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Abstract— Experts have important qualitative knowledge
about interrelations between more or less abstract concepts in
an application area. However, the knowledge of a single expert
is typically quite uncertain (e.g., incomplete or imprecise). By
fusing the knowledge of several experts it would be possible to
obtain more certain and, therefore, more valuable knowledge.
Conventional systems for Knowledge Discovery (KD) and Data
Mining (DM) have the ability to extract valid rules from huge
data sets. These rules describe dependencies between attributes
and classes in a quantitative way, for instance. By fusing this
kind of knowledge with the combined, qualitative knowledge of
several experts it would be possible to obtain more comprehensive
knowledge about an application area. In this article, we propose a
concept for a new KD & DM technique based on Computational
Intelligence: Collaborative Knowledge Discovery (CKD). These
technique combines the uncertain knowledge of several experts
using methods based on Dempster-Shafer theory. The combined
human knowledge is again fused with automatically extracted,
well interpretable knowledge (fuzzy rules embedded in a radial
basis function neural network) of a conventional KD system.
Thus, a CKD system not only acquires more comprehensive
knowledge, but also experience (knowledge about knowledge),
meaning that it is able to explain automatically extracted rules to
the human experts and to assess the interestingness (e.g., novelty
or utility) of these rules. This can be done by adapting inference
mechanisms from the field of Probabilistic Argumentation Sys-
tems. A CKD system will comprise self-awareness mechanisms
(it must know what it knows) as well as environment-awareness
mechanisms (it must know what human experts know or what
they want to now). In order to reduce the effort for knowledge
acquisition, a CKD system must learn (pro-)actively. There are
many application areas for such CKD systems, e.g., in the field of
technical data mining (quality control, process monitoring, etc.).

I. INTRODUCTION

In many technical applications, conventional systems for
Knowledge Discovery and Data Mining (in the following
briefly referred to as KD systems) are based on data with
a non-human origin. That is, they typically utilize data from
sources such as microphones, cameras, ultrasonic sensors, or
displacement sensors. Only minimal information provided by
humans (e.g., application experts) is involved, e.g., class labels
for a supervised training of classifiers. Usually, the knowledge
extracted from these data is not combined with the existing
complementary human knowledge about a given application.
Thus, conventional KD systems often use only a part of the
actually available knowledge about an application area. With
a fusion of human knowledge and automatically extracted
knowledge it would be possible to gain a more comprehensive

and a more valuable view of an application.
If at all, human knowledge about an application is mostly

acquired from only one expert. In this case a validation by
means of statements of other application experts is not possible
and the knowledge of a single human is assumed to be
certain. However, human knowledge is potentially uncertain
(e.g., imprecise or faulty). With a fusion of the knowledge
of several experts with various levels of expertise it would
be possible to obtain more certain, high-quality knowledge
concerning the various aspects of an application.

Conventional KD systems have little information about the
human experts involved in the KD process, about their needs
and their expertise. Thus, they are not able to assess various
aspects of knowledge extracted from data. For example, in
the field of KD knowledge is termed to be interesting if it
is valid, novel, useful, and understandable [1]. In general,
interestingness is equated with validity of knowledge and this
aspect is rated with statistical methods (e.g., based on data
by cross-validation or bootstrapping). With a fusion of human
expert knowledge and knowledge which is automatically ex-
tracted from data it would be possible to identify application
knowledge which is novel or unexpected (either in general or
for a particular expert) or which allows the application experts
to initiate useful actions.

This article introduces a concept for a new kind of KD
systems which we call CKD systems (CKD: Collaborative
Knowledge Discovery). These CKD systems ...

• ... fuse the potentially uncertain knowledge of several ap-
plication experts in a collaborative approach (in particular
with an active knowledge acquisition behavior),

• ... combine this fused human knowledge with automati-
cally extracted knowledge of a conventional KD approach
to obtain more comprehensive and more valuable knowl-
edge about an application area, and

• ... allow the interestingness assessment of this knowledge
(not only validity, but also novelty or utility, for instance).

Altogether, we can say that such a CKD system automatically
gains experience, i.e., knowledge about knowledge (meta-
knowledge).

The remainder of the article is structured as follows: Sec-
tion II introduces some important terms, describes the abilities
of a CKD system from an user’s viewpoint, and discusses some
related work. A detailed suggestion for the realization of a
CKD system can be found in Section III. Finally, Section IV
gives an outlook to additional ideas.
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II. PREREQUISITES

In this section we will first introduce some new, impor-
tant terms. Then, a fictive application scenario shall give an
overview of the desired properties of a CKD system. Finally,
we discuss some related work in the field.

A. Knowledge and Uncertainty – Some Important Terms

Knowledge and uncertainty are two terms that play an
important role for CKD systems. In the literature they are
utilized in various ways (for the term knowledge cf. [1], [2],
[3], for the term uncertainty of knowledge cf. [4], [5], [6], [7],
for instance). That is, we have to explain these terms in our
context. Two other terms – human-driven knowledge and data-
driven knowledge – are introduced because the underlaying
concepts cannot completely be characterized by existing terms.

For the term knowledge we adopt the semantics from
KD which characterizes knowledge as “interesting patterns”
(relationships) in data [1]. Here, it is important that knowledge
can be more or less valid or even wrong. It may have subjective
or objective aspects and it may be missing. If it is available
(in an explicit or an implicit form), it may be uncertain. The
meaning of the term uncertainty is adopted from [5]. That is,
“uncertain” is a kind of generic term for other terms such
as “likely”, “doubtful”, “plausible”, “reliable”, “imprecise”,
“inconsistent” or “vague”. We address and model various
kinds of uncertainty; this will become evident in the following
sections.

Data-driven knowledge is application-specific knowledge
which is extracted from data by conventional KD systems.
It can be represented by means of association rules, fuzzy
rules, Bayesian networks, or Neural Networks, for instance.
Data-driven knowledge describes, for instance, how certain
classes depend on attributes (features) of a data set using a
fuzzy decision rule with appropriate linguistic terms. Data-
driven knowledge may be uncertain. Depending on the type
of uncertainty, this may by modeled with probabilities (Bayes
theory), membership degrees (Zadeh’s fuzzy theory), or po-
tentials (Dempster-Shafer theory), for instance. Uncertainty of
data-driven knowledge is often reduced by providing a large
number of samples.

Human-driven knowledge is application-specific knowl-
edge, too, but this kind of knowledge originates from
human experts. They have a certain expertise concerning
an application area. For example, they have knowledge
about causal relationships between various concepts, such
as: “Friction creates scratches”. Human-driven knowledge
often describes dependencies without using information about
the (numeric) characteristics of attributes. Uncertainty is usu-
ally not stated explicitly. A quantification by numerical values
is possible, e.g., by means of a hybrid representation based
on statements expressed in propositional logic annotated with
additional probability values. Uncertainty can be reduced by
combining the human-driven knowledge of several experts.

If we compare data-driven and human-driven knowledge,
we can notice that there are substantial differences concerning
their origin, contents, and representation. Often, both address

different aspects of an application at different levels of abstrac-
tion, e.g., a functional description of relationships between
attributes and classes or influences of machine tools on product
quality. However, there are often some overlaps in the contents
which could be exploited.

If we want to describe data-driven and human-driven knowl-
edge by means of some existing terms, (cf. [3], [8]), we
can state that data-driven knowledge is often provided in an
implicit way (it must be extracted from data). It typically
has a quantitative nature and it is less abstract (with respect
to the application) than human-driven knowledge. Human-
driven knowledge is (at least in an initial phase of knowledge
acquisition) explicitly provided by human experts. Both types
of knowledge must be represented in a numerical or symbolic
form in order to be processed further by any formal methods.

In the following, we will equal data-driven and human-
driven knowledge with its corresponding representation.

B. Application Scenario of a Future CKD System

To illustrate our objectives, we will now outline a vision of
a future CKD system and its interaction with human experts.

Anomalies (quality defects such as scratches, cracks, or
adhesive small particles) occurring in a manufacturing process
of silicon wafers must be classified automatically. Images
showing examples of various anomalies are available and class
labels – required here to apply supervised learning mecha-
nisms for the training of classifiers – are acquired from several
application experts involved in this CKD process. The CKD
system actively selects anomalies which it knows as being
difficult to classify and asks experts who it considers being
competent. As human application knowledge is potentially
uncertain, the CKD system identifies samples with uncertain
class labels and presents the corresponding images to other
experts for labeling. Thus, the labeled data set needed by
a conventional KD system for the extraction of data-driven
knowledge emerges from a collaboration of several application
experts. Then, a conventional KD system being part of the
CKD system extracts this data-driven knowledge from the
labeled data set utilizing appropriate libraries with methods
for feature extraction (application-specific), feature selection,
and model selection. Data-driven knowledge is represented in
the form of fuzzy decision rules which can – in principle – be
understood by the human experts, e.g.,

If length = high and width = low then class = scratches,

with suitably defined membership functions.
Simultaneously, human-driven application knowledge is di-

rectly acquired from several experts (see Figure 1). This kind
of knowledge is received in form of causal statements of
human experts such as

Friction creates scratches.

These statements are regarded as potentially uncertain. There-
fore, human-driven knowledge of several experts must be fused
(superimposed). Similar to the acquisition of class labels, the
CKD system actively controls the acquisition of human-driven
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knowledge by specifically asking for statements that are still
uncertain and by selecting competent application experts.

Then, the CKD system automatically fuses the basis of
human-driven knowledge with the basis of data-driven knowl-
edge (cf. Figure 2). This can be done by matching the terms
used in both knowledge bases. Thus, it will be possible, for
instance, to utilize the human-driven knowledge together with
appropriate inference mechanisms for an analysis of the data-
driven knowledge.

Fig. 1. Acquisition of human-based knowledge from experts.

The CKD system is now able to deal with the fused knowl-
edge as set out in Figure 3. For example, the CKD system can
rate the interestingness of knowledge. That is, it can decide
whether certain knowledge is useful, interpretable, novel, or
even unexpected for an particular expert. The fuzzy rule
(data-driven knowledge) mentioned above can be explained
automatically by inferring from the human-driven part of the
fused knowledge base that long and small scratches originate
from friction within a machine tool etc. This understanding of
data-driven knowledge can now be used to select experts who
are known to be interested in this kind of knowledge (e.g., an
application engineer responsible for product quality) as they
are able to initiate appropriate actions that solve a problem
(e.g., to reduce friction in order to increase product quality
again). Furthermore, it is possible to detect novel knowledge,
for instance, if it not possible to infer from the human-
driven knowledge base that long and small anomalies must be
classified as scratches. Altogether, the CKD system acquires
knowledge about knowledge, that is, it gains experience.

C. Related Work
Semantic Web Mining (SWM) [9] and Knowledge Dis-

covery for Ontologies (KDO) [10], [11] focus on combining
conventional KD systems with ontologies. Both fields differ
mainly by the structure of the data being analyzed. SWM
analyzes the WWW by means of web mining techniques
(e.g., [9]), KDO focuses on the analysis of datasets stored
in relational database management systems (e.g., [12], [13]).

Fig. 2. Fusion of data-driven and human-driven application knowledge.

Fig. 3. Utilization of the CKD system with fused application knowledge.

Adibi et al. [14] developed KOJAK, a hybrid system for the
analysis of dependencies in databases which uses techniques
from the fields of knowledge management and cluster analysis.
A framework concept for a knowledge-based analysis of
patterns extracted by KD systems was proposed by Pohle [15],
[16]. The sketched framework suggests to combine techniques
form the fields of knowledge representation, automatic reason-
ing, and Soft Computing.

Current research also covers the use of ontologies for
a data-driven analysis of large datasets: Bloehdorn et al.
[17] apply self-learning ontologies to the categorization of
text documents. Froehner et al. [18] focus on the fusion of
knowledge acquired from different sources (specific software
agents) with knowledge stored in ontologies. Nazeri and
Bloehdorn [12] integrate ontologies into KD algorithms (A-
Priori and C4.5) to reduce the search space and to support the
extraction of interesting rules. Phillips and Buchanan support
human experts in solving the feature construction and selection
problem by using domain-specific ontologies [19]. Svatek et
al. [13] adopt ontologies to support the understandability of
extracted association rules by manually linking the attributes of
a rule to a domain-specific ontology. Vanzin and Becker [20]
apply ontologies in the field of Semantic Web to the analysis
of web usage patterns. Their work focuses on increasing
the understandability of extracted patterns and supporting an
explorative analysis.
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III. REALIZATION CONCEPT

In this section we will discuss how a CKD system could
be realized. This CKD system will have the architecture set
out in Figure 4. The tasks of the components depicted in this
figure will be described in the following sections.

Fig. 4. Architecture of a CKD system.

A. Extraction and Representation of Data-Driven Knowledge

For the extraction and representation of data-driven knowl-
edge we need a classifier paradigm together with appropriate
techniques for feature and model selection. The classifier
must adjust its parameters automatically utilizing labeled data.
Furthermore, it must represent the extracted knowledge in a
form which can be understood by human experts.

Appropriate classifier paradigms can be found in the field
of Soft Computing: E.g., Neural Networks which can be
trained with (labeled) data or Fuzzy Systems consisting of
interpretable decision rules. Even if there is some work on
rule extraction from Neural Networks (cf. [21], [22]) and the
training of fuzzy classifiers from data (cf. [23], [24]), the
natural way would be to define a paradigm which is both,
a Neural Network (NN) and a Fuzzy System (FS).

Therefore, we define – in accordance with the discussions
in [25], [26], [27] – the radial basis function classifier RBFFS
as a hybrid system that can be seen as both, an RBF NN and
a Mamdani-type FS (cf. [28]). From the viewpoint of a NN,
the RBFFS may be defined as follows (cf. Figure 5):

1) The RBFFS has three layers of neurons: input layer UI ,
hidden layer UH , and output layer UO. Feed-forward
connections exist between UI and UH as well as be-
tween UH and UO. A scalar weight (w(I,H)

(i,j) or w
(H,O)
(j,l) )

is associated with each connection.
2) The activation of each hidden neuron j ∈ UH is

determined using a multivariate Gaussian function:

a
(H)
j (k) def=

a′j(k)∑|UH |
m=1 a′m(k)

with

a′j(k) def= e

0@−
P|UI |

i=1

(w
(I,H)
(i,j) −xi(k))2

r(i,j)
2

1A

=
|UI |∏
i=1

e

0@−
(w

(I,H)
(i,j) −xi(k))2

r(i,j)
2

1A
,

where x(k) def= (x1(k), . . . , x|UI |(k)) is the input vector
(sample) and k = 1, 2, ... denotes its identifier. The
activation function is parameterized by the weight vec-
tor w(I,H)

j
def= (w(I,H)

(1,j) , . . . , w
(I,H)
(|UI |,j)) and a parameter

vector rj
def= (r(1,j), . . . , r(|UI |,j)).

3) Each output neuron l ∈ UO computes its activation as a
weighted sum:

a
(O)
l (k) def=

|UH |∑
j=1

w
(H,O)
(j,l) · a(H)

j (k).

The external output vector of the network, y(k) def=
(y1(k), . . . , y|UO|(k)), consists of the activations of out-

put neurons, i.e. yl(k) def= a
(O)
l (k).

neuron j
hidden
layer

output
layer

input
layer

neuron l

weight

weight

output vector

input vector

neuron i

UO

UH

UI

x(k)

w(i,j)
(I,H)

w(j,l)
(H,O)

y(k)

Fig. 5. Structure of a radial basis function neural network classifier.

Note that with an abbreviation for univariate Gaussians
a′j(k) def=

∏|UI |
i=1 ϕ(i,j)(k). The ϕ(i,j) are called basis functions;

w
(I,H)
(i,j) is the center of such a basis function and r(i,j) is its

radius. The vectors w(I,H)
j and rj describe an axes-oriented

hyperellipsoid in the input space of the RBFFS. Thus, w(I,H)
j

can be regarded as a center of a hyperellipsoidal cluster – big x
in Figure 6 – and rj defines the shape of the cluster – ellipses
in Figure 6. The activation of a hidden neuron describes the
similarity between an input vector x(k) and a center based on
a matrix norm (Mahalanobis distance measure).

The parameters of an RBFFS must be determined by means
of training algorithms such as gradient-based techniques or
clustering techniques in combination with methods for the
solution of linear least-squares problems (see, e.g. [29]).

For a classification problem, each class is typically assigned
its own output neuron using an orthogonal representation of
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Fig. 6. Example of a classifier consisting of two rules operating in a two-
dimensional input space (|UI | = 2 and |UH | = 2).

classes for training. A winner-takes-all approach is used for
the final decision on class membership.

From the viewpoint of FS we can say that we have defined
an FS with |UI | inputs, |UH | rules, and |UO| outputs (here:
classes). The membership functions of the input variables
correspond to the Gaussian basis functions of the hidden
neurons, singletons are used for the output variables. That is,
a fuzzy rule j (j = 1, . . . , |UH |) has the form

if x1 is ϕ(1,j) . . . and x|UI | is ϕ(|UI |,j)

then y1 is w
(H,O)
(j,1) . . . and y|UO| is w

(H,O)
(j,|UO|).

The conjunction of variables in the premise of a rule as well as
the implications are realized by the product operator. The sum
operator is taken to combine the rules (i.e., we use sum-prod-
inference). For defuzzification, the height method is applied.
The usage of rules with Gaussian premises is motivated by the
generalized central limit theorem: Processes with multi-causal
origination tend to be normally distributed.

Potential feature selection algorithms are described in [30].
In general, filter and wrapper approaches can be distinguished.
Filter approaches decide on the selection of certain features
by means of an analysis of the structure of the data (i.e. in
the input space). Wrapper approaches take the classification
performance of classifiers for different feature subsets into
account. The problem of model selection for Neural Net-
works is discussed in [31] in greater detail. Usually, these
techniques are categorized as being either constructive (grow-
ing techniques), destructive (pruning techniques), or hybrid.
Constructive techniques start with small network structures
and gradually add new neurons and connections. Destructive
techniques go the other way: Initially large structures are
pruned gradually. Hybrid techniques are iterative techniques
that allow arbitrary search directions in each step.

In [32] we have shown how feature and model selection for
conventional RBF networks can be realized by means of an
evolutionary algorithm (EA). This EA could be adapted here.
It selects appropriate features from a given set of possible
features and optimizes the network architecture (e.g., number
of rules / hidden neurons). A set of possible features must be

extracted by means of an application-specific algorithm library.
In general, it can be expected that wrapper approaches for
feature selection and hybrid techniques for model selection
may be slower but also yield better results in terms of
classification performance.

The uncertainty that is considered here is the uncertainty of
an input vector being classified correctly. For example: The
uncertainty of a correct classification is high near the decision
boundary, because a vector is mapped to different classes with
almost equal degree of membership or probability.

B. Acquisition and Combination of Human-Driven Knowledge

CKD systems require an appropriate management compo-
nent for human-driven knowledge that

1) acquires knowledge from single users,
2) combines their knowledge, and
3) answers queries.

The knowledge acquired from different users must be com-
bined to obtain a more comprehensive knowledge base and to
reduce uncertainties. That is, the quantity and the quality of
the human-driven knowledge play a fundamental role.

Most work related to these tasks is based on symbolic
approaches such as propositional logic, description logic, first-
order logic, modal logic, production systems, or ontologies.
Symbolic knowledge may ease the interaction with human
experts, but is not able to deal with uncertain knowledge.
If knowledge is assumed to be uncertain, a hybrid (sym-
bolic / numeric) approach [6] is required which annotates
symbolic knowledge with numerical values that quantify un-
certainty. Relevant hybrid knowledge management solutions
are Probabilistic Argumentation Systems (PAS) [33], [34],
[35] and Markov Logic Networks (MLN) [36], [37]. PAS
extend conventional argumentation systems (see, e.g. [38]) by
processing uncertain logical assumptions which can contain
terms annotated with probabilities. These uncertain terms can
be used to evaluate symbolic arguments that either support or
refute a hypothesis numerically. An MLN can be regarded as a
knowledge base consisting of logical statements weighted with
their probability. To effect inference, an MLN is transformed
into a Markov Network and then an appropriate inference
mechanism such as Markov Chain Monte Carlo, Gibbs Sam-
pling, or Loopy Belief Propagation is applied. Comparing PAS
and MLN we can state that both paradigms process symbolic
and numeric knowledge by annotating logical statements with
probabilities. While cyclic dependencies can be processed by
both paradigms, only PAS are intended to use – in addition
to probabilities – additional numerical criteria to evaluate the
uncertainty of a hypothesis (support, possibility, doubt, etc).

In our CKD system, knowledge management will be based
– as far as possible – on existing techniques based on a sound
mathematical theory. To simplify knowledge acquisition we
will restrict our work to causal relationships between concepts
in the application domain (e.g., friction ⇒ scratches) which
can be modeled using a subset of propositional logic. When
acquiring knowledge from a single user we will check it for
inconsistencies using a simple model checker (e.g., based on
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Binary Decision Diagrams [39]) and, thus, prevent inconsis-
tent knowledge to be entered into a user-specific knowledge
base. When considering the knowledge of a single user, this
approach reduces the knowledge revision problem to a simple
knowledge update problem, because consistent knowledge can
simply be added. Inconsistencies will be presented to the user
and resolved manually.

The knowledge of different users will be combined into
a single global knowledge base with an hybrid (symbolic /
numeric) knowledge representation scheme. This approach has
several advantages: We are able to evaluate the uncertainty of
knowledge numerically and this evaluation will not result from
an error prone process (such as users who enter numerical
values) but rather from a combination of knowledge from
different users. Here, Dempster-Shafer (DS) theory is a natural
choice. DS theory can be seen as an extension of traditional
probability theory [40] which has several advantages within
the context of CKD systems: DS theory

1) offers a combination rule to combine knowledge from
different sources,

2) is able to process cyclic dependencies (e.g., A ⇒ B,
B ⇒ C, C ⇒ A), and

3) is not only able to evaluate the validity of an hypothesis,
but also the amount of absent information (referred to
as degree of ignorance).

Based on Dempster-Shafer theory, uncertainty will be mod-
eled by so-called potentials. Potentials model the belief (also
referred to as support), plausibility, and ignorance of a hy-
pothesis and can be interpreted as shown in Table I. From
the viewpoint of probability theory, belief and plausibility
can be interpreted as a lower (belief) and upper (plausibil-
ity) probability bound. Ignorance is specified as the distance
between belief and plausibility and, thus, can be interpreted
as the amount of absent information. Accordingly, a belief of
zero and a plausibility of one model total ignorance when
no supporting or refuting information is available at all.
Therefore, in our CKD system the ignorance of a causal
relationship must decrease with the number of different users
from which consistent knowledge about the relationship was
acquired.

TABLE I
SEMANTICS OF POTENTIALS.

Degree of Degree of Interpretation
Belief Plausibility
low high high degree of ignorance; few supporting

and refuting knowledge
low low low degree of ignorance; few supporting

knowledge and much refuting knowledge
high high low degree of ignorance; much supporting

knowledge and few refuting knowledge
medium medium low degree of ignorance; much supporting

and refuting knowledge

To process the uncertain knowledge stored in our global
knowledge base we use ABEL [41] – an implementation
of a PAS – as inference mechanism. ABEL uses so-called
assumptions (statements expressed in propositional logic) as

input which can contain propositional variables annotated with
a probability value modeling their uncertainty. To integrate
ABEL into our CKD system, an appropriate mechanism is
needed which transforms the statements stored in our global
knowledge base by mapping their potential to a probability
value. Based on the interpretation of belief and plausibility
as probability bounds, an appropriate probability between the
upper and lower probability bound must be selected. For ex-
ample, the probability value could be chosen depending on the
application of the CKD system. A probability near the lower
bound or the upper bound corresponds to a pessimistic (high-
risk applications) or optimistic (fault-tolerant applications)
decision, respectively. If only few information is available
about an assumption (corresponds to an high ignorance) then
the assumption is not entered into the PAS and, thus, not
available for inference.

The uncertainty that is considered here is uncertainty re-
garding the validity of relationships between concepts in the
application domain. For example: If many experts provide
information about a relationship that is contradictory (e.g.,
A ⇒ B and A 6⇒ B) then the validity is uncertain (i.e.,
modeled with a belief and plausibility near 0.5). In the
case that only very few users provide information about a
relationship then information is considered being absent (e.g.,
according to DS theory modeled by a high ignorance) and a
certain decision about the validity of the relationship cannot
be made.

C. Fusion of Human-Driven and Data-Driven Knowledge

A central component of our CKD system is responsible
for the fusion of human-driven and data-driven knowledge.
This fusion component can be seen as an interface that
enables the system to use human-driven knowledge in order
to analyze, verify, and validate data-driven knowledge and
vice versa. In a first step, we will focus on analyzing data-
driven knowledge (fuzzy classification rules) by using human-
driven knowledge (causal relationships between concepts in
the application domain). To solve this problem, the fuzzy
variables and terms of the fuzzy classification rule are mapped
onto the corresponding concepts entered by human experts. A
human-driven knowledge base fused with a fuzzy classification
rule is set out in Figure 7.

D. Interestingness and Explication of Data-Driven Knowledge

One important feature of a CKD system is the evaluation
of the interestingness of data-driven knowledge. In our case,
this evaluation is not restricted to some statistical measures.
Rather, it can benefit from the knowledge of human domain
experts. New opportunities arise with the fusion of data-driven
and human-driven knowledge which allows a better and more
detailed analysis.

In a first approach human-driven knowledge can be utilized
as follows to evaluate the interestingness of a fuzzy classi-
fication rule: The dependency represented by the fuzzy rule
is novel if no or only few human-driven knowledge exists
about this dependency in the global knowledge base. It can
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Fig. 7. Example of a fused knowledge base.

be regarded as unexpected if knowledge exists in the global
knowledge base which implies a different class than the one
specified by the fuzzy classification rule. In the case that a
dependency is unexpected or novel and related to concepts
marked as useful by an expert – because they will allow him
to initiate valuable actions to improve product quality, for
instance – than this knowledge can be referred to as useful. A
further step would be to consider – in addition to the global
knowledge base – the user-specific knowledge bases to tailor
the evaluation to the needs and expertise of specific users.

In our CKD system, the interestingness of knowledge can
be evaluated adopting the DS theory as follows: A dependency
expressed by a fuzzy classification rule is unexpected if few
knowledge exists in favor and much against (low degree
of belief and plausibility) at the side of the human-driven
knowledge. It can be referred to as novel if few knowledge
exists in favor and against (low degree of belief, high degree
of plausibility, and, thus, a high degree of ignorance). In the
case that a dependency is unexpected or novel and also marked
as useful by an expert then it can be referred to as useful.

In order to explain data-driven knowledge by means of
human-driven knowledge (e.g., “Friction generates scratches
because of abrasion from mechanical parts within a machine
tool.”), similar techniques can be used.

Both features – interestingness assessment and explication
of data-driven knowledge – can be realized by means of the
inference mechanisms provided by ABEL.

E. Proactive Behavior

The bottleneck of any knowledge based system is knowl-
edge acquisition. Thus, knowledge acquisition has to be ef-
fected as efficient as possible to exploit the advantages of a
CKD system. Including multiple human experts – which is a
central aspect of a CKD system – is one approach to expand
the bottleneck. Another approach is a proactive behavior of the
CKD system. This means, that the CKD system must be able
to identify required knowledge and to adapt the knowledge
acquisition process accordingly. The prerequisite of proactive

behavior is a self-awareness mechanism – in our case the self-
contained ability to identify uncertain (missing, inconsistent,
etc.) knowledge. Environment-awareness – in our case the self-
contained ability to identify the needs and expertise of human
experts – can further enhance the knowledge acquisition
process.

At the side of data-driven knowledge conventional classi-
fiers can be extended to autonomously detect regions in their
input space where classifications cannot be made with a sat-
isfying reliability. These so-called active learners can enhance
the supervised learning process by actively selecting unlabeled
samples which are labeled by human experts. Related research
in the field of active learning is mostly concerned with support
vector machines (e.g., [42]). This research shows that an
active learner can rigorously reduce the amount of labeled
samples which are required to achieve a classification rate
which is equal or even higher than the classification rate of a
conventional classifier.

At the side of human-driven knowledge uncertain knowl-
edge about causal relationships can be identified easily by
examining the associated potentials. The challenge here is to
identify valuable knowledge which can be applied to better
explicate or rate the interestingness of data-driven knowledge.
Therefore, human-driven knowledge about the relationship
between concepts in the premise and conclusion of fuzzy clas-
sification rules must be acquired actively. A suitable learning
approach must decide whether to acquire new knowledge or
consolidate existing knowledge by asking additional experts.
Therefore, an active learning approach must be able to rate
causal relationships according to their utility to explicate or
rate interesting data-driven knowledge. Related research about
actively acquiring human-driven knowledge exists in the field
of commonsense reasoning (e.g., [43], [44]). Research on
rating the utility of human-driven knowledge for analyzing
data-driven knowledge is not known to us.

IV. SUMMARY AND OUTLOOK

In this article, we have shown how valuable (certain, com-
prehensive, interesting) knowledge about an application can be
acquired with a collaborative approach. CKD systems go even
beyond this point: They gain experience about an application
area (see Figure 8) in order to explain knowledge and to assess
its interestingness for the application expert.

data mining
pyramid

data
information
knowledge
experience

wisdom

Fig. 8. Data mining wisdom pyramid (adopted from [2]).

The techniques outlined in this article could be used in
various applications. One has already been mentioned: Product
quality improvement in a wafer production process where
several experts are involved. Another example would be the
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detection of rare errors in car electronics where test drivers,
electronic engineers, and software analysts cooperate. Other
examples could be given where process improvement is an
important issue, e.g., in mechanical or chemical engineering.
In all those technical applications, the human experts are
highly motivated to be involved in such a CKD process
because they greatly profit from that cooperation.
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