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Abstract— The paper presents results of experiments of es-
timating the number of tricks to be taken by one pair of
bridge players in so-called Double Dummy Bridge Problem,
using artificial neural networks. In addition to deals presented to
neural network’s inputs, also some human methods of estimating
strength of a hand were applied. Influence of human knowledge
on neural network’s results depends on the way of coding a deal.

One of deal representations tested in the paper definitely
outperformed all the other choices even when the remaining rep-
resentations were additionally supported by human knowledge
implemented by several estimators frequently used in professional
play. This superior representation output a perfect answer in
53.11% of test deals and only in 3.52% of them was mistaken
by more than one trick.

I. INTRODUCTION

The game of bridge is one of the best known card games,
and, as such worldwide game, has attracted attention of
several Artificial Intelligence and Computational Intelligence
researchers, e.g. [1], [2], [3], [4], [5]. There are many interest-
ing aspects of the game of bridge, one of them is estimation
of hand’s strength.

In this paper description and results of experiments of using
artificial neural networks as estimators of the number of tricks
to be taken by one pair of players in a deal are presented. In
some of the experiments human methods of estimating hand’s
strength are also used.

The underlying issue considered in the paper is analysis of
the problem of data representation in neural network learning
and exploration of the network’s capabilities of discovering the
rules and nuances in efficient hand’s strength estimation based
solely on examples. The results of example-based learning
are compared with the situation in which some additional
expert knowledge, besides example deals, is added in the input
layer. It is experimentally proven that with adequate choice
of network’s architecture and data representation in the input
layer the neural net trained without explicit human knowledge
is as efficient as the one that observes additional input data
representing well known human estimators of hands’ strength.

The paper is organized as follows. The data used in ex-
periments and some human methods of estimating hand’s

strength are described in section II. Section III contains
information about artificial neural networks’ architectures used
in experiments and description of the ways of coding a deal
in the network’s input layer. Section IV presents results of
experiments with emphasis put on comparison between no
trump and suit contracts as well as analysis of an influence
of changing the hand which makes defender’s lead on the
quality of results. Section V discusses 4 sample deals, that
illustrate capabilities of trained neural networks and reveal
some interesting nuances of the play. Conclusions are placed
in the last section.

It is worth to underline that although the focus of this
paper is not on playing the game of bridge per se, the
problem of effective hand’s strength estimation is essential in
the development of strong bridge playing agent. This issue is
further discussed in the next section.

II. PROBLEM DEFINITION

Estimating hand’s strength is a crucial aspect of the bidding
phase of the game of bridge, since contract bridge is a
game with incomplete information and during the bidding
phase each player can see only his/her cards and has to
make several assumptions about placement of other cards1.
This incompleteness of information forces considering many
variants of a deal (cards distributions). The player should
take into account all these variants and quickly estimate the
expected number of tricks to be taken in each case.

Assuming any particular variant of cards’ location is equiv-
alent to the case of having all four hands revealed. Under
these circumstances the question to be answered is “How many
tricks are to be taken by one pair of players assuming perfect
play of all four sides?”. The above situation is called Double
Dummy Bridge Problem (DDBP) [5], [9].

There is an important difference between solving DDBP and
the real bridge playing, since in the latter the exact placement

1For the sake of clarity and due to space limits the introduction to the game
of bridge is omitted in the paper. The interested reader can learn the basic
rules of the game from anyone of numerous sources available online or in
printed form, e.g. [6], [7] or [8].
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TABLE I
HUMAN POINT COUNT METHODS

Method A K Q J 10
Work Point Count 4 3 2 1 0

Bamberger Point Count 7 5 3 1 0

Collet Point Count 4 3 2 0.5 0.5

Four Aces points 3 2 1 0.5 0

Polish points 7 4 3 0 0

Reith Point Count 6 4 3 2 1

Robertson Point Count 7 5 3 2 1

Vernes Point Count 4 3.1 1.9 0.9 0

AKQ points 4 3 2 0 0

of most of the cards is unknown. Consequently, in a real play,
the player has to calculate probabilities of cards’ distributions
and choose a strategy with the highest expected outcome. In
DDBP there is no hidden data and the best strategy can be
pointed out.

A. The GIB Library

The data used in solving DDBP was taken from the GIB
Library [10]. This library was created by Ginsberg’s Intelligent
Bridgeplayer [5] computer program, which is considered to be
one of the best bridge playing programs.

The GIB Library includes 717, 102 deals with all hands
revealed. Additionally, for each deal the library provides the
numbers of tricks to be taken by the pair NS for each
combination of the trump suit (including no trump contract)
and the hand which makes defender’s lead. Together there are
20 numbers for each deal (5 trump suits by 4 sides). All these
numbers were calculated by GIB program under assumption
of a perfect play of all players.

In most experiments reported in this paper, 100, 000 deals
from the library (with numbers from 1 to 100, 000) were used
during training and another 100, 000 ones (numbered from
600, 001 to 700, 000) were used for testing.

The tested ways of coding a deal in numeric format suitable
for artificial neural networks are described in section III-A.

B. Human Methods of Estimation of Hand’s Strength

Three groups of experiments were carried out. In the first
group only example deals (appropriately coded as neural
networks’ inputs) were used. In the second group inputs from
human hand’s strength estimators were added. Finally, for
comparison purposes, in the third group of tests only human
estimators were used in the neural network training without
accompanying presentation of a deal.

Human estimators of hand’s strength can be divided into two
categories. The first category contains methods of calculating
the strength of a hand as a sum of single card strengths [11],
[12]. In these methods the value of each card depends only
on a rank of the card. The most widely used points counting
system is called Work Point Count, which scores 4 points for
an Ace, 3 points for a King, 2 points for a Queen, and 1 point
for a Jack. Table I presents other popular human point count

methods, which were also used in experiments described in
this paper.

The second category contains so-called distributional points
[11], [12]. These methods score patterns which can be found
in a set of cards assigned to one hand. The most important
patterns are: suits’ lengths and groups of figures in one suit.
Even novice bridge players know, that a void (lack of cards
in a suit) or a singleton (single card in a suit) are very
valuable in suit contracts, so it is not surprising that almost all
distributional points methods award such shortness. Results
obtained in experiments described in the paper confirm that
suits’ lengths are crucial for suit contracts.

Another very important pattern which is searched in cards
of both players from a pair, is a group of honours (i.e. figures
and a Ten) in one suit. Having a group of top honours in
a suit allows to predict more precisely the number of tricks
available in this suit.

Human distributional points methods used in our experi-
ments are listed in Table II. Most of them join Work Point
Count scoring with some rewarding for short or long suits.

Zar Points [13] is another method of estimating hand’s
strength, which combines elements of point count methods
with ideas of distributional points. In this method, each hand
is scored by adding the following figures:

• points for honours: 6 points for each Ace, 4 points for a
King, 2 points for a Queen, and 1 points for a Jack,

• the difference between the lengths of the longest and the
shortest suits,

• the sum of the lengths of the longest 2 suits.

III. EXPERIMENT DESIGN

Artificial neural networks are very suitable tools for esti-
mating the number of tricks, due to their ability to generalize
knowledge acquired from training data. Another very impor-
tant feature of neural nets, when considered as an estimation
tool during bidding phase of the game of bridge, is their speed.
Calculating the expected number of tricks to be taken using
trained network is very fast, and can be efficiently carried
out for many potential variants of a deal, which have to be
considered due to partly hidden information.

In all experiments feed-forward networks were used. Train-
ing and testing was carried out with JNNS’s [14] assistance.
JNNS, Java Neural Network Simulator, is a freely available
successor to Stuttgart Neural Network Simulator (SNNS).

In most cases logistic (unipolar sigmoid) activation function
was used for all neurons. Only when negative values were
presented in the input layer, the hyperbolic tangent (bipolar
sigmoid) activation was applied.

All networks were trained using Rprop (Resilient Backprop-
agation) algorithm [15], with the following choice of method’s
parameters: initial and maximum values of an update-value
factor were equal to 0.1 and 50.0, resp., and weight decay
parameter was equal to 1E − 4.
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(a) (26x4) Representation (b) 52 Representation

(c) 104 Representation (d) (52x4) Representation

Fig. 1. Representations of Deals

TABLE II
HUMAN DISTRIBUTIONAL POINTS METHODS

Method Short Description
Honour Trick Potential number of tricks to be taken by

honours in one suit (e.g. 2 points for AK,
1.5 for AQ, etc.)

Playing Trick Similar to Honour Trick, with additional
bonuses for short and long suits.

Losing Trick Count Potential number of tricks to loose in one
suit (e.g 1 point for Ax, 2 points for Qx).

Asset System Work Point Count’s enhancement with
bonuses for short (+2 for a void, +1 for
a singleton) and long (+1 for 5 or more
cards) suits.

Stayman Point Count Work Point Count method with rewarding
short and long suits and lowering the status
of single honours in suits.

Rule of three and four Work Point Count method with additional
+1 point for 5th, 6th, etc. card in a trump
suit and for 4th, 5th, etc. card in any other
suit.

Moins-value Modification of Work Point Count: −1 for
no Aces, −0.5 for no Tens, −1 when there
are too few cards in a suit to make honour(s)
potential trick(s), and −0.5 when there are
less than 3 honours in a suit, or only one of
cards: Ace, King, and Queen.

Plus-value Modification of Work Point Count: +0.25
for each Ace, +0.5 for a Ten with a honour
or Nine, and +0.5 when there are 3 honours
or at least two of cards: Ace, King, and
Queen in a suit.

A. Representation of a Deal

The number of input neurons depended on the way a deal
was represented. Four ways of coding a deal suitable for neural
networks learning were tested. One of them (denoted 52x4)
achieved significantly better results than the others. The effec-
tiveness of the remaining representations was on comparable
level (see section IV for details). Three ways of coding a
deal required similar numbers of training epochs, whereas the
fourth coding (26x4) required much longer training - over
100, 000 epochs, compared to a few thousand iterations needed
by the other representations.

1) (26x4): The first tested way of deal’s representation
used 104 input values grouped in 52 pairs. Each pair rep-
resented one card. The first input value in a given pair
determined the rank of the card (Ace, King, Queen etc.) and the
second one represented the suit of the card (Spades, Hearts,
Diamonds or Clubs). Hence, 26 input neurons (13 pairs) were
necessary to fully describe the content of one hand (see Fig.
1(a)).

A few ways of transforming card’s rank and suit into
real numbers suitable as input values for the network were
tested. Finally the rank of the card was transformed using
a uniform linear transformation to the range [0.1, 0.9], with
biggest values for Aces (0.9), Kings (0.83) and smallest for
Three spots (0.17) and Two spots (0.1). Some other ranges,
e.g. [0, 1] or [0.2, 0.8], were also tested, but no significant
difference in results was noticed. Suit of the card was also
coded as a real number, usually by the following mapping:
0.3 for Spades, 0.5 for Hearts, 0.7 for Diamonds, and 0.9 for
Clubs.
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TABLE III
COMPARISON OF RESULTS OBTAINED FOR NO TRUMP AND SUIT CONTRACTS

The Network Inputs Results for No Trump
Contracts

Results for Spades
Contracts

(26x4)-(13x4)-(7x4)-13-1 Deals in (26x4) representation 93.87 | 75.70 | 31.04 97.67 | 84.24 | 36.82

52-25-1 Deals in 52 representation (with input values: 1.0 for N , 0.8 for S,
−1.0 for W , −0.8 for E)

95.81 | 79.95 | 34.02 98.47 | 86.83 | 39.16

52-25-1 Deals in 52 representation (with input values: 1.0 for N , 0.8 for S,
−1.0 for W and E)

95.97 | 80.46 | 34.35 98.52 | 87.09 | 39.47

52-25-1 Deals in 52 representation (with input values: 1.0 for N and S, −1.0
for W and E)

96.07 | 80.88 | 34.66 98.77 | 88.00 | 40.13

104-30-4-1 Deals in 104 representation 95.64 | 79.63 | 33.74 98.61 | 87.17 | 39.21

(52x4)-(13x4)-13-1 Deals in (52x4) representation 97.34 | 84.31 | 37.80 99.78 | 95.00 | 50.03

1-1 Sum of Work Point Count values for the NS pair of players 93.73 | 76.41 | 31.37 76.22 | 49.55 | 16.93

4-1 Work Point Count values for each hand 93.73 | 76.34 | 31.31 76.22 | 49.64 | 16.91

20-1 Work Point Count values for hands (4 inputs) and suit lengths (16
inputs)

93.73 | 76.34 | 31.32 97.00 | 82.21 | 35.29

20-10-5-1 Work Point Count values for hands (4 inputs) and suit lengths (16
inputs)

94.24 | 77.78 | 32.78 98.75 | 88.21 | 40.30

36-25-1 9 human point count methods, 4 inputs per method (see Table I) 94.87 | 78.30 | 32.39 76.83 | 49.77 | 16.75

(52+36)-25-1 Deals in 52 representation and 9 point count human methods 96.33 | 81.39 | 35.01 98.72 | 87.90 | 40.07

32-25-1 8 human distributional points methods, 4 inputs per method (see Table
II)

94.94 | 77.71 | 32.50 98.56 | 88.07 | 39.94

(52+32)-25-1 Deals in 52 representation and 8 distributional points human methods 96.86 | 83.02 | 36.67 99.68 | 94.28 | 48.63

68-25-1 9 point count methods and 8 distributional points methods (4 inputs
for each method)

96.03 | 81.34 | 35.41 98.78 | 89.24 | 41.50

(52+102)-77-38-19-1 Deals in 52 representation, 9 point count human methods, and 8
distributional points human methods (6 inputs per method - 4 for
hands and 2 for pairs of players)

96.06 | 81.21 | 35.15 99.49 | 92.22 | 45.33

In order to allow the network gather full information
about cards’ placements, some special groups of neurons
were created in subsequent layers. For example, the network
(26x4)− (13x4)− (7x4)− 13− 1 was composed of 5 layers
of neurons arranged in a way depicted in Fig. 1(a). The first
hidden layer was responsible for collecting information about
individual cards. Four groups of neurons in the second hidden
layer gathered information about respective hands. The last
hidden layer combined the whole information about a deal
and was connected to the output neuron.

2) 52: The second way of coding a deal implemented
different point of view - input values were not assigned to
hands, but to cards from the deck. There were 52 input values
and each value represented one card from the deck. Positions
of cards in the input layer were fixed, i.e. from the leftmost
input neuron to the rightmost one the following cards were
represented: Two of Spades, Three of Spades, . . . , King of
Spades, Ace of Spades, Two of Hearts, . . . , Ace of Hearts,
Two of Diamonds, . . . , Ace of Diamonds, Two of Clubs, . . . ,
Ace of Clubs (see Fig. 1(b)).

A value presented in the input neuron denoted the hand to
which a given card belonged, i.e. 1.0 for North, 0.8 for South,
−1.0 for West, and −0.8 for East. Interestingly, as came out
from further experiments, using the same input value (−1.0)
for West and East hands improved the results. Additionally,
hiding the information about exact cards’ assignment in the
pair NS, i.e. using an input value equal to 1.0 for both North
and South hands, yielded another slight improvement (see

Table III).
In this coding there were no dedicated groups of neurons in

hidden layers. Layers were fully connected, e.g. in 52−25−1
network all 52 input neurons where connected to all 25 hidden
neurons, and all hidden neurons were connected to 1 output
neuron.

3) 104: The next way of coding a deal was an extension
of the previous one, with 104 inputs. The first 52 input values
represented assignment to a pair (value 1.0 represented NS
and −1.0 - WE), and the other 52 ones exactly pointed out
the hand (value 1.0 for North or West and −1.0 for South or
East). In both groups positions of cards were fixed in the same
way as in coding 52 (see Fig. 1(c)).

Networks using this coding were fully connected, and
usually contained two layers of hidden neurons, e.g. 104 −
30− 4− 1.

4) (52x4): The last way of a deal coding used the biggest
number of inputs - 208. Input values were divided into 4
groups, one group per hand. The first group represented cards
of the North player, the second - the East one, the third
- the South one, and the fourth - the West player. In this
representation 4 input neurons were assigned to each card
from a deck. Exactly one of these four input neurons was
equal to 1.0, three remaining ones received value 0.0 as the
input. This way, a hand to which the card was assigned in a
deal was unambiguously defined.

There were 4 groups of neurons in the first hidden layer,
each of them gathering information from 52 input neurons
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TABLE IV
COMPARISON OF RESULTS OBTAINED FOR SUIT CONTRACTS WITH AND WITHOUT CHANGING DEFENDER’S LEAD

The Network Inputs Results for Spades
Contracts

Results for Spades Contracts
with changing defender’s lead

(26x4)-(13x4)-(7x4)-13-1 Deals in (26x4) representation 97.67 | 84.24 | 36.82 98.76 | 88.00 | 39.90

52-25-1 Deals in 52 representation 98.77 | 88.00 | 40.13 98.49 | 87.15 | 39.29

104-30-4-1 Deals in 104 representation 98.61 | 87.17 | 39.21 99.09 | 89.79 | 41.92

(52x4)-(13x4)-13-1 Deals in (52x4) representation 99.78 | 95.00 | 50.03 99.79 | 95.49 | 50.62

(52x4)-(26x4)-26-13-1 Deals in (52x4) representation 99.80 | 95.54 | 50.91 99.88 | 96.48 | 53.11

(104+68)-50-10-1 Deals in 104 representation, 9 point count human methods,
and 8 distributional points human methods (4 inputs per
method)

99.35 | 92.25 | 45.34 99.46 | 92.40 | 45.54

(52x4+84)-(13x4+21)-26-1 Deals in (52x4) representation, 9 point count human meth-
ods, 8 distributional points human methods (4 inputs per
method), and lengths of all suits from all hands (16 inputs)

99.82 | 95.74 | 51.40 99.84 | 96.12 | 52.47

20-10-5-1 Work Point Count values for hands (4 inputs) and suit
lengths (16 inputs)

98.75 | 88.21 | 40.30 98.67 | 87.98 | 40.62

representing one hand. This data was further compressed in
another one or two fully connected hidden layers. All neurons
from the last hidden layer were connected to a single output
neuron. A sample network using this way of coding a deal,
(52x4) − (13x4) − 13 − 1, is presented in Fig. 1(d). The 3-
hidden layer architecture is, for example, represented by the
network (52x4)− (26x4)− 26− 13− 1.

B. Representation of Human Estimators

Values of human estimators of hand’s strength (see section
II-B) were coded as real numbers from the range [0.1, 0.9].
For each estimator minimum and maximum possible values
were determined, and evaluator’s value was linearly mapped to
the destination range. Usually 4 input neurons were assigned
to each estimator, one per hand. In some experiments two
additional input neurons were assigned to an estimator with
values calculated as sums of estimator’s values for pairs of
players (NS and WE).

In case of 52 and 104 codings, input neurons representing
human estimators were connected to the first hidden layer
exactly in the same way as all other input neurons. In this
case the first hidden layer collected all information about a
deal and estimators’ values. In (52x4) representation there
existed a special group of neurons in the first hidden layer,
devoted to processing this additional input information. For
example, in (52x4 + 84) − (13x4 + 21) − 26 − 1 network
there were 21 neurons belonging to this group. These neurons
received values exclusively from input neurons assigned to
human estimators (there were 84 such neurons in that case
- see Table IV for details). In the second hidden layer all
information was mixed together.

IV. RESULTS

In our previous papers the DDBP was examined in the
context of NT contracts and two deal codings: 52 and 104
[16], [17]. Despite promising numerical results, the focus
of previous research was on exploration and analysis of
weight patterns of the networks, after the training process was
completed. Several interesting patterns in weights’ structures

were discovered, including the comparatively big weights’
values from inputs representing aces and kings or detection of
the neurons devoted to representation of particular suits (the
weights from one suit cards were visibly greater that those
from the remaining suits). Also more subtle observations were
carried out, e.g. weight patters suitable for the finesses - a very
important aspect of the game of bridge (see [17] for details).

Our recent paper concerning DDBP [18] was concentrated
on suit contracts, where roughly the same weight structures
as for NT contracts were discovered, with the choice of deal
codings still restricted to 52 and 104 ones.

The underlying research problems considered in this paper
include: (a) tests of novel deal codings and more elaborate
network architectures, (b) comparison of training with and
without adding human expert knowledge in the input data,
(c) comparison between no trump and suit contracts and (d)
further enhancement of results by training on examples with
changing a defender lead’s hand.

Numerical results of experiments are summarized in two
tables. Table III compares results achieved for no trump and
suit contracts. In Table IV an influence of changing a hand
which makes defender’s lead on results is presented.

Each result consists of three values, e.g. 93.87 | 75.70 |
31.04. These values denote the fraction in percent of test deals
for which the network was mistaken, respectively by no more
than 2 tricks (93.87), no more than 1 trick (75.70), and was
perfectly right (31.04).

A. Comparing Results Obtained for No Trump and Suit Con-
tracts

Analysis of experimental results for no trump contracts
reveals, that the difference between the best (and also the
most complicated) solution and a simple linear combination
of 4 values representing Work Point Count values for each
hand, was surprisingly small. The best result achieved by
(52x4)− (13x4)− 13− 1 network was 97.34 | 84.31 | 37.80,
and a simple mapping of a sum of Work Point Count values
for the pair NS, i.e. the network with one input and one
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Correct number of tricks 10
Networks’ estimations

(52x4)− (13x4)− 13− 1 10
(52x4)− (26x4)− 26− 13− 1 10

104− 30− 4− 1 8
52− 25− 1 7

(104 + 68)− 50− 10− 1 10
(52x4 + 84)− (13x4 + 21)− 26− 1 10

Fig. 2. Sample deal and networks’ estimation of a number of tricks to be
taken by the NS pair in Spades contract with West defender’s lead.

output neuron, without any hidden neurons, obtained result
93.73 | 76.41 | 31.37.

On the one hand these results suggest, that no trump
contracts are very easy - it is enough to compute a sum of
weights points for honours to get almost one third chance
of a perfect estimation of a number of tricks. On the other
hand no trump contracts seem to be more demanding than
suit contracts. Even quite complicated networks, with human
knowledge applied, were not able to achieve the level of 85%
accuracy with 1 trick tolerance.

Preliminary results achieved by 52 − 25 − 1 network for
single suits proved, that there was no significant difference
between suits (98.77 | 88.00 | 40.13 for Spades, 98.65 |
87.81 | 40.18 for Hearts, 98.66 | 87.68 | 39.96 for
Diamonds, and 98.73 | 87.90 | 40.02 for Clubs). Some
experiments with all suit contracts to be managed by one
network were also performed, and, not surprisingly, achieved
results were similar (e.g. 98.68 | 87.88 | 40.11 by 52− 25− 1
network).

Therefore, in order to fix attention, among all suit contracts
Spades contracts were chosen for further tests. For these
contracts, using only Work Point Count values attained much
worse results (76.22 | 49.64 | 16.91) than for no trump
contracts (93.73 | 76.34 | 31.31). However, adding 16 input
values representing lengths of all suits from all hands allowed
to improve results to quite a good level - 98.75 | 88.21 | 40.30
by 20 − 10 − 5 − 1 network. None of the following ways
of representing a deal: (26x4), 52, and 104, even with quite
complicated architectures, was able to beat this result. This
fact may undermine other neural networks achievements, but
it should be emphasized that there is a lot of human knowledge

Correct number of tricks 3
Networks’ estimations

(52x4)− (13x4)− 13− 1 5
(52x4)− (26x4)− 26− 13− 1 3

104− 30− 4− 1 5
52− 25− 1 5

(104 + 68)− 50− 10− 1 5
(52x4 + 84)− (13x4 + 21)− 26− 1 4

Fig. 3. Sample deal and networks’ estimation of a number of tricks to be
taken by the NS pair in Spades contract with North defender’s lead.

of the game of bridge in such choice of inputs (Work Point
Count values and lengths of suits). The network 68− 25− 1,
which used all human point count and distributional points
methods (see Tables I and II), achieved only slightly better
result - 98.78 | 89.24 | 41.50.

It is interesting to compare results achieved by networks
(52+36)−25−1 and (52+32)−25−1. Both these networks
used 52 way of coding a deal with additional inputs from
human methods of estimating hand’s strength. Results of these
networks for no trump contracts were comparable, but for
Spades contracts using distributional points methods turned
out to be definitely more effective (99.68 | 94.28 | 48.63) than
using point count methods (98.72 | 87.90 | 40.07).

For both no trump and suit contracts the best results were
achieved by the networks using (52x4) deal coding.

B. Changing Defender Lead’s Hand

For Spades contracts, in 7% of deals contained in the
GIB Library, the number of tricks to be taken by the pair
NS depends on the hand which makes defender’s lead, i.e.
the number of tricks after defender’s lead from West side
differs from the respective number after East defender’s lead.
Enlarging both training and testing sets by duplicating deals
and changing positions of hands (to make sure, that always
the same set of input neurons represents a hand which make
defender’s lead), improved results, but the benefit was smaller
than 7%.

Table IV contains comparison of results achieved for
Spades contracts with and without changing defender’s lead.
Exactly the same deals were used in training and testing
phases, but when the hand which makes defender’s lead was
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Defender’s lead
North South

Correct number of tricks 4 3

Networks’ estimations
(52x4)− (13x4)− 13− 1 3 4

(52x4)− (26x4)− 26− 13− 1 4 3
104− 30− 4− 1 4 4

52− 25− 1 4 4
(104 + 68)− 50− 10− 1 3 4

(52x4 + 84)− (13x4 + 21)− 26− 1 3 4

Fig. 4. Sample deal and networks’ estimation of a number of tricks to be
taken by the NS pair in Spades contract.

changed, all deals were duplicated, so sizes of training and
testing sets doubled.

V. SAMPLE DEALS

In this section four examples of deals from the test set were
chosen in order to illustrate the strong and weak points of deal
codings under consideration.

The first sample deal, presented in Fig. 2, shows the
advantage of (52x4) network over the networks using 52 and
104 codings. In this deal the NS pair is able to take 10 tricks
when playing Spades contract. However, 52 and 104 networks
estimated only 7 and 8 tricks, respectively. Both tested net-
works using (52x4) codings (i.e. (52x4)−(13x4)−13−1 and
(52x4)−(26x4)−26−13−1) were perfectly right. Analysis of
this deal shows, that the NS pair of players has only 15 points
(Work Point Count) together. There is a void in Clubs suit on
South hand and two singletons in Hearts and Diamonds on
North hand. These short suits extremely strengthen the pair
NS and enable to hold 10 tricks. Adding human knowledge
of the game to the network’s input by using 9 point count and
8 distributional points methods, and enlarging 104 network’s
size to (104+68)−50−10−1, allows to estimate the correct
number of tricks.

In the second deal, presented in Fig. 3, the pair WE can
hold 10 tricks in Spades contract, so the pair NS is able
to hold only 3 tricks. However, the power of the NS pair
promises more. 25 points (Work Point Count) and 2 singletons
(unfortunately, in the same suit - Diamonds) misled most
of the tested neural networks to overestimate the number of

Correct number of tricks 0
Networks’ estimations

(52x4)− (13x4)− 13− 1 4
(52x4)− (26x4)− 26− 13− 1 3

104− 30− 4− 1 3
52− 25− 1 4

(104 + 68)− 50− 10− 1 3
(52x4 + 84)− (13x4 + 21)− 26− 1 4

Fig. 5. Sample deal and networks’ estimation of a number of tricks to be
taken by the NS pair in Spades contract with North defender’s lead.

tricks for NS. Most of networks claimed 5 tricks, so they
were wrong by 2 tricks. The network (52x4 + 84)− (13x4 +
21)−26−1 overestimate 1 trick, and only (52x4)− (26x4)−
26− 13− 1 network answered perfectly.

In the third example (presented in Fig. 4) the number of
tricks to be taken by a pair NS depends on which hand
makes defender’s lead. Only if North makes defender’s lead,
NS pair is able to hold 4 tricks (1 in Spades, 2 in Hearts,
and 1 in Diamonds). When South makes defender’s lead,
the pair NS can hold only 1 trick in Hearts, so 3 in total.
(52x4)− (26x4)− 26− 13− 1 was the only network which
properly estimated the number of tricks in both cases, the rest
of networks were wrong either in one case (104− 30− 4− 1
and 52− 25− 1) or in both cases.

The last presented deal (see Fig. 5) is one of deals for which
all neural networks, regardless of applied way of coding, made
the biggest error. Perfectly fitted WE hands are able to hold all
tricks (the grand slam), thanks to very favorable distribution of
Spades suit in NS hands. On the other hand, the strength of
the NS pair is noticeable - 14 points (Work Point Count),
7 trumps and a singleton in Diamonds suit. Under these
circumstances the networks’ estimations seem to be justified
(3 tricks by (52x4)−(26x4)−26−13−1, 104−30−4−1 and
(104+68)−50−10−1 and 4 tricks by (52x4)−(13x4)−13−1,
52− 25− 1, and (52x4 + 84)− (13x4 + 21)− 26− 1).

VI. CONCLUSIONS

The first conclusion which can be drawn from results
presented in this paper, is the difference between no trump and
suit contracts. Results achieved by neural networks for Spades
contracts are far better than results for no trump contracts.
The Work Point Count method of estimating hand’s strength
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is crucial for no trump contracts and allows to achieve almost
one third chance of correct estimation without any additional
information. The Work Point Count is also important for suit
contracts, however in this case additional information about
lengths of suits must be applied to achieve equally good
results.

Adding human knowledge to networks’ inputs improves
significantly results achieved by 52 and 104 networks. It
suggests that networks using the above deal representations are
not able to extract this relevant information by themselves. On
the contrary, in case of (52x4) networks, no such improvement
was observed, which suggests that this way of deal represen-
tation allows efficient extraction of human knowledge from
raw data. The superiority of (52x4) − (26x4) − 26 − 13 − 1
architecture was proven by numerical results and illustrated
by a few sample deals presented in section V. Analysis of
these deals (and also several other examples, not reported
in the paper) suggests, that in case of 52x4 representation
the network (if only large enough) is able to autonomously
discover relevant information about hands’ points and lengths
of suits, as well as appropriately weight this information in
the training process leading to highly efficient estimations of
possible number of tricks.

Generally speaking, artificial neural networks turned out to
be very effective tools for estimating the number of tricks to
be taken by one pair of players in Double Dummy Bridge
Problem. In several cases it is quite difficult, also for experi-
enced human bridge players, to perfectly answer the question
about the number of tricks to be taken by a playing pair, even
with all cards revealed. The most efficient neural network
((52x4) − (26x4) − 26 − 13 − 1) trained exclusively on
examples of deals, without any explicit human knowledge or
awareness of nuances of the play (e.g. finesses), and even
with no information about the rules of the game, achieved
respectful result: it was perfectly right in 53.11% of test deals
and mistaken by more than one tricks in only 3.52% out of
100, 000 test cases.
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