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Abstract—In many virtual environments (VE) applications,
the size of the database is not only extremely large, it is also
growing rapidly. Even for relatively simple searches, the time 
required to move the data off storage media is expensive.
However, object correlations are common semantic patterns in
VE. They can be exploited for improve the effectiveness of 
storage caching, prefetching, data layout, and disk scheduling.
However, little approaches for discovering object correlations in
VE to improve the performance of storage systems. In this
paper, we develop a class of view-based projection-generation
method for mining various frequent sequential traversal
patterns in the VE. The frequent sequential traversal patterns
are used to predict the user navigation behavior. Furthermore,
the hypergraph-based clustering scheme can help reduce disk 
access time with proper placement patterns into disk blocks.
Finally, we have done extensive experiments to demonstrate
how these proposed techniques not only significantly cut down
disk access time, but also enhance the accuracy of data
prefetching.

I. INTRODUCTION

AVING inexpensive data storage has enabled the
amassing of large amounts of information, especially in

VE. These data are rapidly accessible, motivating a 
significant interest in VE capabilities. At present, these data
sets far exceed the capability of modern storage systems, so
searching them has become a serious challenge. As [24] cited,
“The size of the databases we deal with is no long measured
in terabytes, but in exabytes.” On the other side, to satisfy the
growing demanding for fidelity, there is a need for interactive
and intelligent schemes that assist and enable effective and
efficient storage management.

Unfortunately, it is not an easy task to exploit the
intelligence in storage systems. One primary reason is the
system latency between VE applications and storage systems.
In such a case, VE do not consider the problem of access 
times of objects in the storage systems. They always simply
concerned about how to display the object in the next frame.
As a result, the VE can only manage data at the rendering and
other related levels without knowing any semantic
information such as semantic correlations between data. This
motivates a more powerful analysis tool to discover more
complex patterns, especially semantic patterns, in storage
systems. Therefore, the aim of our work is to decrease this

latency through intelligent organization of the access data and
enabling the clients to perform predictive prefetching. In this
paper, we consider the problem and solve this using data
mining techniques [1,2]. Clearly, when users traverse in a
virtual environment, some potential semantic characteristics
will emerge on their traversal paths. If we collect the users’
traversal paths, mine and extract some kind of information of 
them, such meaningful semantic information can help to
improve the performance of the interactive VE. For example,
we can reconstruct the placement order of the objects of 3D 
model in disk according to the common section of users’ path. 
Exploring these correlations is very useful for improving the
effectiveness of storage caching, prefetching, data layout, and 
disk scheduling.
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This paper proposes VSPM (Viewed-based Sequential
Pattern Mining), a method which applies a data mining
technique called frequent sequential pattern mining to
discover object correlations in VE. Specially, we have 
modified several recently proposed data mining algorithms
called FreeSpan [5] and PrefixSpan [11] to find object
correlations in several traversal traces collected in real 
systems. To the best of our knowledge, VSPM is the first 
approach to infer object correlations in a VE. Furthermore,
VSPM is more scalable and space-efficient than previous
approaches. It runs reasonably fast with reasonable space 
overhead, indicating that it is a practical tool for dynamically
inferring correlations in a VE. Besides, we have also
proposed two clustering methods to cluster the similar
patterns for reducing the access time. One is based on the idea 
of co-occurrence of transaction data have developed. They
are usually measured by Jaccard coefficient SIM(T1, T2)=
|T1 T2| / |T1 T2| [22].  The other clustering scheme is based 
on the hypergraph-based model. In this model, the vertex set
corresponds to the distinct objects in the VE and the
hypergedges correspond to the frequent sequential patterns.
Both of them will make similar objects much closer to be
accessed in one time. These result in less access times and
much better performance. We also compare the distinctions 
between them. Moreover, we also have evaluated the benefits
of object correlation-directed prefetching and disk data layout
using the real system workloads.

The rest of this paper is organized as follows. Related
works are given in Section II. In Section III, we describe our 
problem formulation. The system architecture is suggested in
Section IV. The suggested mining and clustering mechanisms
are explained with illustrative examples shown in Section V.
Section VI presents our experiment results. Finally, we 
summarize our current results with suggestions for future
research in Section VII.

H
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II. RELATED WORKS

In this subsection, we will briefly describe related works
about virtual environments, sequential pattern mining and
pattern clustering, respectively.

A. Virtual Environments Methods
Since the navigation in virtual environments consists of

many different detailed objects, e.g., of CAD data that cannot
all be stored in main memory but only on hard disk. Many
techniques were proposed for rendering complex models
used today, including the use of hierarchical spatial structures, 
level-of-detail (LOD) management [20], hierarchical
view-frustum  and occlusion culling [12], working-set 
management (geometry caching) [20]. In additional, Massive 
Model Rendering (MMR) system [13] was the first published
system to handle models with tens of millions of polygons at 
interactive frame rates. Besides, many out-of-core spatial data
structures [23], including kd-trees, quad-trees, oct-tree and 
R-trees [23] were presented. On the other side, it is desirable
to store only the polygons and not to produce additional data 
as, e.g., textures or pre-filtered points. However, polygons of 
such highly complex scenes require a lot of hard disk space so
that the additional data could exceed the available capacities 
[21]. To meet these requirements, an appropriate data
structure and an efficient technique should be developed with
the constraints of memory consumptions.

B. Sequential Pattern Mining Methods
Sequential pattern mining was first introduced in [8],

which is described as follows. A sequence database is formed
by a set of data sequences. Each data sequence includes a 
series of transactions, ordered by transaction times. This
research aims to find all the subsequences whose ratios of 
appearance exceed the minimum support threshold. In other 
words, sequential patterns are the most frequently occurring 
subsequences in sequences of sets of items. A number of 
algorithms and techniques have been proposed to deal with
the problem of sequential pattern mining. Many studies have
contributed to the efficient mining of sequential patterns
[5,11]. Almost all of the previously proposed methods for
mining sequential patterns are apriori-like [5]. Sequential
pattern mining algorithms, in general, can be categorized into
three classes: (1) Apriori-based : horizontal partition
methods and GSP [7] is one known representative; (2)
Apriori-based: vertical partition methods and SPADE [6] is 
one example; (3) projection-based pattern growth method,
such as the famous FreeSpan [11] and PrefixSpan algorithms
[5].

C.  Hypergraph_based Pattern Clustering Methods
The fundamental clustering problem is to partition a given 

data set into groups (clusters), such that data points in a
cluster are more similar to each other (i.e., intra-similar
property) than points in different clusters (i.e., inter-similar
property) [10]. Although there are many clustering
algorithms presented above, they can not be applied to our 
data set directly. These discovered clusters are used to explain

the characteristics of the data distribution [Kumar-01-HG,
18]. However, these schemes fail to produce meaningful
clusters, if the number of objects is large or the
dimensionalities of the VE (i.e., the number of different
features) are diverse and relatively large.

In this paper, we propose a new methodology for 
clustering correlated objects using frequent sequential
patterns, and clustering related patterns using clusters of 
objects. These frequent sequential patterns are used to group 
objects into hypergraph edges, and a hypergraph partition
algorithm is used to find the clusters. The knowledge that is
represented by clusters of related objects can also be used to
effectively cluster the actual semantic patterns by looking at
the clusters that these objects belong to. Therefore, we can
layout these clusters onto the storage systems for prediction
of user traversal.

III. OUR MOTIVATIONS

A. Motivations on Theoretical Foundations
Data mining research deals with finding relationships

among data items and grouping the related items together.
The two basic relationships that are of particular concern to
us are: 

Association, where the only knowledge we have is that the
idea items are frequently occurring together and, when one
occurs, it is highly probable that the other will also occur.
Sequence, where the data items are associated and, in 

addition to that, we know the order of occurrence as well.
Our main interest is to find the sequence among the data

items that occur frequently. As the concept of sequence is
based on associations, we first briefly introduce the issue of
finding associations. The formal definition of the problem of
finding association rules among items is provided by [8] as
follows: Let I = i1, i2, …, in be a set of literals, called items,
and D be a set of transactions such that T D, T I. A 
transaction T contains a set of items X if X T. An 
association rule is denoted by an implication of the form
X Y, where X I, Y I, and X Y = . As a rule X Y is 
said to hold in the transaction set D with support s in the
transaction set D if s % of transactions in D contain X Y.
The rule X Y has confidence c if c % of the transactions in 
D that contain X also contain Y. The thresholds for support
and confidence are called minsup and minconf, respectively. 

One of the challenges of mining client access histories is 
that such histories are continuous while mining algorithms
assume transactional data. This causes a mismatch between
the data required by current algorithms and the access history 
we are considering. Therefore, we need to convert continuous
requests into transactional form, where client requests in
transactions correspond to a session. A session consists of a
set of virtual objects accessed by a user in a certain amount of 
time. Similar researches can be found in [19]. They presented
methods for efficiently organizing the sequential web log into
transactional form suitable for mining.

B.  Motivations on Practical Demands 
On the practical view of point, we will demonstrate several
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practical examples to explain our observation. Suppose that
we have a set of data items {a, b, c, d, e, f, g}. A sample access 
history over these items consisting of five sessions is shown 
in Table 1. The request sequences extracted from this history
with minimum support 40 percent are (a, f) and (c, d). The 
rules obtained out of these sequences with 100 percent
minimum confidence are a f and c d, as shown in Table
2. Two accessed data organizations are depicted in Figure 1. 
An accessed schedule without any intelligent preprocessing is 
shown in Figure 1a. A schedule where related items are
grouped together and sorted with respect to the order of 
reference is shown in Figure 1b. Assume that the disk is
spinning counterclockwise and consider the following client
request sequence, a, f, b, c, d, a, f, g, e, c, d, shown in Figure 1. 
Note that dashed lines mean that the first element in the
request sequence (counted from left to right) would like to
fetch the first item supplied by disk. And directed graph 
denotes the rotation of disk layout in counterclockwise way.
For this request, if we have the access schedule (a, b, c, d, e, f,
g), which dose not take into account the rules, the total I/O
access times for the client will be a:5, f:5, b:3, c:2, d:6, a:5, f:5,
g:1, e:5, c:6, d:6. The total access times is 49 and the average 
latency will be 49/11= 4.454. However, if we partition the 
items to be accessed into two groups with respect to the 
sequential patterns obtained after mining, then we will have
{a, b, f}and {c, d, e, g}. Note that data items that appear in the
same sequential pattern are placed in the same group. When
we sort the data items in the same group with respect to the
rules a f and c d, we will have the sequences (a, f, b) and
(c, d, g, e). If we organize the data items to be accessed with 
respect to these sorted groups of items, we will have the 
access schedule presented in Figure 1b. In this case, the total
access times for the client for the same request pattern will be
a:1, f:1, b:1, c:1, d:1, a:3, f:1, g:4, e:1, c:4, d:1. The total
access times is 19 and the average latency will be 19/11=
1.727, which is much lower than 4.454. 
Table 1: Sample database of user requests.

Table 2: Sample association rules.

Fig. 1. Effects on accessed objects organization in disk. (a): 
without association rules; (b) with association rules.

Another example that demonstrates the benefits of
rule-based prefetching is shown in Figure 2. We demonstrate
three different requests of a client as a snapshot. With the help
of the rules obtained form the history of previous requests, the
prediction can be achieved. The current request is c and these 
is a rule stating that, if data items c is requested, then data
items d will be also be requested (i.e., association rule c d).
In Figure 2a, data item d is absent in the cache and the client 
must spend more waiting time for item d. In Figure 2b, 
although the item d is also absent in the cache, the client still 
spend one disk latency time for item d. In Figure 2c, the cache 
can supply the item d and no disk latency time is needed.

Fig. 2. Effects of prefetching.

These simple examples show that, with some intelligent
grouping, reorganization of data items and with predictive
prefetching, average latency for clients can be considerably
improved. In the following sections, we describe how we can
extract sequential patterns out of client requests. We also
explain how we group data items with respect to sequential
patterns.

IV. MINING TRAVERSAL HISTORIES AND PROBLEM
FORMULATION

In this section, we extract the useful information in the
access history in the form of sequential patterns. In order to 
mine for sequential patterns, we assume that the continuous
client requests are organized into discrete sessions. Sessions
specify user interest periods and a session consists of a
sequence of client requests for data items ordered with
respect to the time of reference. The client request consists of
the objects which a client browse and traverse at will in the
VE. We denote this type of clients request as view. A session 
consists of one or more views. In correspond to with
terminologies used in data mining, a session can be 
considered as a sequence. The whole database is considered
as a set of sequences. Formally, let be a set
of m literals, called objects (also called items) [18]. The view
v is defined as snapshot of sets of objects which a user 
observes duration the period. A view (also called itemset) is 
an unordered, non-empty set of objects. A sequence is an 
ordered list of views. We denote a sequence s (also called
transaction) by , where v

},...,,{= 21 lll m

},...,,{ 21 vvv n j is a view and ordered 
property is obeyed. We also call vj an element of the sequence.
An item can occur only once in an element of a sequence, but 
can occur multiple times in different elements. We assume,
without loss of generality, that items in an element of a 
sequence are in lexicographical order.

A sequence <a1 a2 … an> is contained in another sequence 
<b1 b2 … bm>if there exist integers i1 < i2 < … < in such that
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....,,,
21

21 biabiabia
n

n For example, <(a)(b, c)(a, d, 
e)> is contained in <(a, b) (b, c)(a, b, d, e, f)>, since (a) (a,
b), (b, c)  (b, c), and (a, d, e)  (a, b, d, e, f). However, the
sequence <(c)(d)> is not contained in <(c, d)> )and vice versa. 
The former represents objects c and d being observed one
after the other, while the latter represents objects c and d
being observed together. In a set of sequences, a sequence s is 
maximal if s in not contained in any other sequence. Let the
database D be a set of sequences and ordered by increasing
recording time. Each sequence records each user’s traversal 
path in the walk through system. The support for a sequence 
is defined as the fraction of D that “contains” this sequence. A 
sequential pattern p is a sequence whose support is equal to
or more than the user-defined threshold. Sequential patter
mining is the process of extracting certain sequential patterns
whose support exceeds a predefined minimal support 
threshold. Given a database D of client transactions, the
problem of mining sequential patterns is to find the maximal
sequences among all sequences that have a certain
user-specified minimum support. Each maximal sequence 
represents a sequential pattern.

Finally, we will define our problem in two phases. Phase I:
given a sequence database D = {s1, s2,…, sn}, we design a 
efficient mining algorithms to obtain our sequential patterns
P; phase II: In order to reduce the disk access time, we 
distribute P into a set of clusters, such that minimize
inter-cluster similarity and maximize intra-cluster similarity.

V. PATTERN-ORIENTED MINING ALGORITHMS

In this section, we will explain our sequential pattern
mining method, called View-based Sequence Pattern Mining
(VSPM). Since our input data are different from those of 
traditional data mining algorithms [16]. We make several
major modifications about the idea of pattern-growth method.
Its general idea is to use frequent items to recursively project
sequence databases into a set of smaller projected databases
and grow subsequence fragments in each projected database.
This process partitions both the data and set of frequent
sequential patterns to be tested, and confines each test being 
conducted to the corresponding smaller projected database.

A. View-based Sequential Pattern Mining (VSPM) Algorithm
Now, we will explain our mining algorithms. The main

ideas come from both bounded-projection and pattern
appending mechanisms. The bounded-projection mechanism
has one special characteristic, i.e., it always projects the
remaining sequence recursively after a new sequential pattern
found.  They will not mine the objects across the different
prefix views. As a result, we would mine the trimmed
database recursively. The pattern appending mechanism uses 
the concept of prefix property. When we want to find a new 
sequential pattern in our database, we use the sequential
pattern found in previous round as prefix, and append a new
object as the new candidate pattern for verification. If the
candidate pattern satisfied the minimum support, we regard it
as a new sequential pattern and create a bounded projection of 
it recursively. In order to explore the interesting relationships

among these objects, we propose two different kinds of
appending methods  called Intra-View-Appending method
and Inter-View-Appending method. The 
Intra-View-Appending method is used to append a new object
in the same view, and the Inter-View-Appending method is
used to append a new object in the next view. Demonstration
example will be given later. The following is the pseudo 
codes of view sequence mining algorithm.

View-based Sequential Pattern Mining (VSPM) Algorithm

// D is the database. P is the set of frequent patterns, and is set 
to empty initially.
Input: D and P.
Output: P
Begin
1. Find length-1 frequent sequential patterns.
2. While (any projected sub-database exits) do
3. Begin
4.  Project corresponding sub-sequences into sub-databases

under the intra-view appending and inter-view appending.
5.   Mine each sub-database corresponding to each projected 

sub-sequence.
6. Find all frequent sequential patterns by applying step 4

and step 5 on the sub-databases recursively.
7. End;  // while
8. return P;
9. End; // procedure VSPM ends 

Example 1 (VSPM). Given the traversal data base S and 
min_support = 3, we demonstrate the complete steps as
follows.
Path1: <(1, 2)(3, 4)(5, 6)>. 
Path2: <(1, 2)(3, 4)(5)>. 
Path3: <(1, 2)(3)(4, 5)>. 
Step1. Find frequent patterns with length-1.  //in the form of

“item: support”
First, we will have the following data: 1:3, 2:3, 3:3,
4:3, 5:3, 6:1. Therefore, we have length-1 frequent
sequential patterns: <1>, <2>, <3>, <4>, and <5>. 
Finally, we will have 5 projection-based
sub-databases <1>_DB, <2>_DB, <3>_DB, <4>_DB 
and <5>_DB, respectively. 

Step2. Take the projection-based sub-database, <1>_DB, for
example. First, since item 2 and item 1 are in same
view, the intra-view appending works. After the
projection, we will get the sub-database <(1,2)>_DB.
And the original database is shrunk to the following
database.
P1: <(3,4)(5,6)>; P2: <(3,4)(5)>; P3: <(3)(4,5)>.
In this step, pattern <(1,2)> becomes a frequent
sequent pattern since its support satisfies the
minimum support. Next, item 3 is projected for the
candidate.

Step3: the remaining steps are the same as the above. The 
final mining result is depicted in Figure 3.  In Figure 3, 
the patterns which contain item 6 are circled. They
show that the differences between projected-based
mining and non-projected-based mining. In other
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words, without projecting mechanism, we have to
expand eight sub-databases for candidates (i.e., two
“stop” without circled plus six “stop” with circled).
Compared to this case, with projecting mechanism, we 
only expand two sub-databases for candidates (i.e.,
“stop” without circled).

Fig. 3: Demonstration of our VSPM for generating
projected-based sub-databases and sequential patterns.

B. Disk Organization by Hypergraph_based Clustering
Sequential Patterns
Clustering is a good candidate for inferring object

correlations in storage systems. As the previous sections
mentioned, object correlations can be exploited to improve
storage system performance. First, correlations can be used to
direct prefetching. For example, if a strong correlation exists
between objects a and b, these two objects can be fetched
together from disks whenever on of them is accessed. The 
disk read-ahead optimization is an example of exploiting the
simple data correlations by prefetching subsequent disk
blocks ahead of time. Several studies [10,15] have shown that
using these correlations can significantly improve the storage
system performance. Our results in Section 6.2 demonstrate
that prefetching based on object correlations can improve the
performance much better than that of non-correlation layout
in all cases.

A storage system can also lay out data is disks according 
to object correlations. For example, a object can be collocated 
with its correlated objects so that they can be fetched together
using just one disk access. This optimization can reduce the 
number of disk seeks and rotations, which dominate the
average disk access latency. With correlation-directed disk 
layouts, the system only needs to pay a one-time seek and 
rotational delay to get multiple objects that are likely to be
accessed soon. Previous studies [9] have shown promising
results in allocating correlated file blocks on the same track to
avoid track-switching costs.

The hypergraph was introduced by Berge [3] and has been 
considered as a useful tool to analyze the structure of a system
and to model a partition, covering, and clustering. A
hypergraph H=(V, N)is defined as a set of vertices and a set of 
hyperedges (nets [26]). Every net nj N is a subset of 
vertices, i.e., nj V. The size of a net nj N is equal to the
number of  vertices it has, i.e., sj= |nj |. Weight (wi) and cost (cj
) can be assigned to the vertices (vi V) and edges (n j N) of 

the hypergraph, respectively. K = {V1, V2, …, Vk} is a K-way
partition of H if (a) each partition is a nonempty subset of V,
(b) partitions are pairwise disjoint and (c) union of K
partitions is equal to V.

C. Similarity Measure for Jaccard function
In the simplified hypothesis that frequent patterns do not

contain frequencies, but behave simple as Boolean vectors
(like a value 1 corresponds to the presence and a value 0 
corresponds to the absence), and a more intuitive but 
equivalent way of defining the Jaccard distance function can 
be provided. This measure captures our idea of similarity
between items, which are directly proportional to the number
of common values, and inversely proportional to the number
of different values for the same item.

Definition 1: Intra-distance measure (Co-occurrence)

Let P1 and P2 be two sequential patterns. We can represent
D(P1, P2) as the normalized difference between the 
cardinality of their union and the cardinality of their
intersection:

PP
PP

PPD
21

21
21 1),( (1)

Example 2 (Intra-distance measure).
Let P1 and P2 be two sequential patterns: P1 =<(a, b, c), (b, c,
d), (e, f)>and P2 =<(a, b, c, d), (e, f, g)>. The distance between 
P1 and P2 is 

7
2

7
51

},,,,,,{
},,,,{

11),(
21

21
21 gfedcba

fecba
D

PP
PPPP

D. Sequential Pattern Clustering Algorithms
Intuitively, a cluster representative for virtual

environment data should model the content of a cluster, in
terms of the objects that are most likely to appear in a pattern
belonging to the cluster. A problem with the traditional
distance measures is that the computation of a cluster
representative is computationally expensive. As a
consequence, most approaches [6] approximate the cluster
representative with the Euclidean representative. However,
those approaches may suffer the following drawbacks: 
 Huge cluster representatives cause poor performances,

mainly because as soon as the clusters are populated, the
cluster representatives are likely to because extremely huge. 
 For different kinds of patterns, it seems to be difficult to find

the proper cluster representatives. 
In order to overcome such problems, we can compute an 

approximation that resembles the cluster representatives
associated to Euclidean and mismatch-count distances. Union
and intersection seem good candidates to start with. Since our
clustering operations are based on set operations, we ignore
the order of frequent patterns.

D1.Jaccard _based Pattern Clustering Algorithms
To avoid these undesired situations, we supply three

tables. The first table is FreqTable. It records the frequency
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of any two patterns co-existing in the database D. The second 
table is DistTable. It records the distance between any two 
patterns. The last table is Cluster. It records how many
clusters are generated. The following is our clustering
algorithm.

Pattern Clustering Algorithm for Jaccard Function

// P is the set of frequent patterns. T is the set of clusters, and
is set to empty initially.
Input: P and T.
Output: T 
Begin
1. FreqTable={ftij| the frequency of patterni and patternj

co-existing in the database D};
2. DistTable={dtij| the distance between of patterni and

patternj in the database D};
3. C1={Ci| At the beginning each pattern to be a single 

cluster }
4.   // Set up the Extra-Similarity Table for evaluation
5.  M1= Intra-Similar (C1, );
6. k = 1; 
7.   while |Ck| > n do Begin
8. Ck+1 = PatternCluster (Ck, Mk, FreqTable, 

DistTable);
9.         Mk+1 = Intra-Similar (Ck+1, Mk);
10. k = k +1; 
11. End;
12.  return Ck ;
13. End;

D2.Hypergraph _based Pattern Clustering Algorithms
As mentioned before, the vertex set corresponds to the

distinct objects in the VE and the hypergedges correspond to
the frequent sequential patterns.  The weight of hyperedge is
the support of that sequential pattern. In this paper, we adopt
the hypergraph partition algorithm in [25]. Since there are no
expensive data structures or special constraints hidden, we
can implement them very efficient and time/space complexity
also meet our demands.

VI. PERFORMANCE EVALUATION

A traversal path database was recorded each user’s
traversal path and used for mining target. The simulation
model we used and the experimental results are provided in
Section 6.1 and Section 6.2, respectively.

A.  Test data and Simulation Model
We use the virtual power plant model from

http://www.cs.unc.edu/~walk/ created by Walkthrough
Laboratory of Department of Computer Science of University
of North Carolina at Chapel Hill. The Power Plant Model is a 
complete model of an actual coal fired power plant. The
model consists of 12,748,510 triangles. Its size is 128 MBytes.
Our traversal database keeps track of the traversal of the
power plant by many anonymous, randomly users. For each 
user, the data records list all the areas of the power plant that 

user visited in a one week timeframe. Each path consists of 30 
~ 40 views. Each view consists of 20~30 objects on average.
The number of objects is 11, 949, where each object is a some
meaningful combination of triangles of power plant and it is
considered as a data item.

B.  Experimental Results and Performance Study
In this section, the effectiveness of the proposed clustering

algorithm is investigated. All algorithms were implemented
in Java. The experiments were run on a PC with a AMD
Athlon 1800+ and 512 megabytes main memory, running
Microsoft Windows 2000 server. Our main performance
metric is the average latency. We also measured the client
cache hit ratio. A decrease in the average latency is an 
indication of how useful the proposed methods are. The
average latency can decrease as a result of both increases
cache hit ratio via prefetching methods and better data 
organization in the disk. An increase in the cache hit ratio will 
also decrease the number of requests sent to server and, thus,
lead to both saving of the scare memory source of the server
and reduction in the server load.

Since we have two major topics  mining algorithm and 
clustering algorithm. We report our experimental results on
the performance of mining and clustering, respectively.

B.1.  Experimental Results on Mining Unit
In this subsection, we report our experimental results on

the VSPM algorithm. Since GSP and SPADE are the two most
important sequential pattern mining algorithms, we conduct
an extensive performance study to compare VSPM with them.
To evaluate the effectiveness and efficiency of the VSPM 
algorithm, we performed an extensive performance study of 
GSP, SPADE, FreeSpan, and PrefixSpan, on real data sets,
with various kinds of sizes and data distribution. Besides,
these four algorithms, GSP, SPADE, FreeSpan, and 
PrefixSpan were implemented in Java.

Virtual environment traces

The performance of our traversal data base is reported as
follows. First, we follow the procedure described in [4] to set
up out data set parameters. The meanings of all parameters
are listed in Table 3. Figure 4 and 5 show the performance
comparison among the five algorithms for our virtual
environment data set. From Figure 4 and 5, we can see that
VSPM is as efficient as PrefixSpan does, but it is much more
efficient than SPADE, FreeSpan, and GSP.

Table 3. Parameters for our traversal data set 
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Fig. 4 Execution time with respect to various support
thresholds using our real data set-1.

Fig. 5. Execution time with respect to various support
thresholds using our real data set-2.

B.2.  Experimental results on clustering unit
For quality measure of clustering result, we adopted the

cluster cohesion and the inter-clustering similarity.  All are 
defined as follows.

Definition 2: Large item

Given a patterni and a user-defined threshold ,  if it 
satisfies the following criterion:

0 < minimum support threshold <  support(patterni)
1. We call the patterni as a large item.

Definition 3: Cluster Cohesion (Cluster-Coh(Ci))

It is the ratio of the large items to the whole items T(Ci) in
the cluster Ci. This is calculated by the following formula, and
if it is near 1, it is a good quality cluster; otherwise, it is not.

)(
)()(
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LCCCohCluster
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i
i                                          (2)

where Ci (L) is the number of large item in cluster Ci and 
T(Ci) is number of all items in cluster Ci.

Definition 4: Inter-Cluster Similarity (inter-sim(Ci , Cj)))

It is based on the large items is the rate of the common
large items of the cluster Ci.and Cj. We calculate the 
inter-cluster similarity by the following formula, and if it is
near 0, it is the good clustering. Otherwise, it is not.
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where LarCom(Ci  Cj) is the number of common large items
in the cluster Ci.and Cj, |LarCom(Ci  Cj)| is the total
occurrence number of the common large items, and 
|LarCom(Ci  Cj)| is the total occurrence number of the large
items in the cluster Ciand Cj.

Definition 5: View-radius

The view radius is defined as the radius of the visible
circle in the virtual environments. As the radius increases, the 
more objects are observed. In other words, it controls how 
many objects are observed at the same time in one view.

In the meanwhile, we select the different support threshold
for comparison. Figure 6 and 7 show the results. Algorithms
with clustering outperforms other algorithms without
clustering. Since the clustering mechanisms can accurately
support prefetching objects for future usage. Not only the
access time is cut down but also the I/O efficiency is 
improved. Note that HG_clustering represents the
Hypergraph clustering scheme.

Fig. 6. Comparison of different algorithms on the number of 
objects retrieved under the same view_radius.

Fig. 7. Comparison of different algorithms on system
response time under the same view_radius.

Fig. 8. Comparison of different support threshold on cluster
cohesion under the same view_radius.

Fig. 9. Comparison of different support threshold on 
inter-cluster similarity under the same view_radius.

By observing both Figure 8 and 9, we can easily realize
that there exist relations between the number of clusters and
inter-cluster similarity, and also between the number of
clusters and cluster cohesion. Among them, the
HG_clustering outperforms the other two. Since
HG_clustering scheme can capture the inter-/intra-
relationships in clusters as many as possible, the Jaccard
clustering does less and the last one does nothing, just based
on its random behavior.
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In summary, we can determinate that our HG_clustering 
algorithm is better overall at cluster cohesion and inter-cluster
similarity. This means that our HG_clustering algorithm can
groups more similar patterns together and do more
improvements on  the efficiency of storage systems.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have designed a frequent
projection-based sequential pattern mining algorithm to find
correlations among objects. Using the VE traces, our
experiments show that VSPM is an efficient algorithm.
Besides, we have evaluated correlation-directed prefetching
and data layout. Our experimental results have shown that
correlation-directed prefetching and data layout can improve
I/O average response time by 1.998 to 3.201 compared to
no-prefetching, and 3.102 to 9.121compared to the number of
retrieved objects. Finally, we have also designed two criteria
to verify the validity of clustering method.

Our study has several limitations. One important limitation
is that our disk layout was not especially designed for the
extra long frequent sequential patterns. This direction will 
enhance the system performance.
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