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Abstract— In recent applications of clustering such as gene
expression microarray analysis, collaborative filtering, and web
mining, object similarity is no longer measured by physical
distance, but rather by the behavior patterns objects manifest or
the magnitude of correlations they induce. Current state of the
art algorithms aiming at this type of clustering typically postulate
specific cluster models that are able to capture only specific
behavior patterns or correlations, and omit the possibility that
other information carrying patterns or correlations may coexist in
the data. We cast the problem of searching for pattern clusters or
clusters that induce large correlations in some subset of features
into the problem of searching for groups of points embedded
in lines. The advantage of this approach is that is allows the
clustering of different patterns or correlations simultaneously. It
also allows the clustering of patterns and correlations that are
overlooked by existing methods. A formal stochastic line cluster
model is presented and its connection to correlation is established.
Based on this model an algorithm, which uses feature selection
to search for line clusters embedded in subspaces of the data is
presented.

I. INTRODUCTION

Interest in clustering as a data mining technique has in-
creased substantially in recent years due to new areas of ap-
plication such as DNA microarray analysis in bioinformatics,
document clustering of web pages, image segmentation in
computer vision, and recommendation or collaborative �ltering
systems in E-commerce. Many of these applications are now
characterized by high dimensional data. An important advance
in this area was the introduction of subspace clustering [1],
[2], [3], [4] in an attempt to face the new challenges posed by
high dimensional data. A subspace cluster consists of a subset
of points and a corresponding subset of features (dimensions),
such that these points form a dense region in a subspace
de�ned by the set of corresponding features.

Traditional clustering methods including those used in
subspace clustering focus on grouping objects with similar
values. They de�ne object similarity by the “physical” distance
between the objects over all or a subset of dimensions, which
in turn may not be adequate to capture correlations in the
data. A set of points may be located far away from each
other yet induce large correlations among some subset of
dimensions. The detection of correlations is a an important
data mining task because correlations may reveal a dependency
or some cause and effect relationship between the features
under consideration. In recent studies these correlations were
often discussed and presented in terms of the behavior patterns

objects manifest, hence the name pattern clustering often
associated with methods amid at this type of problem. In gene
expression microarray clustering the goal is to identify groups
of genes that exhibit similar expression patterns under some
subset of conditions (dimensions), independent of their mag-
nitude, from which gene function or regulatory mechanisms
may be inferred. In recommendation or collaborative �ltering
systems, sets of customers with similar interest patterns need
to be identi�ed so that customers’ future interests can be
predicted and proper recommendations be made.

The most widely studied patterns are the shift and scaling
patterns, which induce only positive correlations and are
typically referred to as biclusters [5], [6], [7] in the microarray
clustering literature, and slope one clusters in the collaborative
�ltering literature [8]. In the case of a shift pattern the behavior
pattern of one object under a set of features is offset from
another by some constant, whereas in the case of scaling the
behavior pattern of one object is a scaler multiple of another.
The second pattern is often reduced to the �rst by various
transformations (e.g. log transform), none of which is pattern
preserving when more than one type of pattern coexist in the
same data set [9]. Fig. 1 shows parallel coordinate plots of
three different types of patterns clusters each containing ten
points embedded in an 8-dimensional space: a shift pattern
inducing only positive correlations, a scaling pattern also
inducing only positive correlations, and a pattern inducing
both positive and negative correlations. These type of plots are
used to emphasize symmetry or cohesion in behavior patterns.
Note that the pattern inducing negative correlations does not
manifest the same symmetry as the other two.

In recent studies it has been suggested other types of infor-
mation carrying patterns such as patterns inducing negative
correlations are completely overlooked by most clustering
methods, and that current state of the art algorithms are not
�exible enough to mine different patterns simultaneously [10],
[11], [12]. While there is no consensus on what types of
patterns should be considered meaningful, in practice pattern
based clustering algorithms postulate a unique underlying
“globally expressed” pattern or cluster model, while overlook-
ing or rejecting the possibility that other types of information
carrying patterns may exit in the data. This in turn typically
leads to a large bias in the results.

In a recent work [13] we showed that different types of
pattern clusters including those overlooked by most methods,
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(a) shift pattern

1 2 3 4 5 6 7 8

(b) scaling pattern

1 2 3 4 5 6 7 8

(c) negative correlations

Fig. 1. Parallel coordinate plots of three different pattern clusters.
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Fig. 2. The geometry of three different types of patterns clusters (shift,
scaling, and negative correlations).

and the correlations they induce, can all be generalized to
linear manifolds 1 of which a line (a 1-dimensional linear
manifold) is a special case. The main insight provided by the
study is that within the set of relevant features to a pattern
cluster, the points form a line and in the full space a linear
manifold of higher dimension. Hence by searching for lines or
linear manifolds rather than speci�c patterns or the correlations
they induce it is possible to cluster simultaneously all the
different types of pattern clusters. We also found that the
geometrical difference between the different pattern clusters
is the orientation (e.g. a line cluster of slope one represents a
shift pattern) and translation of the cluster in the space. Fig. 2
shows the geometry of three different types of pattern clusters
each including 10 points embedded in a 3-dimensional space.
Notice how they all form lines.

In this paper we focus our attention on line clusters - de�ned
as groups of points that �t a line in some subspace of the data.
We start by presenting a formal stochastic “line cluster model”
and establish its connection to correlations. We then present an
algorithm for detecting line clusters. The algorithm uses a line
detector procedure which searches for line clusters in some
subset of features, and a forward-feature-selection approach
to re�ne the cluster. We conclude the paper with experiments
demonstrating the potential of our clustering method.

1A linear manifold is a translated subspace. A subspace is a subset of points
closed under linear combination.

II. THE LINE CLUSTER MODEL

Suppose a line cluster X exists in a k-dimensional sub-
space.2 Let x be a k×1 vector representing some point in X ,
β be a unit norm k × 1 vector that spans a 1D subspace, β
be a k × k − 1 matrix whose k − 1 column vectors form an
orthonormal basis that spans the space orthogonal to the space
spanned by β.

Definition 1 (The Line Cluster Model): Let μ be some
point in R

k, φ be a zero mean random scalar distributed
according to U(−R/2, +R/2) where R is the range of the
data, and ε be a k−1×1 random vector distributed according
to N(0, σ2I), where σ � R . Then each x ∈ X , a line cluster
is modeled by,

x = μ + βφ + βε. (1)

The idea is that each point in a cluster lies close to a line (1-
dimensional linear manifold) of �nite extent, which is de�ned
by μ, a translation vector, the space spanned by the vector β,
and the range parameter R. Since

E[x] = E[μ+βφ+βε] = μ+βE[φ]+βE[ε] = μ+0+0 = μ

the cluster mean is μ. On the line the points are assumed
to be uniformly distributed in direction β according to
U(−R/2, +R/2), where φ can be viewed as the displacement
or distance of a point from the line’s center. The assumption
of uniformity is not binding, and can be replaced by any other
distribution with symmetric support. What characterizes this
type of cluster is the third component that models a small
random error associated with each point on the line. The idea
is that each point may be perturbed in directions that are
orthogonal to the subspace spanned by β, that is the subspace
spanned by the k − 1 columns of β. We model this behavior
by requiring that ε be a (k − 1) × 1 random vector, normally
distributed according to N(0, σ2I), where σ is much smaller
than R. The error, ε, can be thought of as the displacement or
distance of a point to its projection onto the line. The addition
of the error term essentially transforms the line into a thin
elongated cylinder.

2The term subspace in the context of clustering is often misused to indicate
a subset of the original measurement features which is a special case of a
subspace. We will follow the trend and leave it to the reader to distinguish
between the two throughout the paper.
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A. Lines and Correlations

Fundamental to our method is the connection between
line clusters and correlation, established by the following
proposition.

Proposition 1: A set of points induce perfect correlations
among a set of features if and only if the set of points perfectly
�t a line in these set of features.

Proof: Following the model given in (1) a set of points will
perfectly �t a line if they do not include an error term which
translates them away from the line. Formally, a perfect �t
implies that each point can be modeled by x = μ + βφ. By
perfect correlations we mean that the correlation coef�cient
ρij between any pair of features i and j or equivalently the
random components xi and xj of the random vector x, is equal
to 1 or −1. The proposition can now be stated formally as

x = μ + βφ ⇔ ∀i, j ρij = ±1.

(⇒): Given x = μ + βφ, each component or feature of x

denoted by xi is equal to μi + φβi where μi and βi are the
i-th components of vectors μ and β. Hence,

Var[xi] = Var[μi + φβi] = β2

i Var[φ],

Cov(xi, xj) = E[xixj ] − E[xi]E[xj ]

= E[(μi + φβi)(μj + φβj)] − μiμj

= E[μiμj + μiφβj + μjφβi + φ2βiβj ] − μiμj

= μiμj + 0 + 0 + βiβjE[φ2] − μiμj

= βiβjE[φ2]

= βiβjVar[φ],

and therefore

ρij =
Cov(xi, xj)√

Var[xi]
√

Var[xj ]
=

βiβjVar[φ]√
β2

i Var[φ]
√

β2

jVar[φ]

=
βiβjVar[φ]√
β2

i β2

jVar[φ]
=

βiβj

|βiβj |
= ±1

(⇐): Given ∀i, j ρij = ±1. Assume Var[xi] = α2

i and
Var[xj ] = α2

j , and let xi

αi
−

xj

αj
be a new random variable

(r.v.). Then,

Var

[
xi

αi

−
xj

αj

]
= Var

[
xi

αi

]
+ Var

[
xj

αj

]
− 2Cov

(
xi

αi

,
xj

αj

)

=
Var[xi]

α2

i

+
Var[xj ]

α2

j

− 2
Cov(xi, xj)

αiαj

= 1 + 1 − 2ρij = 2(1 − ρij).

ρij = 1 implies that Var
[

xi

αi
−

xj

αj

]
= 0 which in turn implies

that the r.v. xi

αi
−

xj

αj
= c, i.e. equals a constant, from which

we can then establish a linear relationship between xi and
xj of the form xj = bxi + c. Similarly, ρij = −1 implies

that Var
[

xi

αi
+

xj

αj

]
= 0, which again establishes a linear

relationship between xi and xj of the form xj = bxi + c.
By introducing βi, βj, μi, μj , the r.v. φ, and letting b = βj/βi

and c = −βjμi/βi + μj , and then substituting them into
xj = bxi + c we get

xi − μi

βi

=
xj − μj

βj

.

Since both sides of the equation de�ne a r.v. we may choose
to call this r.v. φ, yielding that

xi = μi + βiφ and xj = μj + βjφ.

Now collecting all the equations of the form above, and putting
then in vector format gives the �nal result that x = μ + βφ.

Although not done in this paper, using elements of the
previous proof it can be shown that the more a set of points
deviates from a prede�ned line of the form x = μ + βφ, the
less correlated the features corresponding to the points will
be.

III. THE ALGORITHM

Supported by proposition 1 the problem of searching for
groups of points which induce large correlations in subspaces
(subsets of features/dimensions) of the data is cast into the
problem of searching for line clusters embedded in subspaces
of the data. In addition we require that the algorithm detects
the largest possible clusters embedded in the largest possible
subspaces. The rational is that correlations induced by larger
clusters in a larger set of features provide stronger evidence
pertaining to the relationship between the objects under con-
sideration.

The algorithm in its most generic form can be stated as fol-
lows: �nd the “best” line cluster in an initial set of dimensions,
using ”Feature Selection” add or remove dimensions to re�ne
the line cluster, remove the re�ned line cluster from data set
and reapply the �rst two steps on remaining set of points. The
two main components of the algorithm are; a line detector
procedure which searches for line clusters in some subset of
features, and a feature selection procedure which re�nes the
clusters (based on some criteria) by either adding or removing
features.

A. Line Detectors

Four line detectors were evaluated amongst which the most
accurate and ef�cient was chosen; a variation of RANSAC
[14], two versions of LMCLUS [15], and an adaptation of K-
means [16] to line clustering, all which are stochastic in nature
(based on sampling). The Hough transform [17] which may
also be used as a line detector was omitted from the evaluation
due to its relative inef�ciency in higher dimensional spaces.
We found LMCLUS and RANSAC to be the most accurate,
and among the two RANSAC to be more ef�cient. Based
on this conclusion in addition to RANSAC’s simplicity and
relatively intuitive input parameters, we chose the modi�ed
version of RANSAC as our line detector. The �nal version
of the line detector algorithm is outlined in Fig. 3. The last
step (return statement) ensures that the largest line clusters are
detected by the overall line clustering algorithm.
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Line Detector (X, s, d, t)
repeat s times

sample two points x1, x2 from X
determine line parameters μ = x1, β = (x2−x1)/‖(x2−x1)‖
determine the number of points in the data that are within

distance d (”inliers”) from the line
return the line with most inliers if it includes at least t inliers

Fig. 3. A RANSAC based line detector algorithm.

B. Feature Selection

Feature selection techniques attempt to discover the most
revelent attributes of the data as part of a machine learning
or model building process. In our case feature selection is
used to select the largest possible set of dimensions in which
a set of points �ts a line. Finding the the optimal set of
features by an exhaustive search trough all possible sets of
features is typically infeasible. For this reason most feature
selection techniques employ a greedy hill-climbing approach.
The basic procedure involves identifying an initial model,
and iteratively improving the model by adding or removing
features in accordance with some criteria until there is no
improvement or when a predetermined number of steps has
been reached. Forward selection techniques are bottom-up
methods which start with an empty or small set of features
and at each step add the most relevant feature to the model.
Backward elimination techniques are top-down approaches
which start with the full set of features and remove the most
irrelevant feature at each step. Stepwise methods employ a
combination of two, and depending on the direction of search
are called forward stepwise and backward stepwise.

Motivated by the ”Downward Closure Property of Lines”
stated in the following proposition, the forward selection
approach was chosen to be employed in the algorithm.

Proposition 2: If there exists a line in a set of k dimensions
then there exits a line in all k−1 subsets of these k dimensions.

Proof: Based on the model given in (1) and similar to the proof
of proposition 1 each of the k components xi of each point
constituting a line can be modeled by xi = μi + βiφ where
xi and φ are random variables. We can therefore select any
subset of k − 1 components where each of the components
is modeled as above, and join them together into a vector
producing x′ = μ′ + β′φ, the model of a k − 1-dimensional
line.

Proposition 2 tell us that if a set of points form a line cluster
in some set of dimensions it is possible to commence the
search for the cluster in a smaller set of dimensions, supporting
the bottom-up feature selection approach we chose to employ.
Moreover, the search for clusters in lower dimensions is
typically easier (faster) than a search for clusters in higher
dimension. Proposition 2 also provides the algorithm with
pruning power. That is, if a line cluster is not visible in a
smaller set of dimensions it is not necessary to search for it in
higher dimensions. Using this property we can also devise a

termination condition for the algorithm, i.e. if the line detector
is not able to detect any more clusters in a small initial
set of dimensions then the algorithm should terminate. The
combination of the bottom-up approach and proposition 2 also
ensures that the line clusters are found in the largest possible
subspaces.

C. The Distance of a Point to a Line

The line detector algorithm requires the computation of a
point’s distance to a line. The squared distance (henceforth
distance) of a point to a subspace is the norm squared of its
projection to the orthogonal complement subspace. Formally,
the distance δ of a point x modeled by (1) to a k-dimensional
line is given by:

δ = ‖(I − ββ′)(x − μ)‖2 = ‖(I − ββ′)(βφ + β̄ε)‖2

= ‖βφ − βφ + β̄ε − 0‖2 = ‖β̄ε‖2 = (β̄ε)′β̄ε

= ε′β̄′β̄ε = ε′ε =

k−1∑
i=1

ε2i .

According to the line cluster model εi ∼ N(0, σ2). Therefore
the distance δ normalized by σ2 will have

δ

σ2
=

k−1∑
i=1

ε2i
σ2

∼ χ2

k−1
,

a chi-squared distribution with k − 1 degrees of freedom.
Hence,

E[δ] = E[σ2χ2

k−1
] = (k − 1)σ2,

and
Var[δ] = Var[σ2χ2

k−1
] = 2(k − 1)σ4.

Because the distance grows with the dimensionality of the
subspace in which it measured, and since the search for line
clusters will be computed across different dimensionalities, we
normalize the distance by its degrees of freedom (k − 1) or
equivalently the dimensionality of the space orthogonal to the
line to. This creates a uniform or normalized distance measure
which is independent of the dimensionality of the subspace
in which it is measured. Therefore the normalized distance
δ/(k − 1) has

E

[
δ

k − 1

]
= σ2 and Var

[
δ

k − 1

]
=

2σ4

k − 1
. (2)

The expected value and variance of the normalized distance
will be used as heuristics to set the input parameters to the
algorithm.

Lemma 1: ‖(I−ββ′)(x−μ)‖2 = ||x−μ||2−||β′(x−μ)||2.

Proof: Let y = x − μ,

||(I − ββ′)y||2 = ||z − ββ′y||2

= (y − ββ′y)′(y − ββ′y)

= y′y − 2y′ββ′y − y′(ββ′)2y

= y′y − y′ββ′y

= ||y||2 − ||β′y||2.
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Lemma 1 provides us a much more ef�cient way of computing
the distance. If k is the dimensionality of the subspace in
which the distance is computed, then computing it using
lemma 1 gives us a speedup of O(k), which for high dimen-
sional spaces becomes a signi�cant factor.

D. The Score (Fit) function

At each forward selection step the quality of the line cluster
returned by the line detector must be assessed according to
some criteria in order to determine whether or not to proceed
to the next step. The criteria used in this paper to assess the
quality of a cluster is the “�t” of the set of points constituting
the cluster to the line in which they are embedded. The �t is
de�ned to be the average-normalized-squared-distance (error)
of the points to the line.

Let k be the dimensionality of the subspace in which a
cluster is detected, n the number of points constituting the
cluster, X the cluster points, and let xi denote the i-th point.
Then the �t or score function J(X) is de�ned to be:

J(X) =
1

n(k − 1)

n∑
i=1

(
||xi − μ||2 − ||β′(xi − μ)||2

)
. (3)

Prior to the �t computation, μ and β must be estimated. μ is
estimated by computing the sample mean of the cluster. It can
be shown (using least-squares) that an estimate for β is the
largest eigenvector of the cluster’s covariance matrix, which
can be computed using the power method.

To guide the algorithm to give certain preferences to the
size and dimensionality of the cluster, J(X) can be modi�ed
as follows:

J ′(X) = J(X)na(k − 1)b. (4)

For example guiding the algorithm to prefer even higher
dimensional subspaces we can set b to some value less than
zero.

Based on (2)

E[J(X)] = σ2 and Var[J(X)] =
2σ4

n(k − 1)
, (5)

which will also be used as heuristics to set the input parame-
ters.

The overall and �nalized version of the subspace line
clustering algorithm is outlined in �gures 4 and 5. We note
that by calling the line detector procedure from within the
forward selection procedure the algorithm ensures that the
line clusters are re�ned by also pealing off points from them.
This re�nement is necessary when the projection of several
line clusters appear as one line cluster in lower dimensional
subspaces.

IV. SETTING THE INPUT PARAMETERS

The algorithm requires the input of four parameters; s, a
sample size parameter used to specify the maximum number
of attempts that should be made by the line detector to
identify a line cluster; d, the maximum distance of a point
to a line allowed for it to be considered an “inlier”, i.e.,

Subspace Line Clustering (D, s, d, t, J)
X=�nd the best 2D-line cluster(D)
if (J(X) > J)

terminate
while ( dim(X)<dim(D) )

X ′=Forward Selection (X, s, d, t)
if (J(X ′) < J(X))

X = X ′

else
break

output X
D = D − X, goto the �rst step

Fig. 4. The subspace line clustering algorithm. Finding the best 2D-line
cluster can be done by examining all possible 2D subspaces and returning the
line cluster with the best �t.

Forward Selection (X, s, d, t)
while (unexamined dimensions remain)

select an unexamined dimension
add dimension data to X
X ′ =Line Detector(X, s, d, t)
if (J(X ′) < J(X))

X = X ′

else
restore X

return X

Fig. 5. The forward selection subroutine used to gradually extend the
subspace in which line clusters are detected and to peel off points which
do not belong to the cluster.

d can considered an error tolerance; t, a threshold used to
specify that a large enough cluster has been detected; J , a
“�t” threshold used to determine whether the algorithm should
terminate, i.e., that no more clusters with a suf�cient enough
�t are left in the data.

t is relatively intuitive but may require some domain knowl-
edge about the number of points we should expect to see
included within a cluster. For example, in gene expression
clustering typical functional categories contain a small amount
of genes, and therefore t should be set to a low value.

d and J are also relatively intuitive and easy to set. They
pertain to the error tolerance or deviation from the line we
are willing to allow, and indirectly effect the magnitude of
correlations the generated clusters will induce. I.e., setting
them to higher values will likely generate clusters inducing
lower correlations. Assuming we are willing to accept clusters
whose average deviation (normalized distance) from a line is
σ then using to (2) and (5) as heuristics we can set d and J
to the expected value plus a number of standard deviations of
the normalized distance δ and the �t function J(X), that is,

d = σ2 + cσ2

√
2

(k − 1)
, (6)

and

J = σ2 + cσ2

√
2

n(k − 1)
, (7)
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TABLE I

VALUES FOR INPUT PARAMETER s

K p s given ε = 0.05 s given ε = 0.01
2 0.2500 10 16
4 0.0625 46 71
6 0.0278 106 163
8 0.0156 190 292
10 0.0100 298 458
12 0.0069 430 661
14 0.0051 586 900
16 0.0039 765 1177
18 0.0031 969 1490
20 0.0025 1197 1840

where c is the number of standard deviations. Since these
values depend on k-the dimensionality of the subspace in
which a cluster is either searched for or reported, the two
parameters must be adjusted dynamically by the algorithm
depending on k. Hence, the two parameters should simply
be set to d = J = σ.

s should be selected large enough to ensure with high
probability that at least one of the samples of two points
are within error tolerance to a line, i.e., come from the same
line cluster. This in turn will ensure that the sampled points
can be used to approximate the line in which a possible
cluster is embedded and collet its remaining points. Let p
be the probability that two sampled points come from the
same cluster, X be a geometric random variable denoting
the number of trails (samples) needed to get one success
(two points coming from the same cluster), and F (X) its
cumulative distribution function. If we want to ensure with
probability 1 − ε (0 < ε < 1) a success then the number of
trails s needed should satisfy

F (X) = P (X ≤ s) = 1 − (1 − p)s ≥ 1 − ε,

yielding that s should be set to

s ≥
log ε

log(1 − p)
. (8)

It now remains to determine p, the probability that two sam-
pled points come from the same cluster. One way is to assume
that there are no more than K clusters of approximately the
same size in the data set, and set p = 1/K2. Another way is
use t and set p = (|D|/t)2, where |D| is the number of points
being clustered. Table I uses p = 1/K2 to show some values
of s, for corresponding values of K and ε.

V. A NOTE ON ALGORITHMIC COMPLEXITY

Because of the algorithm’s stochastic nature a formal com-
plexity analysis of its running time is not straightforward, and
as a consequence omitted from the paper. We would like to
note however that its �exibility comes at a price. Its main
bottleneck is associated with the computation of the leading
eigenvector of a cluster’s covariance matrix, which is used to
estimate the line parameter β and essentially re�t the data to
a line. One possible solution is not to re�t the line and use the
two original sampled points that are used by the line detector

as a less accurate estimate of the line parameter β. That is,
if y1 and y2 are the two sampled points that correspond
to the line cluster returned by the line detector procedure,
then β can be estimated by β = (y1 − y2)/‖y1 − y2‖.
Nonetheless several more �exible algorithms aiming at similar
problems, such as [11], [18] execute some form of an eigen-
decomposition to estimate eigenvectors. These algorithms are
even more expensive than ours as they need to compute several
eigenvectors and not only one. We plan however to investigate
the above approach and other optimizations in future work.

VI. EMPIRICAL VALIDATION

We experimented with the subspace line clustering algo-
rithm by applying it on both real and synthetic data sets.
The algorithm was implemented in a Linux based Matlab
environment.

A. Synthetic data

To better understand the algorithm, several dozen data sets
were generated according to the line cluster model speci�ed
in (1). The aim of the experiment with the synthetic data
was to evaluate the algorithm’s accuracy in the detection of
both the clusters that were generated and the subspaces in
which they were embedded. To determine the algorithm’s
accuracy in cluster detection we measured the degree of
correspondence between the point class labels of each output
cluster with its mapped input cluster (input cluster with the
largest number of points in common), weighted by the size
of the output cluster. The determination of the algorithm’s
accuracy in subspace detection was measured by the degree
of correspondence between the subspace feature labels of
the output and input clusters. Data sets were generated with
between 5-50 dimensions, and for each selected dimensionality
three types of data sets were created. One with a small number
of clusters (4-6 clusters), one with a small number of clusters
to which noise points were added representing approximately
30% of the data. And a third type of data set containing
a larger number of clusters (8-11). We also ensured that
the dimensionality of the subspaces in which clusters were
embedded ranged across the dimensionality of the data.

In addition to the algorithm presented in this paper, an-
other version that used a forward-stepwise feature selection
approach was implemented. We believed that the forward-
stepwise approach would result in better accuracy, but discov-
ered that on average not many backward elimination (feature
removal) steps were executed, and better accuracy was not
achieved. Due to the overhead associated with the backward
steps we preferred the algorithm presented in this paper.

From a pool of dozens of synthetic data sets on which the
algorithm was applied, a representative sample of seven of
each of the three different types (21 in total) of data sets was
selected for illustrative purposes. The performance (accuracy)
of the algorithm applied on these data sets is summarized in
table II. The accuracy measures range in [0, 1], where larger
values indicate better accuracy. Due to the stochastic nature
of the algorithm it was run between 50-100 times on each
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TABLE II

A SUMMARY OF THE ALGORITHM’S PERFORMANCE IN TERMS ACCURACY

APPLIED ON SYNTHETIC DATA SETS

small small+noise large
data dim pts dim pts dim pts dim

5 0.96 0.99 0.89 0.97 0.92 0.94
8 0.99 1.0 0.94 0.99 0.98 0.99
10 0.99 0.98 0.97 0.98 0.93 0.94
15 0.97 0.93 0.96 0.93 0.97 0.91
20 0.99 0.79 0.90 0.90 0.96 0.95
30 0.94 0.96 0.82 0.95 0.96 0.91
50 0.97 0.65 0.93 0.92 0.90 0.67

data set and the average accuracy was recorded. The table
shows that the algorithm is able to maintain high levels of
accuracy in cluster point detection (denoted by ‘pts’ in the
table) and good over overall performance in the detection of
the subspaces which the clusters were embedded (denoted
by ‘dim’ in the table). However, the table shows that as
the dimension of the data sets increases, the accuracy in
subspace detection deteriorates. We attribute this behavior to
the possibility that the projection of several clusters embedded
in high dimensional spaces into lower dimensional spaces
appear as single clusters when the algorithm commences
the search, and “confuses” it in the determination of which
features are relevant to each cluster. We speculate that a top-
down backward elimination approach might be able to rectify
the problem, and look forward to experimenting with this
approach. We note however, that a top-down approach will
not be able to exploit the advantages of the downward closure
property of lines.

B. Real Data

We conducted extensive tests on two typical data sets that
have become standard benchmarking data sets for clustering
gene expression data–the yeast Saccharomyces Cerevisiae cell
cycle expression data 3, and the Colon Cancer data 4. The
yeast data contained 2884 genes and 17 conditions, and the
cancer data contained 2000 genes and 62 tissue samples, of
which 40 were colon tumor and 22 normal colon samples.

Applied on the yeast data the algorithm discovered 62 line
clusters. We compared these clusters with the 100 biclusters
reported by the biclustering algorithm 3 [5]. The clusters’ size
detected by our algorithm ranged in [15, 255] and on average
much smaller than the clusters reported by the biclustering
algorithm. From a biological standpoint this makes sense, as
the whole yeast genome contains roughly only 6000 genes,
and typical functional categories of the yeast genome contain
dozens rather than hundreds of genes that were included in
some of the biclusters. The dimensionality of the clusters
detected by our algorithm ranged in [3, 16] and was on average
smaller than the dimensionality of the biclusters. We also
compared the mean squared residue score (MSRS) which is

3obtained from http://arep.med.harvard.edu/biclustering/
4obtained from http://microarray.princeton.edu/oncology/
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Fig. 6. mean squared residue score (MSRS) versus average correlation of
yeast clusters detected by the algorithm.

part of the shift pattern cluster model and used by the biclus-
tering algorithm as a criteria to identify shift pattern clusters.
The authors of the biclustering algorithm used MSRS=300
as a threshold to qualify “worthy” biclusters. Our algorithm
detected on average clusters with a slightly larger MSRS.
However, this reasonable since our algorithm was not restricted
to searching only for shift pattern clusters for which this score
was designed. Nonetheless, our algorithm was successful in
�nding clusters that induce large correlations. We used average
correlation, de�ned to be the average of the absolute value
of the correlation coef�cient between each pair of features
belonging to a cluster, to quantify the degree of correlation
induced by a cluster. After the removal of 3 outlier clusters
(clusters with average correlation less than 0.8) the mean
average correlation was found to be 0.96. Fig. 6 is a plot of
MSRS versus average correlation of the clusters detected by
our algorithm. The �gure essentially shows that there are gene
clusters in the data that induce large correlations and may be
functionally related, yet may not follow the shift pattern cluster
model, supporting the main motivation for this work. We note
that some of the clusters found by our algorithm did follow
the shift pattern cluster model.

We also evaluated the biological signi�cance of the clusters
our algorithm produced by means of function enrichment [19]–
the degree to which the clusters grouped genes of common
function. This was done by computing for each cluster P-
values (using the hypergeometric distribution) of observing
a certain number of genes within a cluster from a particular
MIPS 5 functional category. Some of the clusters demonstrated
signi�cant grouping (very small P-values) of genes within the
same functional class. Table III shows �ve of them that had
larger P-values.

Applied on the cancer data our method detected 82 line
clusters. The goal in this experiment was to identify gene
clusters that can differentiate the cancerous tissues from the
normal ones. These clusters may later afford researchers the
ability design classi�ers for diagnostic purposes. The size of
the clusters detected by our algorithm was generally small,
the largest cluster contained 24 genes. The dimensionality of
the subspaces in which the clusters were embedded ranged in

5Munich Information Center for Protein Sequences, http://mips.gsf.de/
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TABLE III

MIPS GENE FUNCTION ENRICHMENT.

Genes in MIPS Functional Genes in Clustered P-value
Cluster Category Category Genes

ribosome biogenesis 215 27 1.698e-09
211 protein synthesis 359 35 5.649e-09

cytoplasm 554 37 2.696e-05
cytoplasm 554 15 1.565e-14

17 protein synthesis 359 13 1.178e-13
ribosome biogenesis 215 11 6.229e-13

subcellular localisation 2256 16 8.658e-07
193 amino acid biosynthesis 118 13 5.462e-05
49 amino acid metabolism 204 6 6.740e-06
16 cell cycle and 628 9 5.772e-06

DNA processing

[4, 20]. The average MSRS of the clusters was 2343, indicating
that most of the clusters did not follow the shift pattern cluster
model. However, their mean average correlation (after removal
of outlier clusters) on the other hand was around 0.8. Again
indicating that related groups of genes may exist in the data,
yet are overlooked by most clustering methods.

We also found seven gene clusters that were present in
either only the normal tissues or only the cancerous tissues.
They contained a small number of genes (around 16) and were
embedded in lower dimensional subspaces, i.e., were present
in a small number of tissues. The average correlation of these
clusters was around 0.93, higher than the rest of the clusters,
providing strong evidence that the genes within these clusters
may be functionally related and used for discriminatory pur-
poses. Most of the remaining clusters contained a mixture of
tissues none with an overwhelmingly majority of normal or
cancerous tissues.

VII. CONCLUSION

The problem of searching for so called “pattern clusters”
or clusters that induce large correlations in some subset of
features was cast into the problem of searching for groups
of points embedded in lines. The advantage of this paradigm
of clustering is that is allows the clustering of different
patterns or correlations simultaneously. It also allows the
clustering of patterns and correlations that are overlooked by
existing methods. A formal stochastic line cluster model was
presented, and based on it an algorithm that searches for line
clusters embedded in subspace of the data was presented.
The algorithm was evaluated on real and synthetic data to
demonstrate its potential. The algorithm uses a forward feature
selection approach, and we postulate that a backward feature
selection may be able to perform better on data sets whose
clusters are embedded in higher dimensional subspace. We
look forward to investigate this approach in future work. A
formal complexity analysis of the algorithm’s running time
was not presented due to its stochastic nature, but its �exibility
comes at a price. The main bottle neck in terms of ef�ciency
is due to the computation of the leading eigenvector of a
cluster’s covariance matrix, and in future work we also plan
to investigate possible optimizations.
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