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Abstract The processes in metallurgical industry are often 
extremely complex and measurements from their interior are 
scarce due to hostile (high temperatures and pressure, as well as 
very erosive) conditions. Still, today’s constraints on high 
productivity and minor impact on the environment require that 
the processes be strictly controlled. Mathematical models can 
play a central role in achieving these goals. In cases where it is 
not possible, or economically feasible, to develop a mechanistic 
model of a process, an alternative is to use a data-driven 
approach, where a black-box model is built on historical process 
data. Feedforward neural networks have become popular 
modeling tools for this purpose, but the selection of relevant 
inputs and appropriate network structure are still challenging 
tasks. The work presented in this paper tackles these problems in 
the development of a model of the silicon content in hot metal 
produced in the ironmaking blast furnace. A pruning method is 
applied to find relevant inputs and their time lags, as well as an 
appropriate network connectivity, for solving the time-series 
problem at hand. In applying the model, an on-line learning of 
the upper-layer weights is proposed to adapt the model to 
changes in the input-output relations. The findings of the analysis 
show results in good agreement with practical metallurgical 
knowledge and demonstrate the feasibility of the approach. 

Index Terms  —  Neural networks, pruning, selection of inputs, 
ironmaking, prediction of silicon content.

I. INTRODUCTION

Neural networks have become popular tools for tackling 
nonlinear black-box modeling problems, partly due to their 
universal approximation capabilities [1]. In real-world 
applications, such as prediction tasks encountered in the 
metallurgical industry, several practical problems arise in 
neural network modeling. One is that there is an abundance of 
variables that potentially influence the output (dependent) 
variable, and a choice between these has to be made to avoid 
an over-parameterization of the solution [2]. Another equally 
important problem is that the measurements contain errors, 
which complicates the choice of network complexity: 
Generally, the number of network parameters has to be 
restricted to avoid fitting noise. Several constructive and 
destructive algorithms, with growing or shrinking networks, 
have been proposed (e.g., [3-5]) but many of these include 
retraining steps that require prohibitive computational efforts 
when applied to large problems. Some investigators have 
explicitly dealt with the challenging problem of selection of 
relevant inputs [6], without taking a stand on the required 
complexity of the model: Sarle [7] discusses the pitfalls of 

methods that address the problem of determining the 
importance of input variables.  

This paper illustrates how a recently proposed efficient 
pruning method [8] can be used with advantage in a complex 
data-mining problem from the metallurgical industry, where 
both the relevant inputs and their time lags are to be detected 
in the modeling. The method, is briefly outlined in Section II,
and is, furthermore, extended to on-line learning. Section III 
demonstrates that is yields good solutions to the hot metal 
silicon prediction problem. The final section presents some 
concluding remarks. 

II. THE METHOD

This section describes the pruning algorithm in a nutshell, 
briefly discusses computational aspects, and illustrates the 
performance of the algorithm on an artificial data set. Finally, 
an extension to online learning is proposed. 

A. The Pruning Algorithm 

The pruning algorithm is based on feedforward neural 
networks of multi-layer perceptron type (often called 
backpropagation networks) with a single layer of hidden 
nonlinear units and a single linear output node. Given a 
sufficient number of hidden nodes, such a network has been 
shown to be able to approximate any continuous, twice 
differentiable function to any accuracy [9]. Fundamentally, 
the pruning algorithm is based on the practical experience that 
for such a network with an arbitrary choice of weights in its 
lower layer of connections, W, (cf. Fig. 1) there is usually a 
weight vector, v, to the output node that will lead to a 
relatively good solution, ŷ , of the approximation problem
(for an example, see e.g. [8]).  

Fig. 1. Neural network and notation. 

W

v

x1

m1

x2 xN. . . 

…2

ŷ
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The vector v can be determined by a simple matrix inversion. 
With this as the starting point, the pruning algorithm proposed 
can be compactly written as: 

1) Select a set of N potential inputs, x, and the output, y, to be 
estimated for the observations of the training set. 

2) Choose a sufficient number of hidden nodes, m, and 
generate a random weight matrix, W(0), for the lower part 
of the network. Set the iteration index to k = 1. 

3) Equate to zero, in turn, each non-zero weight, )1(k
ijw , of

W(k-1), and determine the optimal upper-layer weight 
vector, v , minimizing 2)ˆ( yyF by linear least 
squares. Save the corresponding value of the objective 
function, )(k

ijF .
4) Find the minimum of the objective function values, 

)()( min k
ij

ij

k FF . Set W(k) = W(k-1) and  equate to zero the 

weight corresponding to the minimum objective function 
value, 0)(

~
k

ji
w  with )(minarg~ k

ij
ij

Fji .

5) Set k
ji
~  and save this variable in a matrix,  

ji
~

(with the same dimension as W).
6) Set k = k + 1.  If k < m N, go to 3. Else, end. 

The book-keeping matrix, , stores the iteration number at 
which each connection weight has been deleted: By studying 
the elements in the columns (or rows) of the matrix it is 
afterwards easy to deduce when a certain input (or hidden 
node) has been eliminated. Usually, it the model performance 
is reported as the mean error, nF / , where n is the 
number of observations. 

B. Computational Aspects 

   The computational effort of the method can be reduced 
considerably by some simple measures. Since the order in 
which the weights are studied is unimportant, one can go 
through them in the order of the hidden nodes they refer to 
(i.e., starting with the connections between the inputs and the 
first hidden node, etc.). First, the net input to each hidden 
node, N

j jiji txwta
0

)()( , i=1,..,m, at each “time instant”, t,

is determined, as well as the corresponding output, zi(t) = 
(ai(t)). At step 3 of the algorithm (cf. subsection A) a resetting 
of wik simply means that the net input of the ith hidden node is 
changed into ai(t) wik(t)xk(t), while the net inputs, and outputs, 
of all other hidden nodes remain unaltered. Thus, for each 
weight in step 3, only one multiplication and one subtraction 
is needed to get the net input. In addition, the sigmoidal 
transformation is required for the hidden node in question. 
Along with the progress of the algorithm, the computational 
burden decreases gradually due to the permanent pruning of 
the weights, and, finally, of the hidden nodes. 

C. An Illustrative Example 

   As a simple illustration of the algorithm, consider a noise-
free data set with a ten-dimensional input vector (N = 10) of 
normally distributed random values with zero mean and unit 
variance, i.e., x1... x10 = N(0,1) and the dependent variable 

75
2
42 23 xxxxy             (1) 

Training and test sets of 250 observations each were 
generated, and the algorithm was run using a network with m
= 10 hidden nodes. The upper panel of Fig. 2 illustrates how 
the errors on the training set (solid line) and test set (dashed 
line) evolve along with the pruning process that progresses 
from right to left. The errors are seen to decrease in a step-
wise manner, especially strongly as the algorithm enters low 
network complexities. The lower panel of the figure shows 
this region in better focus. 
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Fig. 2. Training (  ) and test (- - -) errors for the example 
problem as functions of the number of remaining weights (excluding 
biases) in the lower part of the network. 

Potential model candidates are the networks with eight or nine 
lower-layer connections. Closer study of these show that they 
have seven hidden nodes and four inputs,  x2, x4, x5 and x7, i.e., 
only the relevant ones, with the difference that the former 
network has only one connection to x2. This network is 
depicted in Fig. 3 with hidden nodes rearranged for the 
purpose of illustration: It has a sparse and an intuitively 
appealing connectivity, where three hidden nodes are devoted 
to the approximation of the square of x4 while a joint hidden 
node is used in the approximation of the product between x5
and x7. Such a sparse network lends itself perfectly to a deeper 
theoretical analysis of how it constructs its approximation and 
of the nonlinearity of the transformations [10]. For an 
evaluation of the pruning model on data with noise, the reader 
is referred to [8]. 
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Fig. 3 Schematic of the network with a lower-layer complexity of 
8 (cf. Fig. 2). Weights are reported at the connections and biases in 
the corresponding nodes.

D. Extension to On-line Learning 

   A shortcoming of nonlinear black-box models is that they 
may yield poor predictions on independent data if some of the 
important inputs experience a level change. This is quite 
common in industrial processes, where the inputs may change 
rather dramatically because of control actions and changes in 
raw materials. A remedy follows logically from the over-all 
approach taken in the algorithm of this paper; it is natural to 
adjust the upper-layer weights as new information enters, and 
this is a linear problem, since a given input vector, x(t), and a 
fixed set of lower-layer weights yield a fixed output, z(t),
from the hidden nodes for every time instant t. For updating 
the upper-layer weights, v, the well known (recursive) 
Kalman filter [11] can be used 

)(ˆ)()1()()1( tytytKtt vv            (2) 

where the Kalman gain is given by 

)1()()1(1
)1()()1(
ttt

tt
tK

T

T

zPz
zP            (3) 

while the matrix P is updated by 

)()1()1()()1( tttKtt PzRPP            (4) 

In the equations, the covariance matrix of the “measurement 
error” is R, which, without a priori information, is usually 
chosen as a diagonal matrix, c I. If c is small the gain K is 
high, which makes large weight changes possible. The initial 
value of the matrix, P(1), is usually chosen as a diagonal 
matrix with large diagonal elements. If the training set is 
directly followed by the test set, which is often the case in on-
line learning, the results can be made less dependent on P(1)
by first applying the filter on the training set, using the final 
weights and matrices as starting points for the predictions. 

III. APPLICATION TO SILICON PREDICTION

A. Background 

   The blast furnace is the principal unit in the most important 
process route for iron produced for primary steelmaking. It 
acts as a large counter current chemical reactor and heat 
exchanger [12,13]. At its top the main energy source, coke, is 
charged together with preprocessed ore and fluxes in 
alternating layers. The ore is heated, reduced and finally 
smelted by the ascending gases, and intermittently tapped out 
at the bottom of the furnace in the form of liquid iron (often 
called hot metal). The reducing gases are formed in the 
combustion of coke (and auxiliary reductants, e.g., pulverized 
coal) when preheated, and often oxygen enriched, air (blast) is 
injected through nozzles (tuyeres) into the lower furnace, 
Large time delays and sluggish response to control actions 
make it important to predict quality and operational variables, 
e.g., the composition of the hot metal. The silicon content of 
the hot metal is an important indicator of the thermal state of 
the furnace. In general, it can be said that the silicon content 
of the hot metal reflects the energy available at (or vertical 
extent of) the high-temperature region. A decreasing silicon 
content often indicates a cooling of the furnace that without 
due countermeasures can lead to serious operational 
complications, while a high silicon content indicates excessive 
generation of heat and waste of coke. A high silicon content 
also unnecessarily increases the amount of slag in the unit 
processes downstream of the blast furnace. Blast furnaces are 
usually operated with a safety margin, i.e., a slightly higher 
coke rate than is deemed necessary, but since the cost of coke 
is dominating in ironmaking, there are obvious economical 
benefits of making the safety margin smaller. This requires 
stricter control of the heat level, and numerous models for the 
prediction of the hot metal silicon content have therefore been 
developed [14-25]. In [22] an exhaustive search was made 
among linear FIR models using a large set of inputs with 
different time lags and in [24] a partial least squares procedure 
was applied to select relevant inputs, but in the papers on 
nonlinear prediction of the silicon content by neural networks 
a small set of potential inputs was always selected a priori. 
The reason for this is, obviously, the considerable numerical 
effort required for training the networks. 

B. The Data Set 

   The present analysis was based on a data set from a Nordic 
blast furnace, where the variables have been preprocessed to 
yield hourly mean values. The hot metal silicon content is not 
generally recorded regularly. Instead, it is measured for every 
batch (torpedo, ladle or mixer), but in the furnace studied here 
the analysis was obtained with a frequency of about 1 h-1. On 
the basis of process knowledge 15 potential inputs were 
selected. These inputs are reported in Table I: Specific (sp.) 
quantities are expressed per ton of hot metal (thm). The table 
also presents the number of order of the variables, their units 
as well as the symbols that will be referred to later. 
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TABLE I 
POTENTIAL INPUT VARIABLES IN THE MODELING 

Number Variable Unit Symbol 
1 Total blast volume m3n/h blV

2 Blast pressure bar pbl

3 Gas permeability  - 
4 Sp. coal injection kg/thm coalm

5 O2 content of blast % O2X

6 Gas CO utilization  % CO

7 Top gas CO+CO2 % COCO2Y

8 Flame temperature C Tfl

9 Coke rate t/h cokem

10 Coal rate t/h coalm

11 Energy at tuyeres MW Etuy

12 Sp. blast volume m3n/thm blV

13 Solution loss rate kg/thm l-sm

14 Tuyere heat loss MW Qtuy

15 Ore/Coke ratio  - o/c 

   Some of the variables are directly measured, while others 
are quantities readily computed. In order to evaluate the 
possibility of on-line prediction of the silicon content, the 
problem was written as  

))8(),...,2(),1(),(()(ˆ ttttfty xxxx           (5) 

i.e., including lags of the 15-dimensional input vector, x, up to 
eight hours. The dimension of the input vector is thus 
considerable, 15  9 = 135. Note that autoregressive terms 
were deliberately omitted, since the inclusion of such is 
known to yield models of high inertia and with small 
possibilities to predict rapid changes in the output [22]. Data 
for 800 h of operation was used for training, while the 187-
hour period that followed was used for evaluating the 
performance of the resulting models. Before the models were 
developed, every (input and output) variable was scaled to the 
interval (0,1) by dividing the difference between the original 
value and the minimum value by the range of the variable in 
the training set. In the following, the model performance is 
reported in terms of the root mean square error, .

C. Overall Behavior 

   The performance of the algorithm is first illustrated by a run 
of it from a random starting weight matrix, using a network 
with five hidden nodes. (An analysis with a higher number of 
hidden nodes illustrated that similar final performance of the 
algorithm was obtained.) The Kalman filter was initialized by 
P(1) = 10I (at the start of the training set) while R = I. Figure 
4 illustrates the evolution of the root mean square errors, , on 
the training set (solid lines), test set without (dashed lines) and 

with (dotted lines) online adaptation of the upper-layer 
weights. The algorithm, which progresses from right to left in 
the figure, is seen to initially reduce both the training and test 
errors (without online learning) considerably, but the latter 
remains on a considerably higher level throughout the 
pruning. By contrast, the continuously updated model only 
shows a slowly decreasing trend, but throughout the run it 
yields errors comparable with the training errors. Thus, the 
weight updating results in a model that generalizes well. 
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Fig. 4. Training errors (solid lines), test errors without (dashed) 
and with (dotted lines) weight updating as functions of the number of 
remaining weights in the lower part of the network. 

   From the run the lowest error for the on-line-updated 
version,  = 0.073, is encountered when only six connections 
remain in the lower layer of the network. Figure 5 illustrates 
the approximation provided by this network (dotted lines), the 
target of the test set (solid line), and the results with fixed 
upper layer weights (dashed lines). The on-line learning is 
seen to lead to clearly superior performance: It has not only 
removed the bias in the prediction but also been able to adapt 
to show bigger variance in the signal. 
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Fig. 5. (Normalized) silicon content (solid lines), prediction 
without (dashed lines) and with (dotted lines) on-line updating of the 
weights for the test set. 
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D. Analysis of a Model Candidate 

   An analysis of this network reveals that the relevant input 
variables are 3, 5, 7, 12 and 14, i.e., the gas permeability, the 
oxygen content of the blast, the sum of the top gas CO and 
CO2, the specific blast volume as well as the tuyere heat loss, 
where the last variable contributes by two inputs (at different 
lags). In terms of relevance of the variables, with the most 
important one (i.e., last remaining input) listed first, the model 
can be written as  

))4(),3(
),3(),2(),1(),2(()(iŜ

O2tuy

COCO2bltuy

tXtQ

tYttVtQft           (6) 

Thus, the heat loss at the tuyeres (lagged by two and three 
hours), the specific blast volume (lagged by one hour), the gas 
permeability factor (lagged by two hours), the top gas 
CO+CO2 content (lagged by three hours) and the blast oxygen 
content (lagged by four hours) are considered to be relevant 
for predicting the silicon content. These variables are mostly 
related to the tuyere parameters, which are known to affect the 
silicon transfer in the furnace. The selected variables, as well 
as their comparatively short time lags (maximum four hours), 
are findings that agree well with knowledge from the practical 
operation of the furnace: The residence time of the molten 
iron between the tuyere level and tapping is in the order of a 
two hours. The tuyere heat loss is known to reflect the 
intensity of the thermal conditions in the lower furnace, the 
specific blast consumption is a measure of the efficiency of 
the operation of the BF, while the gas permeability reflects the 
vertical extent of the high-temperature region.  
   This network has been depicted in Fig. 6, which shows that 
three hidden nodes are used: One for the specific blast 
volume, one for the oxygen content of the blast, and one for 
the two tuyere heat loss terms together with the gas 
permeability and the top gas CO+CO2 content. The weights 
reported to the left of the corresponding connections reveal 
that the contribution of the last hidden node is minor. This 
observation is also supported by the fact that the next step of 
the pruning algorithm eliminates the oxygen content from the 
input set. Another remark is that all inputs, except the sum of 
CO and CO2 in the top gas, exhibit positive correlation with 
the silicon content. The only negative correlation is 
understood in that YCOCO2 describes the (major) outflow of 
carbon from the process, and a sudden increase in this means 
that the fuel reserved is depleted, resulting in an internal 
cooling and a lower silicon content [26]. 

E. Detection of Relevant Inputs and Time Lags 

   In order to study more general features of the problem, a set 
of runs of the algorithm were undertaken: Starting from 30 
random initial weight matrices, the most relevant ten 
variables, i.e., the ones that remained unpruned until the last 
ten steps, were recorded. 

Fig. 6. Schematic of a model candidate for the Si prediction task. 

Figure 7 shows the occurrence, P, of the 135 input signals: 
Each of the 15 different input variables (cf. Table I) has a 
segment separated by vertical dashed lines, within which the 
order goes from the largest to the smallest lag. Thus, the first 
input signal is the blast volume lagged by eight hours, 

)8(bl tV , while the last signal is the present value of the ore-
to-coke ratio, (o/c)(t). From this figure, some interesting 
observations can be made: Some of the inputs (flame 
temperature and top gas CO utilization and coke solution-loss 
rate) are seen to be of little  importance, while some show 
correlation with the output (specific and total coal injection 
rates) but without a clear preference for a specific lag. As for 
the most relevant variables, the tuyere heat loss is clearly 
dominating, followed by the gas permeability and the specific 
blast volume. All three follow the same pattern further 
illuminated in Fig. 8; they exhibit a pronounced peak at a time 
lag of two hours, but also a clear autocorrelation. For the 
former two, it is striking to note that their present values (i.e., 
at time t) are considered completely irrelevant  a fact that 
can be justified by the residence time in the hearth. Studying 
only the most relevant variable (i.e., the last remaining one at 
the end of the pruning process), it was found that Qtuy(t-2)
occurred 12 times, followed by )2(bl tV  and )3(bl tV  (both 
with five occurrences) and Qtuy(t-3) (three occurrences). Also 
this shows the strong correlation between the silicon content 
and the tuyere heat loss and the specific blast volume. 

   These findings also show agreement with the results of the 
specific network presented in Fig. 6, and also with the general 
findings of earlier efforts to predict the hot metal silicon 
content in other blast furnaces. For instance, in [18] the heat 
loss was found important, as well as in [19] where a gas 
permeability index (expressed as the quota between the blast 
pressure and volume) also was used. In [22] the most 
important inputs found in an exhaustive search were mainly 
related to the gas permeability and the energy and heat loss at 
the tuyeres. Permeability indices were also found to be 
relevant inputs in the study presented in [24]. 
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Fig. 7. Occurrence (P) of the different input signals among the 
ten most relevant variables in the 30 runs. 
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Fig. 8. Occurrence (P) of the time lags of the three most relevant 
input variables (gas permeability, specific blast volume and tuyere 
heat loss). 

   A more detailed statistical analysis of the most promising 
models was undertaken in order to find a proper lower-layer 
connectivity of the network in a final model of the silicon 
content. The connections in all of the last five networks of the 
30 runs were analyzed, yielding the occurrences reported in 
Table II. Quite naturally, the most frequently occurring 
connections to the hidden nodes are those from a single input, 
and the top four inputs reported earlier also reappear here, but 
in a slightly different order: The tuyere heat loss, lagged by 3 
h, occurs more frequently than the specific blast volume, 
lagged by 2 h or 3 h. Also the gas permeability (lagged by two 
hours) is a frequent variable and occurs more than ten times, 
but the remaining variables with a single connection appear 
clearly less often (< 8 times). As for the most frequent 
connections from two inputs to a hidden node, the occurrences 
are, obviously, much fewer. Again, the relevant variables 
detected above are strongly represented (cf. Table II). 

F. Final Model 

   On the basis of this, the following compromise solution is 
proposed: In order to minimize the number of hidden nodes 
(and thus the number of parameters in the network), the 
network illustrated in Fig. 9 is suggested, with a single 

connection for the clearly most important input, Qtuy(t 2), and 
with pair of connections from (t 2), blV (t 3) and blV (t 3),
Qtuy(t 3). This network has only twelve parameters (including 
the biases) in total and is also appealing in that it predicts the 
silicon content two hours ahead. 

TABLE II 
OCCURRENCES OF COONECTIONS TO INPUTS
AMONG THE FIVE LAST INPUTS IN THE 30 RUNS

Variable(s) Occurrenc
e

Qtuy(t 2) 48
Qtuy(t 3) 32

blV (t 2) 21

blV (t 3) 18

(t 2) 12
< 8 

(t 2), blV (t 3) 4

coalm (t 3), Qtuy(t 3) 3

O2X (t 3), blV (t 4) 3

cokem (t), Qtuy(t 2) 3

blV (t 1), Qtuy(t 2) 3

blV (t 3), Qtuy(t 3) 3

(t 2), Qtuy(t 3) 3
< 3 

    Training of all parameters of this network to completion 
using an efficient gradient based method for neural network 
training [27] resulted in a training error and a test error of 
0.093 and 0.131 respectively, while the on-line updated model 
showed an error of  = 0.074, i.e., of same accuracy as the 
best models evolved by the pruning process, as illustrated in 
Figure 10. The latter model has explained 55 % of the 
variation in the silicon content in the test set, so it must be 
considered very competitive compared with models reported 
in the literature. This demonstrates that a very parsimonious 
model can be developed on the basis of the findings from the 
pruning method. 

   Finally, a comparison between the performance of the 
pruned network and that of a fully connected network with 
identical inputs was made in order to evaluate the strength of 
the pruning algorithm. After optimizing all the weights of the 
fully connected network with three hidden nodes, a training 
error of 0.090 and a test error of 0.152 were achieved. Figure 
11, which shows the target signal (solid lines) and the 
predictions (dashed lines) on the test set, clearly illustrates that 
the network is overtrained, explaining the worse performance 
on the test set. 
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Fig. 9. Schematic of a final model for the silicon prediction task. 
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Fig. 10. (Normalized) silicon content (solid lines), prediction 
without (dashed lines) and with (dotted lines) on-line updating of the 
weights in the final network run on the test set. 
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Fig. 11. (Normalized) silicon content (solid lines) and prediction by 
a fully connected network with three hidden nodes (dashed lines) on 
the test set. 

IV. CONCLUSIONS

This paper has described an algorithm for the selection of 
input variables, their time lags as well as a proper complexity 
of a multi-layer feedforward neural network applied on a 
problem from the metallurgical industry, i.e., the prediction of 
the silicon content of hot metal produced in a blast furnace. A 
statistical analysis of the results of several runs of the 
algorithm demonstrated that the algorithm finds inputs that on 
the basis of industrial process knowledge are known to 
correlate with the hot metal silicon content. Furthermore, the 
time lags found are also reasonable, considering the dynamics 
of the process. 

The merits of an on-line updating of the upper layer 
weights, appropriate for practical application of the models 
developed, was further demonstrated. In a final attempt, the 
relevant inputs and model structure were analyzed by a full 
gradient-based training of the weights of existing (sparse) 
connections. This was demonstrated to yield a final model that 
was able carry out accurate one-step ahead predictions of the 
silicon content. Furthermore, compared to the results of a fully 
connected network with identical inputs, the pruned network 
was found to exhibit clearly better performance on an 
independent test set.
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