(
1

=∑
=

k

i

mCi

Outcome membership weight :

 OA1(m), OA2(m), ……… OA(n-1) (m), OAn(m)

OAj(m) is the value which shows how much the outcome
value j in the attribute A can happen in the mth event.

Here, 1)(
1

=∑
=

n

j

mOAj

TAj : It is the subset of T that has the outcome value j about
the attribute A. For example, as the attribute Outlook has
three values of sunny, overcast and rain, the set T is divided
into three subsets.

p(T) : The number of events in the set T.
Weight(m,T) : Weight value of the mth event in the set T.
freq(Ci, T) : It is the number of instances in the set T, which

have the class value of Ci.
In this case,

freq(Ci ,T) = ∑
=

⋅
)(

1

)(),(
Tp

m

mCiTmWeight

freq(Ci, TAj) : the number of instances in the set TAj, which
have the class value of Ci.

freq(Ci ,TAj) = ∑
=

)(

1

),(
Tp

m

TmWeight)()(mOmC Aji ⋅⋅

|T| : The number of instances in the set T. An instance
means the event whose weight is 1 in here. Therefore, if an
event has the weight, W, it means that there are W number of
instances with the equal distribution values of attributes and
class.

|TAj| : The number of instances in the set TAj.

| TAj| = ∑
=

⋅
)(

1

)(),(
Aj

AjAj

Tp

m

mTmWeight O

In this case, by multiplying OAj(m), the outcome possibility
value of each event in TAj, by weight(m,TAj) for each m and
adding the results of all the multiplications, we get |TAj|.

324

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

TABLE IV

The Extended data expression made from Fig. 3
Outlook Temp(OF) Windy? Class Event# Weight(i)

sunny overcast rain 60 70 80 True False Play Don’t Play
1 1 1 0 0 1 0 0 1/2 1/2 1 0
2 1 1 0 0 0 1/2 1/2 1/2 1/2 0 1
3 1 0 1 0 1/3 1/3 1/3 1/2 1/2 1 0
4 3 0 0 1 1/3 1/3 1/3 1/2 1/2 1/3 2/3

TABLE V
A new training data set

Outlook Temp(OF) Windy? Class Evnet# Weight(i)
sunny overcast rain 60 70 80 True False Play Don’t Play

1 1 0 1 0 1 0 0 1 0 1 0
2 1 1 0 0 0 1 0 1 0 0 1
3 1 0 1 0 0 0 1 0 1 1 0
4 1 0 0 1 1 0 0 1 0 1 0

Therefore, we can decide the attribute which has the

biggest Gain_ratio in the node by using the existing entropy
equations with these newly defined values. Here,

Gain_ratio(A) = Gain(A) / Split_info(A) is used as in
C4.5,and the Gain(A) is the mutual information between the
class and the attribute A, and the Split_info(A) is the
normalization constant so that the number of the outcomes of
the attribute A do not affect in the information measure. Refer
[1] how UChoo builds the decision tree using above
definitions and the information measures.

B. Generation of the Rule
The rule refinement problem is to construct a new tree by

adding the new data into the rule which is constructed from
the original data set.

Fig. 1. Decision tree

Let the original data set be as in Table I. Table II shows the
same data set in the extended data expression. Using the set,
UChoo generates the tree as in Fig. 3 using the equations
described in the section 2.1. From Fig. 3, the rule can be
extracted as in Table IV. Now, assume that a new data set is
collected as in Table V. UChoo can construct a new decision
tree. This is consistent with the generation of the decision tree
from the training data only, as there is no difference in the
data representation between the training data and the rule.
Note, for instance, that in the extended data expression a leaf
node of the decision tree with m C1 events and n C2 events
can be described as if a data event with the weight of (m+n)
and with probability of being C1 as m/(m+n) and with
probability of being C2 as n/(m+n). In other words, the

suggested extended data expression deals with the rule and
the individual event coherently and therefore makes no
difference in using and treating them in making the decision
tree. This feature is so nice and advantageous that we do not
have to worry about how to refine the decision tree with the
heuristics. This kind of approach can not only be used in the
decision tree-like classifier, but also can be used as in other
forms of the classifier as well. This is, as far as we are aware
of, is the first attempt of its kind in the rule refinement
research area. We not only do not have to use the heuristics to
discriminate between the expert driven rule and the training
data, but also can use the inference engine algorithm
consistently in rule refinement. The communication between
the expert and the machine can be natural as the algorithm
does not discriminate between the two rules from the machine
and the expert. The thing left is how to control or assign the
importance of the expert driven rule compared with the
training data or the machine generated rule. This is again the
traditional design problem that an engineer encounters. There
is, however, a measure of how important the machine
generated rule is, i.e., the number of the data events belonging
to the leaf nodes of the decision tree can be a natural estimate
of the importance of the rule when one considers each event
having the default importance value of one.

III. EXPERIMENT
Assume that we have one original data set with n attributes.

And as times goes by, a new sensor is added to the network,
and therefore new attributes are added to the already existing
attributes. The data collected with these attributes constitutes
a new data set to refine the former rule generated from the
original data set.

We perform the experiment using the data sets collected at
UCI Machine Repository[6]. Those data sets do not include
missing or unknown value. We assume that we know the
range of the newly added attributes' values.

The data in our experiment is divided into 10 blocks.
Among them, 9 blocks are for the training and the rest one is
for testing. And the testing data set is used to measure the

325

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

TABLE VIII

Extended data expression with a new attribute

error rate. We try to make each block having the similar
distribution of the classes with that of the classes in the total
data set. This is called as the 10-fold cross validation. Each of
the UCI data set is divided into 10 blocks: 9 blocks for the
training, 1 block for the testing. After making the 9 blocks,
those 9 blocks are again divided randomly into 2 blocks,
Training1 and Training2 as in Fig. 1. These two blocks are
finally used as the training data set for UChoo.

Fig. 2. Rule refinement

Fig. 3. Rule refinement when new attributes are added

For the experiment of the rule refinement, we first
generated a rule, Rule1 as in Fig. 1, using the Training1. By
adding the Training2 to the Rule1, a new rule, Rule1’ in Fig. 1,
is generated. Note that the Rule1 and the Training2 are
described in the same way in the extended data expression.
The result is shown in the column UChoo in Tables 6 and 7.
Note that in the Letter data C4.5 is better, but in the Iris data
UChoo outperforms C4.5. Here, note that C4.5 uses all the
raw data, Training1 and Training2, to generate the rule,
whereas UChoo used the rule generated only the Training1
and the data Training2 to generate the refined rule, Rule1’, as
in Fig. 1. If UChoo generated the rule from the raw data,
Training1 and Training2, then the result would have been the
same as C4.5. Now, however, as UChoo generated refined
rule from the Rule1 and Training2, the performance should
not be better than the case when generating the rule directly

from the raw data, as the information content of the Rule1
might be less than or equal to that of the raw data. As we
know, the rule is a generalization of the example data set and
therefore loses some of the possible information contained in
the original data set and therefore the information content of
the rule should be always less than or equal to that of the raw
data set. In that sense, the fact that the performance of the
UChoo is comparable to or outperformed C4.5 indicates that
UChoo truly is a powerful inference engine in doing the
classification. One might wonder why the performance of the
UChoo is sometimes even better than that of the C4.5, if the
information content of the Rule1 is less than that of the
Training1. The thing is that Rule1 can be used as the
‘guidance’ to lead to the main hyperspace for a given class
and the Training2 can be used in making the chosen space in
detail. In other words, the so called problem of ‘overlearning’
can be avoided as we refine if the former rule, instead of the
former data set, is used in making a new rule. In that way, a
rule generated by UChoo can be more efficient than that
generated by C4.5.

Now, to experiment the case with the new attribute(s), we
remove an attribute from Training1 and name it as Training3.
From Training3, Rule2 is made by UChoo as in Fig. 2. Table
VIII shows an example case when a new attribute
‘Homework’ is added to the former attributes. The old data
set consists 4 events, numbered from 1 to 4, and there are only
three attributes, Outlook, Temp and Windy?. As the old data
set does not have the new attribute ‘Homework’ its value is
treated as ‘don’t care’ values, and hence the Homework
outcomes have values of 1/2 as there are two outcomes. The
new data events are numbered from 5 to 7, and note that the
data set, either old or new, are all in the same form, naturally
represented in the extended data expression form. Using this
table, UChoo can generate the refined rule systematically.

The column Training3 in Tables 6 and 7 indicate the error
rate of this case. Note that the error rate if pretty high as one
attribute is missing. It shows that the attribute has some
mutual information with the class and therefore is not a
useless one. Traing4, having all the attributes, therefore has
one more attribute than the Training3. The Rule2 is combined
with the Training4 to form the Rule2’ by UChoo. The

326

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

performance of the Rule2’ thus generated is shown in the
column ‘Training4 + Rule2’ in Table VI and 7. Note that the
performance of the ‘Training4 + Rule2’ is better than
‘UChoo’ in Letter data case and worse in Iris case, though the
differences are minute. In this case, when a rule made from
the already existing attributes is combined with the newly
added training set, the refined rule is still efficient in making
decisions. In this way, we do not have to throw away the
former ‘experience’, and still can use those former
information. As ubiquitous computing environment gets
more attention, many new sensors will be added to the
network. Each time new sensors are added, we do not have
throw away the old data set, simply because it lacks some
sensors, but still can utilize it. Also, when the size of the
collected new data set is small, the rule generated from the
new data set only will not have high performance. Therefore,
utilizing the former data set or the former rule becomes
important. Also, when the former data set is lost or should be
thrown away because of the memory limitation, using the
former rule becomes important. As we mentioned already
above, the ‘guidance’ role of the rule becomes sometimes
important and the feature UChoo has is actually becomes
powerful in that sense.

TABLE VI

Letter data

TABLE VII

Iris data

IV. CONCLUSION
In this paper, a method of a new inference engine is

proposed that is capable of not only making a decision tree for

a given data set, but also making one with the already
generate rule and the data set. One can easily see that this
algorithm also can generate the rule from many old rules only,
without any data set. It becomes possible because the rule and
the data set are represented in the same format, as suggested
in the extended data expression form. Experiment shows that
this method is not only natural in making the expert and the
machine communicate coherently, but also powerful enough
to be used for a classifier.

Another important issue dealt with is that when new
sensors are added to the modern ubiquitous computing
environment, and hence new attributes are added or deleted,
the algorithm naturally generates the rule using the
information available. The rule thus made is shown to be
comparable with that generated from the raw data set.
Although memory limitation is set or when the data is lost, the
algorithm still can utilize the information contained in the
formerly generated rule systematically.

In the future, we would like to test the case when newly
added attribute has a non-uniform distribution. Also, finding
out the right way to prune the decision tree will be another
issue to examine closely.

REFERENCES
[1] Dong-Hui Kim, Dong-Hyeok Lee and Won Don Lee, "Classifier using

Extended Data Expression", IEEE Mountain Workshop on Adaptive
and Learning Systems, pp. 154-159, July. 2006

[2] J. R. Quinlan, “C4.5:Program for Machine Learning” ,San Mateo, Calif,
Morgan Kaufmann, 1993.

[3] T. S. Lim, W. Y. Loh, and Y. S. Shih, "A Comparison of Prediction
Accuracy, Complexity, and Training Time of Thirty-Tree Old and New
Classification Algorithms", Machine Learning, vol. 40, no. 3, pp.
203-228, Sept.2000.

[4] J. R. Quinlan, "Bagging, Boosting, and C4.5," AAAI/IAAI , vol. 1,
1996.

[5] Pang-Ning Tan, Michael SteinBach, Vipin Kumar,“Introduction to
DATA MINING”, Addison Wesely, pp. 207-312, 2005

[6] http://www.ics.uci.edu/~mlearn/MLRepository.html, UCI Machine
Learning, 1998

[7] Ronny Kohavi, J. R. Quinlan, “Data mining tasks and methods:
Classification: Decision-tree discovery”, Handbook of data mining and
knowledge discovery, Oxford University Press, pp. 267-276, 2002.

327

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

