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Abstract-Search engines, such as Google, assign scores to news ar-

ticles based on their relevancy to a query. However, not all relevant 

articles for the query may be interesting to a user. For example, if 

the article is old or yields little new information, the article would be 

uninteresting. Relevancy scores do not take into account what makes 

an article interesting, which would vary from user to user. Although 

methods such as collaborative filtering have been shown to be effec-

tive in recommendation systems, in a limited user environment there 

are not enough users that would make collaborative filtering effec-

tive. We present a general framework for defining and measuring 

the “interestingness” of articles, incorporating user-feedback. We 

show 21% improvement over traditional IR methods.  

I. INTRODUCTION 

An explosive growth of online news has taken place in the last 

few years. Users are inundated with thousands of news articles, 

only some of which are interesting. A system to filter out uninter-

esting articles would aid users that need to read and analyze many 

news articles daily, such as financial analysts, government offi-

cials, and news reporters. Information overload is a threat to a 

user’s ability to function, resulting in “brain-thrashing” [1], call-

ing for a VIRT (valued information at the right time) [2] strategy 

for information handling.  

The most obvious approach for a VIRT strategy is to learn 

keywords of interest for a user [3-5]. Unfortunately, the issues 

related to article recommendation systems are more difficult to 

address than applying a simple keyword filter to weed out unin-

teresting articles. Although filtering articles based on keywords 

removes many irrelevant articles, there are still many uninterest-

ing articles that are highly relevant to keyword searches. For ex-

ample, searching for "San Francisco" in Google News will yield 

about 60,000 articles ordered by relevance. Unfortunately, a rele-

vant article may not be interesting for various reasons, such as the 

article’s age or if it discusses an event that the user has already 

read about in other articles.  

Although it has been shown that collaborative filtering can aid 

in personalized recommendation systems [6], a large number of 

users is needed. In a limited user environment, such as a small 

group of analysts monitoring news events, collaborative filtering 

would be ineffective. To address this insufficiency to news filter-

ing, we take a different approach by undertaking what makes an 

article interesting.  

The definition of what makes an article interesting – or its “in-

terestingness” – varies from user to user and is continually evolv-

ing, calling for adaptable user personalization. Furthermore, due 

to the nature of news articles, most are uninteresting since many 

are similar or report events outside the scope of an individual’s 

concerns. There has been much work in news recommendation 

systems, but none have yet addressed the question of what makes 

an article interesting.  In our system, iScore, we make the follow-

ing contributions to news filtering in a limited user environment: 

1. We show that filtering based on only topic relevancy is in-

sufficient for identifying interesting articles. 

2. We extract a variety of features, ranging from topic rele-

vancy to source reputation. No single feature can character-

ize the interestingness of an article for a user. It is the com-

bination of multiple features that yields higher quality re-

sults. For each user, these features have different degrees of 

usefulness for predicting interestingness.  

3. We evaluate several classifiers for combining these features 

to find an overall interestingness score. Through user-

feedback, the classifiers find features that are useful for pre-

dicting interestingness for the user. 

4. Current evaluation corpora, such as TREC, do not capture 

all aspects of personalized news filtering systems necessary 

for system evaluation. 

II. RELATED WORK 

A. News recommendation 

iScore is a recommendation system in a limited user environ-

ment, so the only available information is the article’s content and 

its metadata. Work outside collaborative filtering makes use of 

this information in a variety of ways.  

Work by [7] ranks news articles and new sources based on sev-

eral properties in an online method. They claim that important 

news articles are clustered. They also claim that mutual rein-

forcement between news articles and news sources can be used 

for ranking, and that fresh news stories should be considered 

more important than old ones. In our approach, we rank news 

articles based on various properties in an online method, but in-

stead of ranking articles using mutual reinforcement and article 

freshness, we study a different variety of features. Additionally, 

when training our classifiers, we also take into account that the 

most recent news articles are more important than older ones. 

Another approach taken by [8] measures the interestingness of 

an article as the correlation between the article’s content and the 

events that occur after the article’s publication. For example, an 

article about a specific stock is interesting if there is a significant 

change in price after the article’s publication. Using these pro-

spective indicators, they can predict future interesting articles. 

Unfortunately, in most cases, these indicators are domain specific 

and are difficult to collect in advance for the online processing of 

new articles as they are published. 

Other systems perform clustering or classification based on the 

article’s content, computing such values as TF-IDF weights for 

tokens. A near neighbor text classifier [5] uses a document vector 
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space model. A personalized multi-document summarization and 

recommendation system by [9] recommends articles by suggest-

ing articles from the same clusters in which the past interesting 

articles are located. We implement a variation of these methods as 

feature extractors in iScore. Another clustering approach, MiTAP 

[10] monitors infectious disease outbreaks and other global 

events. Multiple information sources are captured, filtered, trans-

lated, summarized, and categorized by disease, region, informa-

tion source, person, and organization. However, users must still 

browse through the different categories for interesting articles. 

B. Adaptive filtering 

Our work in iScore is closely related to the adaptive filtering 

task in TREC, which is the online identification of news articles 

that are most relevant to a set of topics. The task is different from 

identifying interesting articles for a user because an article that is 

relevant to a topic may not necessarily be interesting. However, 

relevancy to a set of topics of interest is a prerequisite for interest-

ingness. The report by [11] summarizes the results of the last run 

of the TREC filtering task. In the task, topic profiles are continu-

ally updated as new articles are processed. The profiles are used 

to classify a document’s relevancy to a topic. We discuss some of 

the work in this TREC task. Like much of the work in the task, 

we use adaptive thresholds and incremental profile updates. 

In [12], the authors use a variant of the Rocchio algorithm, in 

which they represent documents as a vector of TF-IDF values and 

maintain a profile for each topic of the same dimension. The pro-

file is adapted by adding the weighted document vector of rele-

vant documents and by subtracting the weighted vector of irrele-

vant documents. Since this approach performed the best in the 

task, we incorporate this method in iScore. Other methods ex-

plored in TREC11 include using a second-order perceptron, an 

SVM [14], a Winnow classifier [14], language modelling [15], 

probabilistic models of terms and relevancy [16], and the Okapi 

Basic Search System [17]. 

C. Ensembles 

Other work, like ours, have leveraged multiple existing tech-

niques to build better systems for specific tasks. For example, in 

[18], the authors combine two popular webpage duplication iden-

tification methods to achieve better results. Another example is by 

[19], which combines the results from multiple outlier detection 

algorithms that are applied using different sets of features.  

A closely related ensemble work by [20] combines multiple 

ranking functions over the same document collection through 

probabilistic latent query analysis, which associates non-identical 

combination weights with latent classes underlying the query 

space. The overall ranking function is a linear combination of the 

different ranking functions. They extend the overall ranking func-

tion to a finite mixture of conditional probabilistic models. We 

explore two methods of a linear combination approach using cor-

relation and logistic regression, but in contrast to [20], we com-

bine functions that are not necessarily ranking functions that can 

be used for ranking documents for interestingness by themselves. 

Each function is a different aspect of interestingness and need to 

be combined together to generate meaningful scores for interest-

ingness. 

III. SYSTEM OVERVIEW 

News articles are processed in a streaming fashion, much like 

the document processing done in the adaptive filter task in TREC. 

The information about an article available to the system is the 

title, the name of the authors, the publication date, and the main 

content of the article. Articles are introduced to the system in 

chronological order of their publication date. Once the system 

classifies an article, an interestingness judgment is made available 

to the system by the user.  

The article classification pipeline consists of four phases, 

shown in Fig. 1. In the first phase, for an article d, a set of feature 

extractors generate a set of feature scores F(d) ={f1(d), 

f2(d),…,fn(d)}. Then a classifier C generates an overall classifica-

tion score, or an iScore I(d): 

 ))(),...,(),(()( 21 dfdfdfCdI n=  (1) 

Next, the adaptive thresholder thresholds the iScore to generate 

a binary classification, indicating the interestingness of the article 

to the user. In the final phase, the user examines the article and 

provides his own binary classification of interestingness (i.e., 

tagging) I′(d). This feedback is used to update the feature extrac-

tors, the classifier, and the thresholder. The process continues 

similarly for the next document in the pipeline. 

IV. WEAK FEATURES FOR CLASSIFICATION 

In this section, we describe a set of article features that will 

serve as inputs into the classifier function to estimate or predict 

the interestingness of the article to a user. Each individual feature 

is a weak feature. In other words, each feature alone cannot de-

termine the interestingness of an article for a user. 

A. Topic relevancy 

Although an article that is relevant to a topic of interest may 

not necessarily be interesting, relevancy to such topics is a pre-

requisite for interestingness for a certain class of users. We use 

five different methods to measure topic relevancy. 

The first method is the Rocchio adaptive learning method [21]. 

Documents are represented as a vector d
r

 in a vector space. Each 

dimension i of the vector space represents a token ti. The value of 

the vector element is the represented token’s TF-IDF value. In our 

experiments, tokens are stems produced by the Porter algorithm 

[22]. Stems occurring only once in the collection are discarded to 

reduce the feature space, which has been shown to improve clas-

sification time and results [23]. 

The Rocchio algorithm maintains a profile vector p
r

 and up-

dates it as follows:  

 ginterestin is  if ddpp
rrr

+=  (2) 

The relevancy score for the Rocchio algorithm of a document d is 

the cosine of the angle between the profile vector and the docu-

ment vector. 

The second method for measuring topic relevancy is a variant 

of Rocchio by [12], which updates profiles as follows: 
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Fig. 1. Article classification pipeline 
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The first two conditions are satisfied by user taggings. The third 

condition is for pseudo-negative documents, which have no tag-

gings and its similarity with the profile is below a threshold. 

Good values (in TREC11) for α, β, β′, and t are 1, 1.8, 1.3, and 

0.6, respectively [12].  

The other three methods for measuring topic relevancy use lan-

guage models. An n-gram language modelling approach has been 

used for document classification [24], which is a method we use 

for finding another set of topic relevancy scores. Like naïve 

Bayesian classifiers, language-based modelling classifiers classify 

documents given the number of occurrences of grams (e.g., words 

or characters) in the document. Unlike naive Bayes, which as-

sumes that grams occur independently, language modelling classi-

fiers assume that a gram occurring is dependent upon the last n – 

1 grams. In other words: 

 ∏
=

−+−==
N

i
iniiN gggPgggPdP

1
1121 ),...,|(),...,,()(  (4) 

where N is the number of grams in the document and gi is the i-th 

gram in the document d. P(gi|g1,…,gi-1) can be estimated with 

Jelinek-Mercer smoothing [25].  

In iScore, the language models are updated as new documents 

are processed. However, the estimation of the probabilities is 

time-consuming, which is addressed by compiling the models into 

serialized objects. However, the compilation time is proportional 

to the size of the models (i.e., the number of articles used to up-

date the model), so we minimize the number of times the model is 

updated and compiled while still being able to produce meaning-

ful results. We compile the models at regular intervals (i.e., every 

time there is an update to the model and on a daily basis). To 

avoid biasing the models from classifying articles as uninteresting 

(since there are an overwhelming number uninteresting articles 

compared to interesting ones) and to reduce compilation time, we 

update the models with all interesting articles, and only update the 

models with uninteresting articles if the number of uninteresting 

articles already used to update the model is less than the number 

of interesting article seen. 

Using language models, we extract three topic relevancy meas-

urements for each document. The first measurement is P(Int | d), 

using a 6-gram character model. Another measurement is 

P(Int | d), using a uni-gram model where grams are tokens con-

sisting of two words – equivalent to a naive Bayesian classifier. 

The final measurement is log(P(Int, d)), which is the sample 

cross-entropy rate between the language model of interesting past 

articles and the current article, using a 6-gram character model. 

B. Uniqueness 

Articles that yield little new information compared to articles 

already seen may not be interesting. In contrast, an article that 

first breaks a news event may be interesting. Anomalous articles 

that describe a rare news event may also be interesting. For exam-

ple, in [26], interesting articles may be produced by rare collabo-

rations among authors. Methods for outlier detection include us-

ing mixture models [27], generating solving sets [28] and using k-

d trees [29], to identify outliers.  

The first anomaly measurement we use is the dissimilarity of 

the current article with clusters of past articles. Each document is 

represented as a document vector, as in the Rocchio algorithm. 

We maintain at most maxCluster clusters, which are also repre-

sented by vectors. We also fwmaintain a count of documents that 

each cluster contains. The anomaly score is the weighted average 

dissimilarity score between the current document and each clus-

ter, weighted by each respective cluster’s size (i.e., number of 

contained documents): 

 
∑

∑

∈

∈
− −=

Pp

Pp
AnomalyCluster

psize

psizepd

df
)(

)(),cos(

  0.1)(

rr

 (5) 

After the article has been evaluated, we update the clusters. If 

the similarity between an article and a cluster is above a thresh-

old, then the article is added to the cluster. An article may belong 

to more than one cluster. If there are no clusters to which the 

document is similar to, then a new cluster is added the list of clus-

ters given the document’s vector. If there are already maxClusters 

clusters, the cluster that has been updated least is discarded and a 

new cluster is added in its place. The least used clusters are 

tracked by maintaining an ordered list of clusters where the last 

cluster in the list has been most recently updated. 

The threshold is also progressively updated. When there have 

been few documents seen so far, the threshold is set low to en-

courage document clustering since the cluster sizes are small at 

the start of collection processing. As more documents are seen, 

the clusters are large enough such that we can accurately identify 

outliers, and so the threshold is incremented by growthRate 

(reaching a maximum threshold) whenever no new clusters have 

been added. In our experiments, we set the maximum threshold, 

growthRate, the initial threshold, and maxCluster to 0.5, 0.01, 

0.1, and 200, respectively. 

Two other methods for anomaly detection use language mod-

els. In the first model, we maintain compiled models trained on 

the documents already seen, estimating the following: 

 ))beforeseen  documents|(log()( dPdf AnomalyLM =−  (6) 

We experiment with a 6-gram character model, and a bi-gram 

model, where grams are word stems. 

The second language model-based anomaly detection method 

measures the significance and the presence of new phrases. We 

maintain a background model of all the documents previously 

seen and compare it with the language model of the current docu-

ment. We measure the sum of the significance of the degree to 

which phrase counts in the document model exceed their ex-

pected counts in the background model. We consider only the 

top-10 phrases that exceed their expected counts. We use a tri-

gram model where grams are word tokens. 

Because language models are costly to compile, we compile 

the models in increasing intervals. Each time a language model is 

compiled, the next recompile is scheduled to occur after seeing 

the next x + 1 documents, where x is the number of documents 

seen before the current compile time. This increasing interval 

scheduling allows for language models to be updated and com-

piled frequently when there have been few documents seen. But 

after seeing many documents, language models should not change 

much unless there is a significant change in the contents of the 

articles seen, so the recompile intervals are increased as more 

documents are seen, capping off at 10,000 documents for the 

recompile interval. 

C. Source reputation 

Source reputation estimates an article’s interestingness given 

the source’s past history in producing interesting articles. Articles 

from a source known to produce interesting articles tend to be 

more interesting than articles from less-reputable sources. More-

over, specific sources may specialize in particular topics in which 
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the user is interested. A news article’s source may be its news 

agency or its author. In our experiments, we use the article’s au-

thor(s). We estimate the article’s source reputation score as the 

average proportion of documents produced by the authors that 

were interesting in the past: 

 
|)(|

by  written Articles #

by  written articlesInt  #

)(
)(

dauthors

a

a

df
dauthorsa

RepSource

∑
∈

− =  (7) 

D. Writing style 

Most work using the writing style of articles has mainly been 

for authorship attribution of news articles [30] and blogs [31]. 

Other than authorship attribution, changes in linguistic features 

over the course of a document have been used to segment docu-

ments as well [32]. Instead of author attribution and document 

segmentation, we use the same writing style features to infer in-

terestingness. For example, the vocabulary richness of an article 

should suit the user’s understanding of the topic (e.g., a layman 

versus an expert). Also writing style features may help with au-

thor attribution, which can be used for classifying interestingness, 

where such information is unavailable. 

We use a naïve Bayesian classifier trained on a subset of the 

features from [30], including syntactic, structural, lexical, word-

based, and vocabulary richness features. Like the language mod-

els used in the topic relevancy measurements, we balance the 

number of positive and negative articles used to update the classi-

fier. The writing style score measured is:  

 ))(|Int()( dleFeatureswritingStyPdf StyleWriting =−  (8) 

E. Freshness 

Generally, articles about the same event are published around 

the time the event has occurred. This may also be the case for 

interesting events, and consequently interesting articles, so we 

measure the temporal distance between the last k interesting arti-

cles and the current article: 

 ( )∑
∈

+−=
articlesInt  last '

1)'()(log
1

)(
kd

Freshness dTimedTime
k

df  (9) 

We measure the log of the temporal distance between an inter-

esting article and the current article since we are interested in the 

order of magnitude in time differences. For example, an article 

published one day after the last interesting article should be sig-

nificantly more interesting than an article published 100 days 

after the last interesting article. On the other hand, two articles 

published long after the last interesting article should be ap-

proximately equally old, with respect to the last interesting article, 

even though they may have been published 1000 and 1500 days, 

respectively, after the last interesting article. 

F. Subjectivity and polarity 

The sentiment of an article may also contribute to a user’s defi-

nition of interestingness. For example, "bad news" may be more 

interesting than "good news" (i.e., the polarity of the article). Or, 

subjective articles may be more interesting than objective articles. 

Polarity identification has been done with a dictionary [33] and 

blog-specific features [34]. Others have looked at subjectivity 

tagging, using various NLP techniques [35]. The density of sub-

jectivity clues in the surrounding context of a word has been used 

to infer its subjectivity [36] as well. 

We measure four different features of this feature class: polar-

ity, subjectivity, objective speech events, and subjective speech 

events. A speech event is a statement made by a person, such as a 

quotation. Using the MPQA corpus [37] to train 6-gram character 

language model classifiers, we classify each sentence in the 

document to determine its polarity, subjectivity, and the presence 

of objective or subjective speech events. The MPQA corpus is a 

new article collection from a variety of news sources annotated 

for opinions and other states, such as beliefs, emotions, senti-

ments, and speculations. For each document and each feature in 

this feature set, we measure: 

 ∑
∈

=
)(

)|(
|)(|

1
)(

dsentencess
class sclassP

dsentences
df  (10) 

where class is whether the sentence has negative polarity (i.e., 

bad news), the sentence contains subjective content (i.e., opin-

ions, speculation), the sentence contains an objective speech 

event, or the sentence contains a subjective speech event. 

V. CLASSIFICATION 

The overall classifier computes the final iScore given all the 

features values generated by the feature extractors. Because the 

features are continually refined as more documents are seen, some 

of the feature values may be erroneous for early documents. Also, 

not all the features may be useful in predicting interesting articles 

for a user, depending on the user’s criterions. The addition of 

useless features has been shown to degrade the performance of 

classifiers [38]. Consequently, an overall classifier must be in-

crementally updateable, robust against noisy and potentially use-

less features, and generate meaningful final scores for interest-

ingness. We evaluate four classes of classifiers: a naive Bayesian 

classifier, non-incremental classifiers using a sliding window, 

temporal inductive transfer classifiers, and a linear combination 

using correlation for weights. 

A. Naïve Bayesian classifier 

A naive Bayesian classifier is a simple yet popular method for 

classification. The classifier assumes that each feature from the 

set of features F is independent given the class of the document, 

or its interestingness. Using Bayes’ rule and the independence 

assumption, we find: 

 
))((

)Int|)(()(
))(|Int()(

dFP

dfPIntP
dFPdI

f∏
≈=  (11) 

The probabilities can be estimated by maintaining statistics 

over feature values using kernel estimators [39].  

B. Non-incremental classifiers 

We evaluate three classifiers that are robust against irrelevant 

features, but are not incrementally updateable, so these classifiers 

are trained on a sliding window of documents. Unaltered, for the 

classifiers to be continually trained, all the documents’ features 

and their taggings would have to be stored, and each classifier 

would have to be rebuilt each time a document is processed, mak-

ing this approach infeasible.  

Since recent articles are more useful in predicting interesting-

ness than older ones, we build windowing classifiers such that the 

classifiers are trained on only the last M interesting documents 

and the last N uninteresting documents. And the classifiers are 

rebuilt on an increasing interval schedule, like the compilation 

schedule for the language models used in anomaly detection. In 

our experiments, the maximum number of documents in between 

rebuilds of the classifier is 300 documents, and the maximum 

numbers of positive and negative documents in a window are 

both 500 documents. The interval growth rate is two documents. 
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In this windowing approach, we first evaluate the C4.5 deci-

sion tree, built by the J48 algorithm [40]. A tree is generated us-

ing the information gain of each feature, with features with high 

information gain at the top of the tree and features with low in-

formation gain at the bottom of the tree. The tree is then pruned to 

remove branches that have low confidence in their predictive 

abilities; making it robust against irrelevant features. 

The second classifier uses logistic regression, which models 

the posterior probability of interestingness as a logistic function 

on a linear combination of features:  

 













+==

∑
∈

−
Ff

f df

edFPdI
)(

1/1))(|Int()(
λ

 (12) 

A similar approach is taken in [20] to combine multiple ranking 

methods. A quasi-Newton method and ridge estimators are used 

to search for optimal values for λf [41]. 

In our experiments, we find that logistic regression is more ac-

curate than C4.5 under the windowing scheme, so we evaluate 

logistic regression with bagging [42]. Bagging mitigates the in-

stability of learning methods by building an ensemble of classifi-

ers trained on randomly sampled instances from the training data. 

In our experiments, we build 100 ensemble classifiers. 

C. Tix 

We modify a method used to address concept drift, called 

Temporal Inductive Transfer, or Tix [43]. For every M articles 

processed, a new classifier is built using a base induction algo-

rithm. The input feature vector consists of the values generated by 

the feature extractors along with P additional binary features. The 

P features are generated by predictions that the P previous classi-

fiers would have made for the current article. To bootstrap the Tix 

process, the first M articles (articles in the first interval) are proc-

essed by a classifier that is continually rebuilt as new documents 

are read. After the first interval, the regular Tix procedure begins. 

In our experiments, we use logistic regression as our base induc-

tion algorithm, P = 128 classifiers, and M = 1000 articles. 

D. Linear correlator 

We also evaluate a linear correlator classifier that uses the cor-

relation between a feature and interestingness. Intuitively, if a 

feature is highly correlated with interestingness, it should be 

weighted more in classifying the document. Unfortunately, it is 

assumed that each feature is independent, ignoring the possibility 

that two features that perform poorly alone in predicting interest-

ingness may perform well when combined together [44]. 

As each document is processed, we incrementally compute the 

Pearson’s correlation corrf of each feature f with interestingness. 

The classifier calculates an iScore as follows, weighting each 

feature with its interestingness correlation: 

∑

∑
=

f f

f f

corr

dfcorr
dI

))((
)(

σ
, 

))((
1

1
))((

ff tdfa
e

df
−−

+
=σ  (13) 

where σ(f(d)) is the sigmoid function. Because each feature value 

is a real number, not necessarily bounded between 0 and 1 and 

the final iScore value is a real number between 0 and 1, the sig-

moid function is used to squeeze f(d) to such a value. 

The parameter tf is the threshold of the sigmoid function. If f(d) 

is less than tf, the sigmoid function approaches 0. For f(d) greater 

than tf, the sigmoid function approaches 1. We assume that fea-

ture values belong to two different normal distributions, one for 

interesting articles and one for uninteresting articles. We incre-

mentally maintain the averages and standard deviations for both 

distributions. If the feature is directly correlated to interesting-

ness, the average feature value of interesting articles is greater 

than that of uninteresting articles. We compute the predicted true 

positive and true negative rates, given the cumulative distribution 

functions of the two distributions, for any threshold for a feature. 

And so for each threshold (according to some granularity) be-

tween the two averages, we compute a utility measure, and select 

the threshold with the greatest utility. In our experiments, we use 

TREC’s T11SU for the utility measure. In the case where there 

are ties in utility, the threshold closest to the mid-point between 

the averages of feature values of interesting and uninteresting 

articles is selected. For features inversely correlated to interest-

ingness, the slope of the sigmoid function is negated and the 

computations for the accuracy rates are adjusted accordingly. 

The parameter af is the slope of the sigmoid function, which 

determines how step-like the sigmoid function is. If the lone fea-

ture is able to predict interestingness by simply thresholding, the 

sigmoid function should be more step-like and it should generate 

0’s and 1’s with clear certainty. On the other hand, if the feature 

is poor at predicting interestingness, the feature should be less 

step-like, generating more ambiguous scores. And so we use the 

threshold’s utility measure, which is proportional to the feature’s 

predictive power, for the slope. 

VI. ADAPTIVE THRESHOLDING 

After the overall classifier has generated an iScore, the iScore 

is thresholded to classify the document’s interestingness. Instead 

of using a static threshold, we dynamically adjust the threshold in 

a similar fashion as the threshold computation for the linear corre-

lator, with a few modifications. Because iScores are real numbers 

bounded between 0 and 1, we can evaluate the efficacy of every 

threshold between 0 and 1 in increments of 0.01 and do not have 

to assume that interesting and uninteresting articles are normally 

distributed. And in the case of ties between the utility measures, 

we select the threshold that has deviated least from the previous 

threshold computed for the last document. The utility measures 

we evaluate are T11SU and F-measure fβ, where β = 0.5. 

VII. EXPERIMENTAL RESULTS 

iScore is implemented with an assortment of tools in Java. The 

system pipeline is implemented with the IBM UIMA framework 

[45]. LingPipe [46] is used for building language models and 

related classifiers. OpenNLP [47] is used for sentence detection. 

Other classifiers are from Weka [48].  

We evaluate iScore against two data sets. The first data set is a 

collection of 35,256 news articles from all Yahoo! News RSS 

feeds, collected between June and August 2006. The classifica-

tion task is to identify which articles come from which RSS feed. 

RSS feeds considered for labeling are feeds of the form: “Top 

Stories <category>”, “Most Viewed <category>”, “Most 

Emailed <category>”, and “Most Highly Rated <category>.” 

Because user evaluation is difficult to collect and such data is 

often sparse, the Yahoo! news articles and their source feeds are 

used for their resemblance to user labeled articles. For example, 

RSS feeds such as “Most Viewed Technology” is a good proxy of 

what the most interesting articles are for technologists. Other 

categories, such as “Top Stories Politics,” are a collection of news 

stories that the Yahoo! political news editors deem to be of inter-

est to their audience, so the feed also would serve well as a proxy 

for interestingness.  

The other data set comes from the TREC11 adaptive filter task, 
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which uses the Reuters RCV1 corpus and a set of assessor manual 

taggings for 50 topics, such as “Economic Espionage.” The cor-

pus is a collection of 723,432 news articles from 1996 to 1997. 

Although the TREC adaptive filter work addresses topic rele-

vancy and not necessarily interestingness, the task is done in a 

similar online and adaptive fashion as in iScore, and the topics 

may be reasonable proxies for a set of users.  

We use precision, recall, and the fβ measure, where β = 0.5, 

which weights precision more than recall, for system evaluation. 

TREC11’s T11SU is also used for comparing the performance of 

iScore with the work done in TREC11: 

 

Articles gInterestin#2

Retr ArticlesUnint #Retr  ArticlesInt  *#2
11

1)5.0,11max(*211

×

−
=

−=

NUT

NUTSUT

 (14) 

For each data set, we use two different utility measures for 

guiding the thresholding. For the Yahoo! RSS articles, fβ works 

better than T11SU. And we find that T11SU works better for the 

TREC data than fβ.  

A. Feature analysis 

Fig. 2 shows the correlation of the features with interestingness 

in each of the RSS feeds. For most feeds, the topic relevancy and 

source reputation features are significantly directly correlated 

with interestingness. Other features, such as writing style, speech 

events, anomaly detection, and subjectivity have varying correla-

tion magnitudes and directions with interestingness, depending on 

the RSS feed. The RSS feeds capture a variety of criterions that 

users may use when evaluating the interestingness of an article.  

On the other hand, Fig. 3 shows that the topic relevancy and 

source reputation scores are the only features correlated with rele-

vancy in the adaptive filter task. As expected, the Rocchio variant 

is the most correlated feature since it was the best performing 

filter in TREC11. Although the figure shows that the adaptive 

filter task captures topic relevancy well, topic relevancy is only a 

prerequisite for interestingness and is not sufficient for an article 

to be interesting. The TREC11 taggings and articles do not cap-

ture other aspects of interestingness well. 

B. Overall performance 

For the Yahoo! RSS articles, we evaluate the performance of 

each overall classifier against several well known topic relevancy 

classifiers: Rocchio, the Rocchio variant, and the 6-gram charac-

ter language modelling classifier. Each classifier is coupled with 

the adaptive thresholding mechanism, using fβ as the utility met-

ric. Fig. 4 shows the overall performance of the iScore classifiers 

compared to the baseline classifiers. The averages across RSS 

feeds, of precision, recall, and fβ are plotted in the graph. iScore 

with naïve Bayes outperforms the best baseline classifier (the 

language modelling classifier) by 21% in terms of fβ. iScore with 

the linear correlator, logistic regression, and logistic regression 

with bagging also perform as well as most of the baseline classi-

fiers. iScore classifiers using Tix and the decision tree under the 

windowing scheme in iScore perform the worse. However, the 

decision tree yields high recall at the cost of precision.  

Although naïve Bayes in iScore outperforms all the other clas-

sifiers used in iScore, it has a slight advantage. Naïve Bayes can 

be incrementally updated quickly. The other classifiers can not be 

updated as every new document is processed due to computa-

tional and storage costs. The windowed classifiers have to operate 

over a sliding window of data items and are rebuilt at increasing 

intervals. Consequently, the windowed classifiers are trained with 

less data and are not necessarily up-to-date with the information 

about the last document processed.  

Fig. 5 shows the performance of iScore using naïve Bayes over 

each of the individual feeds along with the number of articles in 

each feed. The feed with the worse results is the “Highest Rated 

Travel” feed due to the low number of articles in the feed. How-

ever, there are feeds that performed poorly despite the high num-

ber of articles in those feeds. Feeds, such as “Highest Rated” con-

tain a variety of articles from different topics, so the topic rele-

vancy measures, which are the most highly correlated features 

with interestingness overall, do not work well for these feeds.  

Since iScore uses some of the methods designed for the TREC 

task and topic relevancy is a prerequisite for interestingness, we 

compare the iScore classifiers (coupled with the adaptive thresh-

older optimized for T11SU) with the best filters from each par-

ticipating group in TREC11 in Fig. 6. Although iScore did not 

perform as well as the best filter, iScore with the linear correlator 

did perform generally well compared with most of the other fil-

ters. The next best iScore classifier is the naïve Bayesian classi-

fier, which is consistent with the Yahoo! data set. Logistic regres-

sion, logistic regression with bagging, Tix, and C4.5 yield the 

worst precision and fβ  score but high recall. 

C. Performance over time Periods 

Fig. 7 shows the performance of each classifier over different 

time periods using the Yahoo! RSS articles. Each time period 

contains 5000 articles. The best classifier used for iScore is the 
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Fig. 2. Correlation of features with interestingness of the Yahoo! RSS Feed 

articles. Each vertical line represents an RSS feed. 
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Fig. 3. Correlation of features with interestingness of the TREC11 articles 

and tags. Each vertical line represents a topic. 
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naïve Bayesian classifier, outperforming the best baseline classi-

fier (the language modelling classifier) by 24.3% on average. 

iScore using the naïve Bayesian classifier only performs worse 

than the baseline classifiers in the first time period. Because iS-

core has three layers of learning that must be done (i.e., the fea-

ture extractors, the overall classifier, and the adaptive threshold-

ing); whereas, the baseline classifiers only have two layers (i.e., 

the classifier itself and the adaptive thresholding), iScore per-

forms poorly at first due to propagation error among the layers. 

The other iScore classifiers perform generally better than the 

baseline classifiers with the exception of the decision tree, which 

fails to improve as more documents are processed.  

The dip in performance in the sixth time period by most classi-

fiers is due to concept drift introduced by a pause in the collection 

of new articles. Logistic regression and logistic regression with 

bagging are the most affected by the drift. Also, Tix, which is 

intended to address concept drift, is interestingly also affected by 

the pause in data collection. 

We also compare the T11SU performance of iScore with the 

best filters from TREC11 over time in Fig. 8. Each time interval 

is a month’s worth of articles. As in the overall performance 

analysis of iScore, logistic regression, logistic regression with 

bagging, Tix, and the decision tree perform poorly; whereas, na-

ïve Bayes and the linear correlator perform well. In the beginning 

periods, naïve Bayes performs poorly compared to the TREC 

filters and the linear correlator, but in the latter periods, it outper-

forms them. The lack of overall improvement in Fig. 6 by iScore 

over the TREC filters and the slow increase in performance in 

Fig. 8 are attributed to the additional learning layers in iScore. 

Also the multitude of useless features for the TREC task, as 

shown in Fig. 3, is a contributing factor since iScore must spend 

more time learning which features are irrelevant. These problems 

can be addressed with more training, but because there are few 

relevant documents for each TREC topic distributed sparsely 

across the entire collection (proportionally much less than in the 

Yahoo! collection), iScore cannot immediately learn enough to 

outperform the other classifiers until it has seen more articles.  

VIII. CONCLUSION 

Unlike other personalized news recommendation systems, iS-

core tackles what makes an article interesting, showing that a 

single feature is not sufficient. Through the combination of sev-

eral features using a naïve Bayesian classifier or a linear correla-

tor, we are able to outperform most popular IR techniques in 

identifying interesting articles from Yahoo! RSS feeds by 21% 

overall and by 24.3% on average over multiple time periods. Al-

though iScore is not specialized for retrieving articles relevant to 

specific topics, compared against the best filters from the 

TREC11 adaptive filter task, iScore performs generally well and 

can outperform with sufficient training.  

We also show that corpora, such as TREC11, do not capture 

interestingness well. Such corpora only capture topic relevancy, 

which is only a prerequisite for interestingness. To further ad-

vance personalized news recommendation research, we call for 

large corpora that reflect a variety of the characteristics of inter-

esting articles for different users.  

There is room for significant improvement for personalized 

news recommendations systems with few users. More news arti-

cles from the Yahoo! RSS feeds are being collected, so that we 

can evaluate iScore over a large corpus (greater than 100,000 

articles). Additionally, user taggings of articles done by volun-

teers using a web browser extension are being collected for fur-

ther study. Also more experiments will have to be done to find 

optimal parameter values for the feature extractors and classifiers. 

Further work will also be done to address the poor results for 

classifying articles from general categories, such as “Highest 

Rated.” We believe that further refinement of features other than 

topic relevancy may yield performance improvements for these 

categories. Also we believe that using named entities as well as 

relationships among entities can improve the accuracy of topic 

relevancy scoring and anomaly detection. 
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Fig. 4. Overall performance of classifiers over the Yahoo! RSS articles. The 

iScore classifiers are outlined. 
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Fig. 5. Performance of iScore (using Naive Bayes) in individual categories 

along with the number of articles in each category. 
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Fig. 6. Overall performance of classifiers over the TREC articles. The iScore 

classifiers are outlined. 
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articles. Each time period contains 5000 articles. 
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