

Abstract— Mining frequent tree patterns has many practical
applications in areas such as XML document mining, web
mining, bioinformatics, network routing and so on. Most of the
previous works used an apriori-based approach for candidate
generation and frequency counting in their algorithms. In these
approaches the state space grows exponentially since many
unreal candidates are generated, especially when there are lots
of large patterns among the data. To tackle these problems, we
propose TDU, a Top-Down approach for mining all maximal,
labeled, Unordered, and embedded subtrees from a collection
of tree-structured data. We would evaluate the effectiveness of
the TDU algorithm in comparison to the previous works.

I. INTRODUCTION
ining frequent tree patterns is very useful in domains
like XML document mining, web mining,

bioinformatics, network routing and so on. Recently, many
algorithms have been proposed to find frequent tree patterns
in a collection of tree-structured data. In [5] Feng et al.
initiated an XML-enabled association rule template. They
continued their work by presenting templates for XML-
enabled association rule mining [6].

In [7] Zaki presented TREEMINER to mine embedded
ordered frequent tree patterns. He used an efficient data
structure called scope-list for frequency counting and
proposed rightmost extension to generate non-redundant
candidates. Later, by proposing the SLEUTH algorithm, he
extended his work to mine embedded unordered tree
patterns [8]. In [13] Asai et al. independently proposed the
rightmost candidate generation. They developed FreqT for
mining frequent induced ordered tree patterns. Chi et al. in
[15] proposed FreeTreeMiner for mining induced unordered
free trees.

In [16] Chi et al. proposed CMTreeMiner for mining both
closed and maximal frequent subtrees in a database of rooted
unordered trees. This algorithm traverse an enumeration tree
that systematically enumerates all subtrees, and use an
enumeration DAG to prune the branches of the enumeration
tree that do not correspond to closed or maximal frequent

1 Database Research Group, Control and Intelligent Processing Center Of

Excellence, Faculty of ECE, School of Engineering, University of Tehran,
Tehran, Iran, email m.haghir@ece.ut.ac.ir.

2 Database Research Group, Control and Intelligent Processing Center Of
Excellence, Faculty of ECE, School of Engineering, University of Tehran,
Tehran, Iran, email rahgozar@ut.ac.ir.

3 Database Research Group, Control and Intelligent Processing Center
Of Excellence, Faculty of ECE, School of Engineering, University of
Tehran, Tehran, Iran, email lucas@ipm.ir.

4 Faculty of CE, Sharif University, Tehran, Iran, email
haghir@ce.sharif.edu.

subtrees. Recently, XSpanner, a pattern growth-based
method, has been proposed in [1] for mining embedded
ordered subtrees.

For finding unordered frequent tree patterns, proposed
algorithms use canonical form and extend only candidates
that are in canonical form. A canonical form is a unique way
to represent a labeled tree. In [3], [4], Luccio et al. defined
sorted pre-order string method. This method for a rooted
unordered tree is defined as the lexicographically smallest
one among those pre-order strings for the rooted ordered
trees that can be obtained from the rooted unordered tree.
To determine the lexicographical order of the string
encodings, a total order on the alphabet of vertex labels is
defined. Later, Asai et al. [12], Nijssen et al. [11], and Chi et
al. [2], [15] independently defined similar canonical
representations.

Most of the previous researches on mining frequent tree
patterns use apriori or anti-antimonotone property for
efficient candidate generation and frequency counting. This
property says that the frequency of a superpattern is less
than or equal to the frequency of all of its subpatterns. This
property considers only a known frequent pattern for
extension and as a result limits the candidate’s lattice.
Apriori-based algorithms show good performance with
sparse data sets, where the frequent patterns are very short.

However, as [10] showed, this property has less efficiency
when data are dense and there are a lot of large patterns in
data or the minimum support is quite low. For example if
there are 310 frequent 1-subtree, apriori-based approaches
will need to generate 610 2-subtrees and check their
frequencies. Many of these candidates are unreal and there
are no instances of them in input trees.

To solve these problems, we propose the TDU algorithm,
a Top-Down approach for mining Unordered maximal tree
patterns. TDU begins by constructing a special
representation from tree-structure data, called IRTree. All
frequent tree patterns are subtree of IRTree. Moreover
IRTree defines the canonical ordered form for unordered
trees and therefore makes the ‘canonical test’ unnecessary.
Then TDU finds the set of all maximal patterns by
fragmenting IRTree.

A performance study has been conducted to compare the
performance of TDU with an apriori-based algorithm,
SLEUTH [8]. Our study shows that when the dataset is
dense or the frequent patterns are large, the TDU algorithm
outperforms the SLEUTH algorithm.

The rest of this paper is organized as follows. In section 2,
the tree mining problem statement and required definitions

Mining Maximal Embedded Unordered Tree Patterns
Mostafa Haghir Chehreghani1, Masoud Rahgozar2, Caro Lucas3 and Morteza Haghir Chehreghani4

M

437

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

are given. Section 3 describes the IRTree representation. In
section 4, we provide an efficient and systematic approach
for candidate generation. Section 5 is dedicated to our
frequency counting method. Section 6 describes our
proposed algorithm; TDU. We empirically evaluate the
effectiveness of the algorithm in section 7 and the paper is
concluded in section 8.

II. PROBLEM DEFINITION AND STATEMENT REVIEW STAGE
To explain the problem of mining frequent subtrees in a

collection of trees we provide the following definitions:
Rooted labeled tree [9]: A rooted labeled tree (,)T V E= ,

is a directed, acyclic and connected graph with {0,1,... }V n=
as the set of vertices and {(,) | , }E x y x y V= ∈ as the set of
edges. One distinguished vertex r V∈ is selected the root,
so that for all x V∈ , there is a unique path from r to x.
Further, :l V L→ is a labeling function mapping vertices to
a set of labels 1 2{ , ,...}L l l= .

Induced subtree [14]: For a tree T with vertex set V
and edge set E , we say that a tree 'T with vertex set 'V and
edge set 'E is an induced subtree of T , if and only if (1)

'V V⊆ , (2) 'E E⊆ , (3) the labeling of 'V and 'E is
preserved in 'T , (4) if defined for rooted ordered trees, the
left-to-right ordering among the siblings in 'T should be a
subordering of the corresponding vertices in T .

Embedded subtree [14]: For a rooted unordered tree T
with vertex set V, edge set E, and no labels on the edges, a
tree T ′ with vertex setV ′ , edge set E′ , and no labels on the
edges, is an embedded subtree of T if and only if (1)V V′ ⊆ ,
(2) the labeling of the nodes of V ′ in T is preserved in T ′
and (3) 1 2(,)v v E′∈ , where 1v is the parent of 2v in T ′ , only
if 1v is an ancestor of 2v in T. If T and T ′ are rooted
ordered trees, then for T ′ to be an embedded subtree of T, a
fourth condition must hold: (4) for 1 2(,)v v V ′∈ ,

1 2() ()preorder v preorder v< in T ′ if and only if

1 2() ()preorder v preorder v< in T, where the preorder of a
node is its index in the tree according to the preorder
traversal.

Support & weighted support [9]: Let ()T Sδ indicate the
number of occurrences of the subtree S in a tree T. Let Td
be an indicator variable, with 1Td = if () 0T Sδ > and 0Td =
if () 0T Sδ = . Let D denote a database of trees. The support of

a subtree S in the database is defined as () ()TT D
S d Sσ

∈
= ∑ .

The weighted support of S is defined as () ()w TT D
S Sσ δ

∈
= ∑ .

Support is given as a percentage of the total number of trees
in D.

Frequent subtree: An l-subtree S, which is a subtree with
l nodes, is frequent if its (weighted) support is more than or
equal to a user-specified minimum (weighted) support value.

Maximal frequent subtree: A maximal frequent subtree

is a frequent subtree which none of its proper supertrees are
frequent.

The problem of mining frequent tree patterns in a
database of tree-structured data is to find all of the frequent
k-subtrees, 1 k M≤ ≤ where M is the maximum number of
nodes in data. The desired type of frequent subtree patterns
which is aimed in the mining process can differ based on the
kind of application. In this paper, our goal is to mine all
maximal, labeled, unordered, and embedded subtrees in a
forest, by proposing the TDU algorithm.

III. INTERMEDIATE REPRESENTATION TREE
In this section, we propose the Intermediate

Representation Tree or IRTree in short, which is a novel and
compact representation of input trees. IRTree is a rooted,
ordered tree that is constructed from some rooted unordered
trees and has the following properties:
• The set of its nodes is exactly equal to the set of the

frequent nodes in input trees,
• Two frequent nodes have ascendant-descendent relation

in IRTree, iff this relation does exist in at least one of
the input trees,

• There is no repeated path which is started from the root
and its length is greater than zero.

As an example, consider trees displayed in figure 1. Tree
(a) is an IRTree but tree (b) is not. In tree (b) the path “1—
2” is repeated two times.

 Tree (a) Tree (b)
Figure 1: tree (a) is an IRTree but tree b is not.

Constructing IRTree. For simplicity (and without loss of
generality), we assume that the roots in all input trees have
the same label. For each input tree, at first the non-frequent
nodes are eliminated and the resulted tree is called t. Then,
for each path r from t’s root to a leaf:
• If IRTree has no node, r is added to it.
• If path r is the prefix of one existing path in IRTree, do

nothing.
• In other cases, one of IRTree’s paths that has the longest

common prefix with path r is selected. We refer to this
path as q. The nodes of r that are placed after the
common prefix are added to the last node of the
common prefix in path q as its right most subpath.

Eliminating non-frequent nodes from the tree T is
relatively straightforward: after deleting the node a, the
parent of node a’s children would be the parent of node a. If

2

3 5

4

1

2

3 5

42

438

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

(a) (b)

(c)

Figure 2: An example of candidate generation

node a has no parent node (node a is the root of tree) and
the number of a’childern is more than one, T would be
partitioned to some subtrees.

It must be noted that we use IRTree only for
‘Candidate Generation’ and not for ‘Frequency
Counting’.

Theorem 1: All of the frequent tree patterns in a
collection of trees are subtrees of their IRTree
representation.

Proof. Omitted due to lack of space. ■

IV. CANDIDATE GENERATION
Consider a non-frequent tree T with k nodes. Since it is

non-frequent, it must be fragmented into some trees with
(k-1) nodes. This is done by eliminating each of nodes of
T. Each of generated smaller subtrees can be frequent or
non-frequent. Non-frequent subtrees must be fragmented
again. When fragmenting non-frequent trees, two possible
problems can occur. 1) Some generated candidates could
be subtrees of a frequent tree. 2) Some candidates could
be generated more than once. For example, consider

figure 2. In this figure, the tree 2-(a) is non-frequent and
must be fragmented. By eliminating each of its nodes, as
has been shown in figure 2-(b), five smaller trees have
been generated. From there, assume that dashed trees are
non-frequent and therefore must be fragmented further.
After doing this, the dashed trees in figure 2-(c) are
generated two times and other trees are subtrees of the
frequent supertrees.

The reason is that in figure 2-(c) each dashed tree is the
subtree of two non-frequent supertrees, but other trees are
subtrees of one frequent supertree and one non-frequent
supertree. Our goal is to generate only the dashed trees
exactly once.

To solve the first problem, we must generate only the
subtrees which are common between two non-frequent
trees. Solving the second problem needs to define an
order on the trees when computing their common
subtrees. For example, one can generate the common
subtree between non-frequent tree t and each non-
frequent tree which is generated after t (not between any
two arbitrary non-frequent trees).

By using these solutions, the trees presented in figure

1

2

5

2

3 5

1

3 5

1

2

3

1

3 4

1

3 5

1

4 5

1

2

5

1

2

4

1

4 5

2

4 5

1

2

3 5

1

2

4 5

1

3 4 5

1

2

3 4

2

3 45

tree 1 tree 2 tree 3

1

2

3 4 5

439

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

3-(a) are generated from non-frequent trees showed in
figure 2-(b). Each of these trees can be frequent or non-
frequent. Assume that all of them are non-frequent. The
common subtrees between (tree 1 and tree 2), (tree 1 and
tree 3) and (tree 2 and tree 3) have been shown in figure
3-(b). The Subtree (1—5) have been generated for three
times. To tackle this problem, we introduce the
equivalence class concept.

(a)

(b)

(c)

Figure 3: Candidate generation considering equivalence classes.

Equivalence class. Every two trees belong to the same

equivalence class, iff they have the same first-supertree.
Each subtree with length k is the common part of two
supertrees with length k+1. The first supertree is called
first-supertree. For example, in figure 3-(c), these trees
placed in a block belong to the same equivalence class.
The first-supertree of equivalence class A is the tree 1
from figure 2-(b) and the first-supertree of equivalence
class B is the tree 2 from figure 2-(b).

Theorem 2 (tree fragmentation approach): Assume
that tree T is non-frequent and therefore, must be
fragmented. By eliminating each of its nodes a smaller
candidate is generated. Assume that between these
candidates, n tree(s) are non-frequent. If 1n = , this

candidate tree is ignored. Otherwise, the common subtree
of each non-frequent tree t and non-frequent trees
generated after t is determined. For generated subtrees
that: 1) are non-frequent and 2) belong to the same
equivalence class, the above ‘If’ is repeated until all
equivalence classes have at most one non-frequent
member.

Proof. Omitted due to lack of space. ■

(a)

(b) (c)
Figure 4. Two special situations which in some candidates are generated
more than once.

Note that when deleting the root of tree T with k nodes,

if its root has more than one child, T can be partitioned to
some subtrees with the size less than (k-1). At this state,
each partition is the subtree of a previously generated
candidate and therefore no new candidate is generated.
For example, consider two colored trees in figure 2-(b).
Their common subtree looses their roots and their roots
have more than one child. Thus we do not generate any
candidate for them in figure 2-(c).

Theorem 3: Tree fragmentation approach generates
each subtree of IRTree exactly once.

Proof. Omitted due to lack of space. ■
More precisely, when a tree is non-frequent and each

of its nodes must be deleted, there are two situations in
which the redundant candidates can be generated. As
showed in figure 4-(a), the first case occurs when in one
path of the non-frequent tree there are { | 2}k k ≥ nodes
with the same labels and all of these k nodes (except the
last node) have the same children. In this case, to generate
new candidates non-redundantly, only one of these k
nodes is deleted. In the next case, as reflected in figure 4-

1

4 5

tree 3

1

2

5

1

3 5

tree 2 tree 1

Equivalence class A Equivalence class B

1

5

1

5

1

5

1

2

5

1

3 5

1

4 5

tree 3 tree 2 tree 1

a

b b

h-1 nodes

a

b b

h nodes

a

b

b

k nodes

440

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

(b), the non-frequent tree has one root and { | 2}h h ≥
leaves with the same label. In this case, only one
candidate is generated. This candidate is presented in
figure 4-(c).

V. FREQUENCY COUNTING
In vertical approaches for frequency counting, the main

step is to determine the kind of relation (ascendant-
descendant or sibling) between two nodes. To determine
the kind of relation, we use a preorder-traverse-based
approach. In this traverse, the order of all the children of a
node is greater than or equal to the order of that node and
less than or equal to the order of its rightmost child. For
the first time, Zaki in [7] used this property to count the
frequency of subtrees efficiently and presented a special
data structure, scope-list. Recently, a different preorder-
traversal-based method was proposed in [1].

We employ Zaki’s method, by some alterations. We
present the occ-list data structure that expresses the list of
occurrences of a subtree in all of input trees. Each
occurrence consists of three elements. The first element is
called tid and is a tree Id in which the tree occurs. The
second element is NodeId and shows the preorder number
of the last node of the tree. The third element is scope and
shows the preorder number of the rightmost child of the
last node of the tree.

Based on scope-list data structure, Zaki has defined In-
scope and Out-Scope tests in [7] for determining the kind
of relation between two nodes.

To find whether there exists the ascendant-descendant
relation between two nodes x and y or not, we act as
follows. If there is an occurrence 1occ occ list of node x∈ −
and an occurrence 2occ occ list of node y∈ − such that 1)
the tid of occ1 is equal to the tid of occ2, 2) the scope (or
NodeId) of occ2 is between the NodeId and scope of
occ1, there exists the ascendant-descendant relation
between the two nodes x and y in occurrence occ2. We
refer to this test as ascendant-descendant test.

To find whether or not there exists the sibling relation
between two nodes x and y, we act as follows. If there is
an occurrence occ1 occ list of node x∈ − and an
occurrence occ2 occ list of node y∈ − such that 1) the tid
of occ1 is equal to the tid of occ2, 2) the scope (or
NodeId) of occ2 is greater than the scope of occ1 or less
than the NodeId of occ1, there exists the sibling relation
between the two nodes x and y in occurrence occ1. We
refer to this test as sibling test.

These tests have been completely discussed in [7], with
some differences. For more details and illustrative
examples, the interested reader can refer to [7].

Zaki’s method for frequency counting has a weakness.
For example, in figure 5, assume that there exists
ascendant-descendant relation between two nodes ‘1’ and
‘4’ in n occurrences. And, assume that from these n

occurrences, in { | }m m n≤ occurrences, the node ‘5’ is the
descendant of the node ‘4’. In these conditions, in
{ | }k k m≥ occurrences, the node ‘5’ would be the
descendant of node ‘1’. Therefore, if
m minimum - support≥ , it is not necessary to perform the
ascendant-descendant test between nodes ‘1’ and ‘5’.

Figure 5. Unnecessary ascendant-descendant tests done by TreeMiner

It seems that Zaki’s method does not consider this

property and performs some unnecessary ascendant-
descendant tests. Also, consider a frequent path which has

l nodes. Zaki’s method performs 1

0
(1)

2
i

i
l li

−

=
−=∑

ascendant-descendant tests for this path, while only 1l −
ascendant-descendant tests are required. Note that the
sibling relation does not have such a property. Our
algorithm avoids these unnecessary tests by constructing
candidates from top to down.

TDU (a collection of tree-structured data)
1. Begin
2. Compute F1; // F1 is the set of all frequent nodes
3. Construct IRTree from the input data;
4. Fragment (IRTree)
5. End // of TDU

Figure 6. The high level pseudo-code of TDU algorithm

VI. TDU ALGORITHM
In this section, we propose the TDU algorithm for

finding frequent, unordered, embedded and maximal tree
patterns from a collection of tree-structured data. The
high level pseudo-code of this algorithm is presented in
figure 6. The TDU algorithm begins by computing the set
of all frequent nodes. It is done simply by incrementing
the count of each node i in a 1-dimensional array. Then it
constructs the IRTree according to the proposed algorithm
discussed in section 3. IRTree is always non-frequent, and
therefore must be fragmented. This fragmentation is done
based on tree fragmentation approach proposed in
section 4. This approach extracts the set of all maximal
subtrees from IRTree. To do this, the tree fragmentation
approach needs a frequency counting method explained
bellow.

Frequency counting method. Assume that tree T is

1

2

3

4

5

441

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

frequent to node i-1 in preorder traverse. This method
reads node i and performs the ascendant-descendant test
between this node and only its direct parent (not all of its
ascendants, and as a result avoids unnecessary ascendant-
descendant tests). After performing this test, if the
number of occurrences in occ-list of node i is less than
min-sup, the tree T would be non-frequent. Otherwise,
this method performs the sibling test. This test is done
between nodes i and all of its siblings in scanned part of
tree T. If for each sibling the number of these occurrences
is less than the min-sup, this tree would not be frequent.

The following lemma can help to determine the
siblings of a node.

Lemma: when traversing a tree in preorder, whenever
a node is reached, it is pushed on the stack and whenever
a backtrack happens (move from a node to its parent) the
stack is popped, then the content of the stack would show
the rightmost path of the scanned part of the tree and the
popped elements would show the sibling(s) of the top
element of the stack.

Proof. Directly from the preorder traverse of trees. ■

VII. EXPERIMENTAL RESULTS
We performed extensive experiments to evaluate the

performance of the TDU algorithm using both synthetic
data and data from real applications. Due to the space
limitation, here we only report the results for a synthetic
dataset. We did our experiments on a 3GHz Intel Pentium
IV PC with a 1GB main memory, running windows XP
operating system. All algorithms were implemented in
C++.

To the best of our knowledge, at the time of writing
this paper, there is no algorithm for mining unordered,
embedded and maximal tree patterns. We think that the
best algorithm for our comparisons is SLEUTH [8], which
is proposed by Zaki for mining unordered embedded
frequent tree patterns. To the best of our knowledge, this
algorithm is the most efficient algorithm in the context of
mining unordered and embedded tree patterns.

We implemented the tree generator program described
in [1]. In this program there are 8 parameters for
adjustment: number of the labels | |S , the probability
threshold of one node in the tree to generate children or
not p, number of the basic pattern trees (BPT) | |L ,
average height of the BPT | |I , the maximum fanout of
nodes in the BPT | |C , the data size of synthetic trees | |N ,
the maximum height of synthetic trees | |H and the
maximum fanout of nodes | |F in the synthetic trees.

In our synthetic dataset, we specified a large fanout and
depth in combination with a low number of distinct
labels: number of distinct labels is 100, number of trees
(transactions) is 1000, total number of nodes is 100000,
the average fanout is equal to 10 and maximum depth of
trees is equal to 20.

Figure 7 shows the performance of TDU on synthetic
dataset for different values of minimum support, and
compares the run time against the SLEUTH algorithm. As
reflected in Figure 7-(a), number of subtrees increases by
decreasing the minimum support. Due to the large
differences in number of frequent subtrees, we show this
chart in a logarithmic scale. TDU scales linearly in the
minimum support, but SLEUTH does not.

1

10

100

1000

10000

100000

1000000

10 1 0.1 0.01

SLEUTH
TDU

Minimum Support (%)

Nu
m

be
r o

f P
at

te
rn

s

(a)

1

10

100

1000

10000

100000

10 1 0.5 0.1

SLEUTH

TDU

Minimum Support (%)

To
ta

l R
un

ni
ng

 T
im

e
(S

ec
)

(b)

Figure 7: Performance evaluation on synthetic dataset

Figure 7-(b) shows the effect of minimum support on

running time. Efficiency of TDU increases when the data
have complex and large tree patterns. There are two
reasons for this behavior: first, TDU constructs the lattice
in a top-down manner and as patterns are larger, TDU can
find them with less tree fragmentations. Second, by
increasing the complexity of patterns, the intersection
between data increases and therefore the size of IRTree
reduces. The number of candidates increases
exponentially with the size of IRTree. In contrast,
SLEUTH is very efficient for datasets with small tree
patterns and as the size of patterns increases; this
algorithm suffers from the exponential growth of
computation time.

VIII. CONCLUSION
In this paper, we proposed the TDU algorithm, for

mining all maximal, labeled, unordered, and embedded
subtrees from a collection of tree-structured data. To the
best of our knowledge, this algorithm is the first top-
down approach and is the only algorithm that mines
maximal and embedded tree patterns. TDU starts its work
by constructing a novel representation of tree-structured

442

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

data, named IRTree, which contains all embedded
frequent patterns. Moreover, IRTree defines the canonical
ordered form for unordered trees and therefore makes the
‘canonical test’ unnecessary. Then, TDU generates non-
redundantly, all embedded real candidate trees by
imposing an efficient tree fragmentation approach on
IRTree.

In general, as experimental results show, when data are
dense and there are lots of large and complex frequent
tree patterns, the TDU algorithm performs better than the
SLEUTH algorithm. In dense data, the required
fragmentations and the size of IRTree are reduced. On the
other hand, the SLEUTH algorithm shows better
performance with sparse data sets, where frequent
patterns are very short.

REFERENCES
[1] C. Wang, M. Hong, J. Pei, H. Zhou, W. Wang, and B. Shi,

“Efficient Pattern-Growth Methods for Frequent Tree Pattern
Mining”, Proc. Pacific-Asia Conf. Knowledge Discovery and Data
Mining, 2004.

[2] D. Cook and L. Holder, “Substructure discovery using minimal
description length and background knowledge”, Journal of
Artificial Intelligence Research, 1, 231–255, 1994.

[3] F. Luccio, A. M. Enriquez, P. O. Rieumont and L. Pagli, “Exact
Rooted Subtree Matching in Sublinear Time”, Technical Report
TR-01-14, Universita Di Pisa, 2001.

[4] F. Luccio, A. M. Enriquez, P. O. Rieumont and L. Pagli, “Bottom-
up Subtree Isomorphism for Unordered Labeled Trees”, Technical
Report TR-04-13, Universita Di Pisa, 2004.

[5] L. Feng, T. S. Dillon, H. Weigand and E. Chang, “An XML-
Enabled Association Rule Framework.” In Proceedings of DEXA
2003, pp 88-97, Prague, Czech Republic, 2003.

[6] L. Feng and T. Dillon, “Mining XML-Enabled Association Rule
with Templates.” In Proceedings of KDID 04, 2004.

[7] M. J. Zaki, “Efficiently Mining Frequent Trees in a Forest.” Proc
of the 2002 Int. Conf. Knowledge Discovery and Data Mining
(SIGKDD’02), July 2002.

[8] M. J. Zaki, “Efficiently Mining Frequent Embedded Unordered
Trees.” Fundam. Inform. 66(1-2): 33-52, 2005.

[9] M.J. Zaki, “Efficiently Mining Frequent Trees in a Forest:
Algorithms and Applications”, in IEEE Transaction on Knowledge
and Data Engineering, vol. 17, no. 8, pp. 1021-1035, 2005.

[10] R. J. B. Jr, “Efficiently Mining Long Patterns from Databases”,
SIGMOD' 98, Seattle, WA, USA, ACM, 1998.

[11] S. Nijssen and J.N. Kok, “Efficient Discovery of Frequent
Unordered Trees”, Proc. First Int’l Workshop Mining Graphs,
Trees, and Sequences, 2003.

[12] T. Asai, H. Arimura, T. Uno, and S. Nakano, “Discovering
Frequent Substructures in Large Unordered Trees,” Proc. Sixth
Int’l Conf. Discovery Science, Oct. 2003.

[13] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and S.
Arikawa, “Efficient Substructure Discovery from Large Semi-
Structured Data” Proc. Second SIAM Int’l Conf. Data Mining,
Apr. 2002.

[14] Y. Chi, R. R. Muntz, S. Nijssen, J. N. Kok, “Frequent Subtree
Mining - An Overview”, Fundam. Inform. 66(1-2): 161-198, 2005.

[15] Y. Chi, Y. Yang, and R.R. Muntz, “Indexing and Mining Free
Trees,” Proc. Third IEEE Int’l Conf. Data Mining, 2003.

[16] Y. Chi, Y. Yang, Y. Xia and R. R. Muntz, “CMTreeMiner: Mining
Both Closed and Maximal Frequent Subtrees.” PAKDD 2004: 63-
73, 2004.

443

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

