
 
 

 

  

Abstract— Mining frequent tree patterns has many practical 
applications in areas such as XML document mining, web 
mining, bioinformatics, network routing and so on. Most of the 
previous works used an apriori-based approach for candidate 
generation and frequency counting in their algorithms. In these 
approaches the state space grows exponentially since many 
unreal candidates are generated, especially when there are lots 
of large patterns among the data. To tackle these problems, we 
propose TDU, a Top-Down approach for mining all maximal, 
labeled, Unordered, and embedded subtrees from a collection 
of tree-structured data. We would evaluate the effectiveness of 
the TDU algorithm in comparison to the previous works. 

I. INTRODUCTION 
ining frequent tree patterns is very useful in domains 
like XML document mining, web mining, 

bioinformatics, network routing and so on. Recently, many 
algorithms have been proposed to find frequent tree patterns 
in a collection of tree-structured data. In [5] Feng et al. 
initiated an XML-enabled association rule template. They 
continued their work by presenting templates for XML-
enabled association rule mining [6]. 

In [7] Zaki presented TREEMINER to mine embedded 
ordered frequent tree patterns. He used an efficient data 
structure called scope-list for frequency counting and 
proposed rightmost extension to generate non-redundant 
candidates. Later, by proposing the SLEUTH algorithm, he 
extended his work to mine embedded unordered tree 
patterns [8]. In [13] Asai et al. independently proposed the 
rightmost candidate generation. They developed FreqT for 
mining frequent induced ordered tree patterns. Chi et al. in 
[15] proposed FreeTreeMiner for mining induced unordered 
free trees.  

In [16] Chi et al. proposed CMTreeMiner for mining both 
closed and maximal frequent subtrees in a database of rooted 
unordered trees. This algorithm traverse an enumeration tree 
that systematically enumerates all subtrees, and use an 
enumeration DAG to prune the branches of the enumeration 
tree that do not correspond to closed or maximal frequent 
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subtrees. Recently, XSpanner, a pattern growth-based 
method, has been proposed in [1] for mining embedded 
ordered subtrees. 

For finding unordered frequent tree patterns, proposed 
algorithms use canonical form and extend only candidates 
that are in canonical form. A canonical form is a unique way 
to represent a labeled tree. In [3], [4], Luccio et al. defined 
sorted pre-order string method. This method for a rooted 
unordered tree is defined as the lexicographically smallest 
one among those pre-order strings for the rooted ordered 
trees that can be obtained from the rooted unordered tree. 
To determine the lexicographical order of the string 
encodings, a total order on the alphabet of vertex labels is 
defined. Later, Asai et al. [12], Nijssen et al. [11], and Chi et 
al. [2], [15] independently defined similar canonical 
representations. 

Most of the previous researches on mining frequent tree 
patterns use apriori or anti-antimonotone property for 
efficient candidate generation and frequency counting. This 
property says that the frequency of a superpattern is less 
than or equal to the frequency of all of its subpatterns. This 
property considers only a known frequent pattern for 
extension and as a result limits the candidate’s lattice. 
Apriori-based algorithms show good performance with 
sparse data sets, where the frequent patterns are very short. 

However, as [10] showed, this property has less efficiency 
when data are dense and there are a lot of large patterns in 
data or the minimum support is quite low. For example if 
there are 310  frequent 1-subtree, apriori-based approaches 
will need to generate 610  2-subtrees and check their 
frequencies. Many of these candidates are unreal and there 
are no instances of them in input trees.  

To solve these problems, we propose the TDU algorithm, 
a Top-Down approach for mining Unordered maximal tree 
patterns. TDU begins by constructing a special 
representation from tree-structure data, called IRTree. All 
frequent tree patterns are subtree of IRTree. Moreover 
IRTree defines the canonical ordered form for unordered 
trees and therefore makes the ‘canonical test’ unnecessary. 
Then TDU finds the set of all maximal patterns by 
fragmenting IRTree.  

A performance study has been conducted to compare the 
performance of TDU with an apriori-based algorithm, 
SLEUTH [8]. Our study shows that when the dataset is 
dense or the frequent patterns are large, the TDU algorithm 
outperforms the SLEUTH algorithm. 

The rest of this paper is organized as follows. In section 2, 
the tree mining problem statement and required definitions 
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are given. Section 3 describes the IRTree representation. In 
section 4, we provide an efficient and systematic approach 
for candidate generation.  Section 5 is dedicated to our 
frequency counting method. Section 6 describes our 
proposed algorithm; TDU. We empirically evaluate the 
effectiveness of the algorithm in section 7 and the paper is 
concluded in section 8.  

II. PROBLEM DEFINITION AND STATEMENT REVIEW STAGE 
To explain the problem of mining frequent subtrees in a 

collection of trees we provide the following definitions: 
Rooted labeled tree [9]: A rooted labeled tree ( , )T V E= , 

is a directed, acyclic and connected graph with {0,1,... }V n=  
as the set of vertices and {( , ) | , }E x y x y V= ∈  as the set of 
edges. One distinguished vertex r V∈  is selected the root, 
so that for all x V∈ , there is a unique path from r to x. 
Further, :l V L→  is a labeling function mapping vertices to 
a set of labels 1 2{ , ,...}L l l= . 

Induced subtree [14]: For a tree T  with vertex set V  
and edge set E , we say that a tree 'T  with vertex set 'V  and 
edge set 'E  is an induced subtree of T , if and only if (1) 

'V V⊆ , (2) 'E E⊆ , (3) the labeling of 'V  and 'E  is 
preserved in 'T , (4) if defined for rooted ordered trees, the 
left-to-right ordering among the siblings in 'T  should be a 
subordering of the corresponding vertices in T . 

Embedded subtree [14]: For a rooted unordered tree T 
with vertex set V, edge set E, and no labels on the edges, a 
tree T ′  with vertex setV ′ , edge set E′ , and no labels on the 
edges, is an embedded subtree of T if and only if (1)V V′ ⊆  , 
(2) the labeling of the nodes of V ′  in T is preserved in T ′  
and (3) 1 2( , )v v E′∈ , where 1v  is the parent of 2v  in T ′ , only 
if 1v  is an ancestor of 2v  in T. If T and T ′  are rooted 
ordered trees, then for T ′  to be an embedded subtree of T, a 
fourth condition must hold: (4) for 1 2( , )v v V ′∈ , 

1 2( ) ( )preorder v preorder v<  in T ′  if and only if 

1 2( ) ( )preorder v preorder v< in T, where the preorder of a 
node is its index in the tree according to the preorder 
traversal. 

Support & weighted support [9]: Let ( )T Sδ  indicate the 
number of occurrences of the subtree S in a tree T. Let Td  
be an indicator variable, with 1Td =  if ( ) 0T Sδ >  and  0Td =  
if ( ) 0T Sδ = . Let D denote a database of trees. The support of 

a subtree S in the database is defined as ( ) ( )TT D
S d Sσ

∈
= ∑ . 

The weighted support of S is defined as ( ) ( )w TT D
S Sσ δ

∈
= ∑ . 

Support is given as a percentage of the total number of trees 
in D.  

Frequent subtree: An l-subtree S, which is a subtree with 
l nodes, is frequent if its (weighted) support is more than or 
equal to a user-specified minimum (weighted) support value. 

Maximal frequent subtree: A maximal frequent subtree 

is a frequent subtree which none of its proper supertrees are 
frequent.  

The problem of mining frequent tree patterns in a 
database of tree-structured data is to find all of the frequent 
k-subtrees, 1 k M≤ ≤ where M is the maximum number of 
nodes in data. The desired type of frequent subtree patterns 
which is aimed in the mining process can differ based on the 
kind of application. In this paper, our goal is to mine all 
maximal, labeled, unordered, and embedded subtrees in a 
forest, by proposing the TDU algorithm. 

III. INTERMEDIATE REPRESENTATION TREE 
In this section, we propose the Intermediate 

Representation Tree or IRTree in short, which is a novel and 
compact representation of input trees. IRTree is a rooted, 
ordered tree that is constructed from some rooted unordered 
trees and has the following properties: 
• The set of its nodes is exactly equal to the set of the 

frequent nodes in input trees, 
• Two frequent nodes have ascendant-descendent relation 

in IRTree, iff this relation does exist in at least one of 
the input trees, 

• There is no repeated path which is started from the root 
and its length is greater than zero.       

As an example, consider trees displayed in figure 1. Tree 
(a) is an IRTree but tree (b) is not. In tree (b) the path “1—
2” is repeated two times. 

 
  

                Tree (a)                               Tree (b) 
Figure 1: tree (a) is an IRTree but tree b is not. 
 
Constructing IRTree. For simplicity (and without loss of 
generality), we assume that the roots in all input trees have 
the same label. For each input tree, at first the non-frequent 
nodes are eliminated and the resulted tree is called t. Then, 
for each path r from t’s root to a leaf: 
• If IRTree has no node, r is added to it. 
• If path r is the prefix of one existing path in IRTree, do 

nothing. 
• In other cases, one of IRTree’s paths that has the longest 

common prefix with path r is selected. We refer to this 
path as q. The nodes of r that are placed after the 
common prefix are added to the last node of the 
common prefix in path q as its right most subpath. 

Eliminating non-frequent nodes from the tree T is 
relatively straightforward: after deleting the node a, the 
parent of node a’s children would be the parent of node a. If  
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(a) (b) 

 

 
(c) 

Figure 2: An example of candidate generation 
 

node a has no parent node (node a is the root of tree) and 
the number of a’childern is more than one, T would be 
partitioned to some subtrees. 

It must be noted that we use IRTree only for 
‘Candidate Generation’ and not for ‘Frequency 
Counting’. 

Theorem 1: All of the frequent tree patterns in a 
collection of trees are subtrees of their IRTree 
representation. 

Proof. Omitted due to lack of space.  ■ 

IV. CANDIDATE GENERATION 
Consider a non-frequent tree T with k nodes. Since it is 

non-frequent, it must be fragmented into some trees with 
(k-1) nodes. This is done by eliminating each of nodes of 
T. Each of generated smaller subtrees can be frequent or 
non-frequent. Non-frequent subtrees must be fragmented 
again. When fragmenting non-frequent trees, two possible 
problems can occur. 1) Some generated candidates could 
be subtrees of a frequent tree. 2) Some candidates could 
be generated more than once. For example, consider 

figure 2. In this figure, the tree 2-(a) is non-frequent and 
must be fragmented. By eliminating each of its nodes, as 
has been shown in figure 2-(b), five smaller trees have 
been generated. From there, assume that dashed trees are 
non-frequent and therefore must be fragmented further. 
After doing this, the dashed trees in figure 2-(c) are 
generated two times and other trees are subtrees of the 
frequent supertrees.    

The reason is that in figure 2-(c) each dashed tree is the 
subtree of two non-frequent supertrees, but other trees are 
subtrees of one frequent supertree and one non-frequent 
supertree. Our goal is to generate only the dashed trees 
exactly once.  

To solve the first problem, we must generate only the 
subtrees which are common between two non-frequent 
trees. Solving the second problem needs to define an 
order on the trees when computing their common 
subtrees. For example, one can generate the common 
subtree between non-frequent tree t and each non-
frequent tree which is generated after t (not between any 
two arbitrary non-frequent trees). 

By using these solutions, the trees presented in figure 
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3-(a) are generated from non-frequent trees showed in 
figure 2-(b). Each of these trees can be frequent or non-
frequent. Assume that all of them are non-frequent. The 
common subtrees between (tree 1 and tree 2), (tree 1 and 
tree 3) and (tree 2 and tree 3) have been shown in figure 
3-(b). The Subtree (1—5) have been generated for three 
times. To tackle this problem, we introduce the 
equivalence class concept. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3: Candidate generation considering equivalence classes. 
 

 
Equivalence class. Every two trees belong to the same 

equivalence class, iff they have the same first-supertree. 
Each subtree with length k is the common part of two 
supertrees with length k+1. The first supertree is called 
first-supertree. For example, in figure 3-(c), these trees 
placed in a block belong to the same equivalence class. 
The first-supertree of equivalence class A is the tree 1 
from figure 2-(b) and the first-supertree of equivalence 
class B is the tree 2 from figure 2-(b). 

Theorem 2 (tree fragmentation approach): Assume 
that tree T is non-frequent and therefore, must be 
fragmented. By eliminating each of its nodes a smaller 
candidate is generated. Assume that between these 
candidates, n tree(s) are non-frequent. If 1n = , this 

candidate tree is ignored. Otherwise, the common subtree 
of each non-frequent tree t and non-frequent trees 
generated after t is determined. For generated subtrees 
that: 1) are non-frequent and 2) belong to the same 
equivalence class, the above ‘If’ is repeated until all 
equivalence classes have at most one non-frequent 
member. 

Proof. Omitted due to lack of space. ■ 
 

 
 
 

(a) 

  

(b) (c) 
Figure 4.  Two special situations which in some candidates are generated 
more than once.  

 
Note that when deleting the root of tree T with k nodes, 

if its root has more than one child, T can be partitioned to 
some subtrees with the size less than (k-1). At this state, 
each partition is the subtree of a previously generated 
candidate and therefore no new candidate is generated. 
For example, consider two colored trees in figure 2-(b). 
Their common subtree looses their roots and their roots 
have more than one child. Thus we do not generate any 
candidate for them in figure 2-(c). 

Theorem 3: Tree fragmentation approach generates 
each subtree of IRTree exactly once.                                

Proof. Omitted due to lack of space. ■ 
More precisely, when a tree is non-frequent and each 

of its nodes must be deleted, there are two situations in 
which the redundant candidates can be generated. As 
showed in figure 4-(a), the first case occurs when in one 
path of the non-frequent tree there are { | 2}k k ≥  nodes 
with the same labels and all of these k nodes (except the 
last node) have the same children. In this case, to generate 
new candidates non-redundantly, only one of these k 
nodes is deleted.  In the next case, as reflected in figure 4-
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(b), the non-frequent tree has one root and { | 2}h h ≥  
leaves with the same label. In this case, only one 
candidate is generated. This candidate is presented in 
figure 4-(c). 

V. FREQUENCY COUNTING 
In vertical approaches for frequency counting, the main 

step is to determine the kind of relation (ascendant-
descendant or sibling) between two nodes. To determine 
the kind of relation, we use a preorder-traverse-based 
approach. In this traverse, the order of all the children of a 
node is greater than or equal to the order of that node and 
less than or equal to the order of its rightmost child. For 
the first time, Zaki in [7] used this property to count the 
frequency of subtrees efficiently and presented a special 
data structure, scope-list. Recently, a different preorder-
traversal-based method was proposed in [1].  

We employ Zaki’s method, by some alterations. We 
present the occ-list data structure that expresses the list of 
occurrences of a subtree in all of input trees. Each 
occurrence consists of three elements. The first element is 
called tid and is a tree Id in which the tree occurs. The 
second element is NodeId and shows the preorder number 
of the last node of the tree. The third element is scope and 
shows the preorder number of the rightmost child of the 
last node of the tree.  

Based on scope-list data structure, Zaki has defined In-
scope and Out-Scope tests in [7] for determining the kind 
of relation between two nodes.  

To find whether there exists the ascendant-descendant 
relation between two nodes x and y or not, we act as 
follows. If there is an occurrence 1occ occ list of node x∈ −  
and an occurrence 2occ occ list of node y∈ −  such that 1) 
the tid of occ1 is equal to the tid of occ2, 2) the scope (or 
NodeId) of occ2 is between the NodeId and scope of 
occ1, there exists the ascendant-descendant relation 
between the two nodes x and y in occurrence occ2. We 
refer to this test as ascendant-descendant test. 

To find whether or not there exists the sibling relation 
between two nodes x and y, we act as follows. If there is 
an occurrence occ1 occ list of node x∈ −  and an 
occurrence occ2 occ list of node y∈ −  such that 1) the tid 
of occ1 is equal to the tid of occ2, 2) the scope (or 
NodeId) of occ2 is greater than the scope of occ1 or less 
than the NodeId of occ1, there exists the sibling relation 
between the two nodes x and y in occurrence occ1. We 
refer to this test as sibling test. 

These tests have been completely discussed in [7], with 
some differences. For more details and illustrative 
examples, the interested reader can refer to [7].  

Zaki’s method for frequency counting has a weakness. 
For example, in figure 5, assume that there exists 
ascendant-descendant relation between two nodes ‘1’ and 
‘4’ in n occurrences. And, assume that from these n 

occurrences, in { | }m m n≤  occurrences, the node ‘5’ is the 
descendant of the node ‘4’. In these conditions, in 
{ | }k k m≥  occurrences, the node ‘5’ would be the 
descendant of node ‘1’. Therefore, if 
m minimum - support≥ , it is not necessary to perform the 
ascendant-descendant test between nodes ‘1’ and ‘5’. 

 
 
 
 
 
 
 
 

Figure 5. Unnecessary ascendant-descendant tests done by TreeMiner 
 
It seems that Zaki’s method does not consider this 

property and performs some unnecessary ascendant-
descendant tests. Also, consider a frequent path which has 

l nodes. Zaki’s method performs 1

0
( 1)

2
i

i
l li

−

=
−=∑   

ascendant-descendant tests for this path, while only 1l −  
ascendant-descendant tests are required. Note that the 
sibling relation does not have such a property. Our 
algorithm avoids these unnecessary tests by constructing 
candidates from top to down.  

 
 
TDU (a collection of tree-structured data) 
1. Begin 
2.         Compute F1; // F1 is the set of all frequent nodes 
3.         Construct IRTree from the input data; 
4.         Fragment (IRTree) 
5. End  // of TDU 
 
Figure 6. The high level pseudo-code of TDU algorithm     

VI. TDU ALGORITHM 
In this section, we propose the TDU algorithm for 

finding frequent, unordered, embedded and maximal tree 
patterns from a collection of tree-structured data. The 
high level pseudo-code of this algorithm is presented in 
figure 6. The TDU algorithm begins by computing the set 
of all frequent nodes. It is done simply by incrementing 
the count of each node i in a 1-dimensional array. Then it 
constructs the IRTree according to the proposed algorithm 
discussed in section 3. IRTree is always non-frequent, and 
therefore must be fragmented. This fragmentation is done 
based on tree fragmentation approach proposed in 
section 4. This approach extracts the set of all maximal 
subtrees from IRTree. To do this, the tree fragmentation 
approach needs a frequency counting method explained 
bellow. 

Frequency counting method. Assume that tree T is 
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frequent to node i-1 in preorder traverse. This method 
reads node i and performs the ascendant-descendant test 
between this node and only its direct parent (not all of its 
ascendants, and as a result avoids unnecessary ascendant-
descendant tests). After performing this test, if the 
number of occurrences in occ-list of node i is less than 
min-sup, the tree T would be non-frequent. Otherwise, 
this method performs the sibling test. This test is done 
between nodes i and all of its siblings in scanned part of 
tree T. If for each sibling the number of these occurrences 
is less than the min-sup, this tree would not be frequent. 

The following lemma can help to determine the 
siblings of a node. 

Lemma: when traversing a tree in preorder, whenever 
a node is reached, it is pushed on the stack and whenever 
a backtrack happens (move from a node to its parent) the 
stack is popped, then the content of the stack would show 
the rightmost path of the scanned part of the tree and the 
popped elements would show the sibling(s) of the top 
element of the stack. 

Proof. Directly from the preorder traverse of trees. ■ 

VII. EXPERIMENTAL RESULTS 
We performed extensive experiments to evaluate the 

performance of the TDU algorithm using both synthetic 
data and data from real applications. Due to the space 
limitation, here we only report the results for a synthetic 
dataset. We did our experiments on a 3GHz Intel Pentium 
IV PC with a 1GB main memory, running windows XP 
operating system. All algorithms were implemented in 
C++.  

To the best of our knowledge, at the time of writing 
this paper, there is no algorithm for mining unordered, 
embedded and maximal tree patterns. We think that the 
best algorithm for our comparisons is SLEUTH [8], which 
is proposed by Zaki for mining unordered embedded 
frequent tree patterns. To the best of our knowledge, this 
algorithm is the most efficient algorithm in the context of 
mining unordered and embedded tree patterns. 

We implemented the tree generator program described 
in [1]. In this program there are 8 parameters for 
adjustment: number of the labels | |S , the probability 
threshold of one node in the tree to generate children or 
not p, number of the basic pattern trees (BPT) | |L , 
average height of the BPT | |I , the maximum fanout of 
nodes in the BPT | |C , the data size of synthetic trees | |N , 
the maximum height of synthetic trees | |H  and the 
maximum fanout of nodes | |F in the synthetic trees. 

In our synthetic dataset, we specified a large fanout and 
depth in combination with a low number of distinct 
labels: number of distinct labels is 100, number of trees 
(transactions) is 1000, total number of nodes is 100000, 
the average fanout is equal to 10 and maximum depth of 
trees is equal to 20. 

Figure 7 shows the performance of TDU on synthetic 
dataset for different values of minimum support, and 
compares the run time against the SLEUTH algorithm. As 
reflected in Figure 7-(a), number of subtrees increases by 
decreasing the minimum support. Due to the large 
differences in number of frequent subtrees, we show this 
chart in a logarithmic scale. TDU scales linearly in the 
minimum support, but SLEUTH does not. 
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Figure 7: Performance evaluation on synthetic dataset 
 
Figure 7-(b) shows the effect of minimum support on 

running time. Efficiency of TDU increases when the data 
have complex and large tree patterns. There are two 
reasons for this behavior: first, TDU constructs the lattice 
in a top-down manner and as patterns are larger, TDU can 
find them with less tree fragmentations. Second, by 
increasing the complexity of patterns, the intersection 
between data increases and therefore the size of IRTree 
reduces. The number of candidates increases 
exponentially with the size of IRTree. In contrast, 
SLEUTH is very efficient for datasets with small tree 
patterns and as the size of patterns increases; this 
algorithm suffers from the exponential growth of 
computation time.  

VIII. CONCLUSION 
In this paper, we proposed the TDU algorithm, for 

mining all maximal, labeled, unordered, and embedded 
subtrees from a collection of tree-structured data. To the 
best of our knowledge, this algorithm is the first top-
down approach and is the only algorithm that mines 
maximal and embedded tree patterns. TDU starts its work 
by constructing a novel representation of tree-structured 
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data, named IRTree, which contains all embedded 
frequent patterns. Moreover, IRTree defines the canonical 
ordered form for unordered trees and therefore makes the 
‘canonical test’ unnecessary. Then, TDU generates non-
redundantly, all embedded real candidate trees by 
imposing an efficient tree fragmentation approach on 
IRTree.  

In general, as experimental results show, when data are 
dense and there are lots of large and complex frequent 
tree patterns, the TDU algorithm performs better than the 
SLEUTH algorithm. In dense data, the required 
fragmentations and the size of IRTree are reduced. On the 
other hand, the SLEUTH algorithm shows better 
performance with sparse data sets, where frequent 
patterns are very short. 
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