
 
 

 

  

Abstract— During knowledge acquisition, a new attribute can 
be added at any time. In such a case, rule generated by the 
training data with the former attribute set can not be used. 
Moreover, the rule can not be combined with the new data set 
with the newly added attribute(s) using the existing algorithms. 
In this paper, we propose further development of the new 
inference engine, UChoo, that can handle the above case 
naturally. Rule generated from the former data set can be 
combined with the new data set to form the refined rule.  This 
paper shows how this can be done consistently by the extended 
data expression, and also shows the experimental result to claim 
the effectiveness of the algorithm. 

I. INTRODUCTION 
biquitous computing was introduced as the leader of the 
third revolution of information by Mark Weiser, in 1989. 

Since then, the concept of 'ubiquitous' has been recognized as 
the core of the paradigm of the information industry to come. 
The governments, the global companies, and the major 
research labs in the States, Japan, and Europe are developing 
the technologies related to the   'ubiquitousness' intensively in 
order to preoccupy the knowledge of this new area and to 
strengthen the ability in competition. 

Ubiquitous environment means the environment where 
people can get free access to network any time, anywhere, 
irrespective of time and place, and no matter what devices 
they use. Mark Weiser indicated three problems for building 
the ubiquitous environment: First, how to design the chips for 
low power, Second how to provide the wireless 
communication network of high bandwidth for the 
communications among several hundreds of devices. Last, 
how to interact between user and computer. 

Ubiquitous computing environment is meant to be the 
wireless communication network of many computers which 
are hidden in the environment. The goal of the Ubiquitous 
environment is to provide the users with the convenient 
services. In order to do that,  we need to be able to extract the 
specific information for users out of the daily life as quickly 
and accurately as possible. Also, we have to be able to give 
the appropriate information to the users even by inferring the 
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information which was obtained from many various sensors 
in the ubiquitous environment. This is the identical 
classification problem that has been dealt in the fields of 
machine learning and data mining. 

In this paper, we use the extended data expression of 
UChoo, the inference engine proposed by Lee et al. in [1], 
which Lee suggested based on the classification algorithm of 
Quinlan, C4.5[2][4][7]. In that paper Lee proposed a method 
of inference by combining the newly added data into the 
existing classifier when a new sensor is added to the 
ubiquitous environment. C4.5 is the classification algorithm 
which was extended from ID3 and minimizes the usage of 
memory and shows a fast and good result. In using UChoo, 
we transform the training data into an extended expression 
form and construct a decision tree based upon it and generate 
a rule from the constructed decision tree. We propose an 
algorithm of inference engine that can systematically 
construct a decision tree from the data set formed with the 
newly added sensor.  

II. EXTENDED TRAINING DATA SET EXPRESSION AND 
GENERATION OF RULE  

A. UChoo : A New Classifier Based on Extended Data 
Expression  

Table I shows a general expression of the training data set 
in C4.5. Table I consists of two discrete attributes, one 
continuous attribute and a class. The Outlook attribute has 
three outcomes of sunny, overcast and rain. Windy? has two 
outcomes of true and false. Both Outlook and Wind? are 
discrete attributes. And Temp(OF) is a continuous attribute 
whose values ranges from 60 to 80. Finally, Class has two 
values with Play and Don’t Play.  

Table II shows the modified expression of the training data 
set of Table I. Each entry is to be filled with a probabilistic 
value range from 0 to 1.  

For example, consider Table III. Data in Table III can be 
made by an expert in this field or can be generated from a 
decision tree. Below we describe how to fill in the table entry 
as in Table III using a decision tree in the following section in 
detail. In case an expert says that it is sunny and the 
temperature is around 70 and the probability to play is 2/3 no 
matter it is windy or not, we can express the case as the event 
#1 shown on the first row of the Table III.  

Here we redefine a tuple or instance as the one represented 
as on row entry with weight value of 1 at the above Table III. 
In other words, each attribute can have distribution over the 
possible class values in a tuple or instance. And each row of  

A Classifier Capable of Handling New Attributes 
Dong-Hun Seo, Chi-Hwa Song, Won Don Lee 

U 

323

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE



 
 

 

TABLE II  
Extended data expression tranformed from Table I 

Outlook Temp(OF) Windy? Class Event# 
sunny overcast rain 60 70 80 True False Play Don’t Play

1 1 0 0 0 1 0 0 1 0 1 
2 1 0 0 1 0 0 1 0 1 0 
3 0 1 0 0 0 1 0 1 1 0 
4 0 0 1 1 0 0 1 0 0 1 
5 0 0 1 0 1 0 0 1 1 0 
6 0 0 1 0 0 1 1 0 0 1 

TABLE III  
Extended data expression with weights 

Outlook Temp(OF) Windy? Class 
Event# Weight(i) 

sunny overcast rain 60 70 80 True False Play Don’t Play 
1 30 1 0 0 0 1 0 1/2 1/2 2/3 1/3 
2 1 1 0 0 1 0 0 1 0 1 0 
3 1 0 1 0 0 0 1 0 1 1 0 
4 1 0 0 1 1 0 0 1 0 0 1 
5 1 0 0 1 0 1 0 0 1 1 0 
6 1 0 0 1 0 0 1 1 0 0 1 

TABLE I  
Training Data Set Used in Example 

Outlook Temp(OF) Windy? Class 
Sunny 70 false Don’t Play 
Sunny 60 true Play 
Overcast 80 false Play 

Rain 60 true Don’t Play 
Rain 70 false Play 
Rain 80 true Don’t Play 

Table III has a weight value, which show how much 
importance the event has. For example, if expert assume that 
each observed instance has weight of 1 for the importance, 
the weight value shows how much importance the event has 
compared with an instance with a weight of 1. The event at 
the first row of the above Table III has the weight value of 30. 
In other words, the event has the importance equivalent to 
that of 30 instances. 

Here, an event is a collection of instances with equal 
attribute value distribution and class value distribution. The 
event whose weight is 1 can be considered as the instance 
itself. Therefore, the number of events may not be equal to 
that of all the instances. For example, in Table III the number 
of all the instances is 35 while the number of the events is 6. 
The number of all the instances in a data set T is denoted as |T| 
and the number of the event is p. 

Therefore, we can have newly modified entropy equations 
by using these weight values as follows. 

A is an attribute and k is the number of values of a class and 
n is the number of outcomes of an attribute. For a continuous 
attribute, n is 2. 

Class membership weight  : 
C1(m), C2(m), ………. Ck-1(m), Ck(m). 

 
Ci(m) expresses how much the mth event  belongs to the 

class Ci.  

Here, 1)(
1

=∑
=

k

i

mCi  

Outcome membership weight :  

  OA1(m), OA2(m), ……… OA(n-1) (m), OAn(m) 

OAj(m) is the value which shows how much the outcome 
value j in the attribute A can happen in the mth event. 

Here,  1)(
1

=∑
=

n

j

mOAj  

TAj  : It is the subset of  T that has the outcome value j about 
the attribute A. For example, as the attribute Outlook has 
three values of sunny, overcast and rain, the set T is divided 
into three subsets. 

p(T) : The number of events in the set T. 
Weight(m,T) : Weight value of the mth event in the set T. 
freq(Ci, T) : It is the number of instances in the set T, which 

have the class value of Ci. 
In this case, 

freq(Ci ,T) = ∑
=

⋅
)(

1

)(),(
Tp

m

mCiTmWeight  

freq(Ci, TAj)  :  the number of instances in the set TAj, which 
have the class value of Ci. 

freq(Ci ,TAj) = ∑
=

)(

1

),(
Tp

m

TmWeight )()( mOmC Aji ⋅⋅  

|T| : The number of instances in the set T. An instance 
means the event whose weight is 1 in here. Therefore, if an 
event has the weight, W, it means that there are W number of 
instances with the equal distribution values of attributes and 
class. 

|TAj| : The number of  instances in the set TAj. 

| TAj| = ∑
=

⋅
)(

1

)(),(
Aj

AjAj

Tp

m

mTmWeight O  

In this case, by multiplying OAj(m), the outcome possibility 
value of each event in TAj, by weight(m,TAj) for each m and 
adding the results of all the multiplications, we get |TAj|.
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TABLE IV  

The Extended data expression made from Fig. 3 
Outlook Temp(OF) Windy? Class Event# Weight(i) 

sunny overcast rain 60 70 80 True False Play Don’t Play
1 1 1 0 0 1 0 0 1/2 1/2 1 0 
2 1 1 0 0 0 1/2 1/2 1/2 1/2 0 1 
3 1 0 1 0 1/3 1/3 1/3 1/2 1/2 1 0 
4 3 0 0 1 1/3 1/3 1/3 1/2 1/2 1/3 2/3 

TABLE V  
A new training data set 

Outlook Temp(OF) Windy? Class Evnet# Weight(i) 
sunny overcast rain 60 70 80 True False Play Don’t Play

1 1 0 1 0 1 0 0 1 0 1 0 
2 1 1 0 0 0 1 0 1 0 0 1 
3 1 0 1 0 0 0 1 0 1 1 0 
4 1 0 0 1 1 0 0 1 0 1 0 

 
Therefore, we can decide the attribute which has the 

biggest Gain_ratio in the node by using the existing entropy 
equations with these newly defined values. Here,  

Gain_ratio(A) = Gain(A) / Split_info(A) is used as in 
C4.5,and the Gain(A) is the mutual information between the 
class and the attribute A, and the Split_info(A) is the 
normalization constant so that the number of the outcomes of 
the attribute A do not affect in the information measure. Refer 
[1] how UChoo builds the decision tree using above 
definitions and the information measures.  

B. Generation of the Rule  
The rule refinement problem is to construct a new tree by 

adding the new data into the rule which is constructed from 
the original data set. 

 
Fig. 1. Decision tree 

Let the original data set be as in Table I. Table II shows the 
same data set in the extended data expression. Using the set, 
UChoo generates the tree as in Fig. 3 using the equations 
described in the section 2.1. From Fig. 3, the rule can be 
extracted as in Table IV. Now, assume that a new data set is 
collected as in Table V. UChoo can construct a new decision 
tree. This is consistent with the generation of the decision tree 
from the training data only, as there is no difference in the 
data representation between the training data and the rule. 
Note, for instance, that in the extended data expression a leaf 
node of the decision tree with m C1 events and n C2 events 
can be described as if a data event with the weight of (m+n) 
and with probability of being C1 as m/(m+n) and with 
probability of being C2 as n/(m+n). In other words, the 

suggested extended data expression deals with the rule and 
the individual event coherently and therefore makes no 
difference in using and treating them in making the decision 
tree. This feature is so nice and advantageous that we do not 
have to worry about how to refine the decision tree with the 
heuristics. This kind of approach can not only be used in the 
decision tree-like classifier, but also can be used as in other 
forms of the classifier as well. This is, as far as we are aware 
of, is the first attempt of its kind in the rule refinement 
research area.  We not only do not have to use the heuristics to 
discriminate between the expert driven rule and the training 
data, but also can use the inference engine algorithm 
consistently in rule refinement. The communication between 
the expert and the machine can be natural as the algorithm 
does not discriminate between the two rules from the machine 
and the expert. The thing left is how to control or assign the 
importance of the expert driven rule compared with the 
training data or the machine generated rule. This is again the 
traditional design problem that an engineer encounters. There 
is, however, a measure of how important the machine 
generated rule is, i.e., the number of the data events belonging 
to the leaf nodes of the decision tree can be a natural estimate 
of the importance of the rule when one considers each event 
having the default importance value of one. 

III. EXPERIMENT 
Assume that we have one original data set with n attributes. 

And as times goes by, a new sensor is added to the network, 
and therefore new attributes are added to the already existing 
attributes. The data collected with these attributes constitutes 
a new data set to refine the former rule generated from the 
original data set.  

We perform the experiment using the data sets collected at 
UCI Machine Repository[6]. Those data sets do not include 
missing or unknown value. We assume that we know the 
range of the newly added attributes' values.  

The data in our experiment is divided into 10 blocks. 
Among them, 9 blocks are for the training and the rest one is 
for testing. And the testing data set is used to measure the  
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TABLE VIII 

Extended data expression with a new attribute 

 
error rate. We try to make each block having the similar 
distribution of the classes with that of the classes in the total 
data set. This is called as the 10-fold cross validation. Each of 
the UCI data set is divided into 10 blocks: 9 blocks for the 
training, 1 block for the testing. After making the 9 blocks, 
those 9 blocks are again divided randomly into 2 blocks, 
Training1 and Training2 as in Fig. 1. These two blocks are 
finally used as the training data set for UChoo. 

 
Fig.  2. Rule refinement 

 
Fig.  3. Rule refinement when new attributes are added  

For the experiment of the rule refinement, we first 
generated a rule, Rule1 as in Fig. 1, using the Training1. By 
adding the Training2 to the Rule1, a new rule, Rule1’ in Fig. 1, 
is generated. Note that the Rule1 and the Training2 are 
described in the same way in the extended data expression. 
The result is shown in the column UChoo in Tables 6 and 7. 
Note that in the Letter data C4.5 is better, but in the Iris data 
UChoo outperforms C4.5. Here, note that  C4.5 uses all the 
raw data, Training1 and Training2, to generate the rule, 
whereas UChoo used the rule generated only the Training1 
and the data Training2 to generate the refined rule, Rule1’, as 
in Fig. 1. If UChoo generated the rule from the raw data, 
Training1 and Training2, then the result would have been the 
same as C4.5. Now, however, as UChoo generated refined 
rule from the Rule1 and Training2, the performance should 
not be better than the case when generating the rule directly 

from the raw data, as the information content of the Rule1 
might be less than or equal to that of the raw data. As we 
know, the rule is a generalization of the example data set and 
therefore loses some of the possible information contained in 
the original data set and therefore the information content of 
the rule should be always less than or equal to that of the raw 
data set. In that sense, the fact that the performance of the 
UChoo is comparable to or outperformed C4.5 indicates that 
UChoo truly is a powerful inference engine in doing the 
classification. One might wonder why the performance of the 
UChoo is sometimes even better than that of the C4.5, if the 
information content of the Rule1 is less than that of the 
Training1. The thing is that Rule1 can be used as the 
‘guidance’ to lead to the main hyperspace for a given class 
and the Training2 can be used in making the chosen space in 
detail. In other words, the so called problem of ‘overlearning’ 
can be avoided as we refine if the former rule, instead of the 
former data set, is used in making a new rule. In that way, a 
rule generated by UChoo can be more efficient than that 
generated by C4.5.  

Now, to experiment the case with the new attribute(s), we 
remove an attribute from Training1 and name it as Training3. 
From Training3, Rule2 is made by UChoo as in Fig. 2. Table 
VIII shows an example case when a new attribute 
‘Homework’ is added to the former attributes. The old data 
set consists 4 events, numbered from 1 to 4, and there are only 
three attributes, Outlook, Temp and Windy?. As the old data 
set does not have the new attribute ‘Homework’ its value is 
treated as ‘don’t care’ values, and hence the Homework 
outcomes have values of 1/2 as there are two outcomes. The 
new data events are numbered from 5 to 7, and note that the 
data set, either old or new, are all in the same form, naturally 
represented in the extended data expression form. Using this 
table, UChoo can generate the refined rule systematically.  

The column Training3 in Tables 6 and 7 indicate the error 
rate of this case. Note that the error rate if pretty high as one 
attribute is missing. It shows that the attribute has some 
mutual information with the class and therefore is not a 
useless one.  Traing4, having all the attributes, therefore has 
one more attribute than the Training3. The Rule2 is combined 
with the Training4 to form the Rule2’ by UChoo. The 
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performance of the Rule2’ thus generated is shown in the 
column ‘Training4 + Rule2’ in Table VI and 7. Note that the 
performance of the ‘Training4 + Rule2’ is better than 
‘UChoo’ in Letter data case and worse in Iris case, though the 
differences are minute. In this case, when a rule made from 
the already existing attributes is combined with the newly 
added training set, the refined rule is still efficient in making 
decisions. In this way, we do not have to throw away the 
former ‘experience’, and still can use those former 
information. As ubiquitous computing environment gets 
more attention, many new sensors will be added to the 
network. Each time new sensors are  added, we do not have 
throw away the old data set, simply because it lacks some 
sensors, but still can utilize it. Also, when the size of the 
collected new data set is small, the rule generated from the 
new data set only will not have high performance. Therefore, 
utilizing the former data set or the former rule becomes 
important. Also, when the former data set is lost or should be 
thrown away because of the memory limitation, using the 
former rule becomes important. As we mentioned already 
above, the ‘guidance’ role of the rule becomes sometimes 
important and the feature UChoo has is actually becomes 
powerful in that sense.  

TABLE VI  

Letter data 

 
TABLE VII 

Iris data 

 

IV. CONCLUSION 
In this paper, a method of a new inference engine is 

proposed that is capable of not only making a decision tree for 

a given data set, but also making one with the already 
generate rule and the data set. One can easily see that this 
algorithm also can generate the rule from many old rules only, 
without any data set. It becomes possible because the rule and 
the data set are represented in the same format, as suggested 
in the extended data expression form. Experiment shows that 
this method is not only natural in making the expert and the 
machine communicate coherently, but also powerful enough 
to be used for a classifier.  

Another important issue dealt with is that when new 
sensors are added to the modern ubiquitous computing 
environment, and hence new attributes are added or deleted, 
the algorithm naturally generates the rule using the 
information available. The rule thus made is shown to be 
comparable with that generated from the raw data set. 
Although memory limitation is set or when the data is lost, the 
algorithm still can utilize the information contained in the 
formerly generated rule systematically.  

In the future, we would like to test the case when newly 
added attribute has a non-uniform distribution. Also, finding 
out the right way to prune the decision tree will be another 
issue to examine closely. 
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