
Abstract— Recently, tree structures have gained popularity 
for storing data from different domains such as XML 
documents, bioinformatics and so on. Clustering these data can 
facilitate different operations. In this paper, we propose 
TreeCluster, a novel and heuristic algorithm for clustering tree 
structured data. This algorithm considers a representative tree 
for each cluster. For each input tree T, TreeCluster computes 
the composition of the tree T and each of the clusters. Tree T
belongs to the cluster which its composed tree gains the best 
score. After adding a tree to a cluster the representative tree of 
that cluster is updated. We evaluate the accuracy of the 
TreeCluster algorithm in comparison to the previous works. 

I. INTRODUCTION

ecently, tree structures have gained popularity as a 
means for storing and manipulating data from different 

domains. The reason is that the flexible structure of trees 
allows the modeling of a wide variety of databases such as 
XML documents, bioinformatics, etc in an efficient and 
compact way. With the continuous growth in the amount of 
these data, discovering knowledge from them becomes 
increasingly important. One of the important tasks in mining 
tree-structured data is to group them into clusters. Clustering 
tree-structured data has a lot of practical applications in 
different domains.  

One possible solution for clustering tree-structured data 
can be to borrow the traditional information retrieval 
techniques. In these techniques, each tree is treated as a bag 
of words and as a result a significant amount of information 
hidden inside the structure of tree-structured data is ignored. 
Zaki et al. in [9] presented the XRULE algorithm, a 
structural classifier based on frequent tree patterns, and 
showed its high performance compared to information 
retrieval based classifiers. However, XRULE needs a 
training step. Moreover, in this method the trained 
classification rules during the training step are not revised 
during the testing step and therefore it is highly probable 
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that the classification rules over-fit for the training data. 
Another problem of these pattern based approaches is the 
high complexity of the algorithms that are used for finding 
frequent tree patterns.  

Some other works on clustering tree-structured data are 
based on tree edit distance. The edit distance between two 
rooted ordered labeled trees with vertex labels is the 
minimum cost of transforming one tree into the other by a 
sequence of elementary operations consisting of deleting 
and relabeling existing nodes as well as inserting new nodes 
[4].  

Shasha et al. in [2] proposed a tree edit distance metric 
that permits the insertion and deletion of single nodes 
anywhere in the tree, not just at the leaves. Chawathe in [15] 
utilized the inserting and deleting and relabeling operations 
and tried to optimize the situations when external memory is 
needed. In addition to these traditional operations, Chawathe 
et al. in [16] defined a move operator that can move a 
subtree in a single edit operation. In the subsequent work 
[17], the copying of subtrees was added to the set of single 
operations. 

In [7] Garofalakis et al. proposed the XTRACT algorithm 
to extract the DTD automatically. In [1] Nierman et al. 
defined a new method for computing the distance between 
any two XML documents by introducing allowable edit 
operations.

In [21] Zhao et al. evaluated different partitional and 
agglomerative approaches for hierarchical clustering. In [3] 
the authors provided a matching algorithm for measuring the 
structural similarity between an XML document and a DTD. 
In [5] a new sequential pattern mining scheme for XML 
document similarity computation is proposed. 

[6] Presented an algorithm for computing differences 
between old and new versions of an XML document based 
on hybridization of bottom-up and top-down methods. The 
next work on detecting the changes between the different 
versions of an XML documents is [12]. 

In [19] Lian et al. proposed a hierarchical algorithm for 
clustering XML documents based on structural information 
in the data. Flesca et al. in [18] proposed representing the 
structure of an XML document as a time series, in which 
each occurrence of a tag in a given context corresponds to 
an impulse. 

Generally, the time complexity for each of these 
algorithms is at least 2( )O n  (n is the number of nodes of 
each of two trees) and this complexity make these 
algorithms too heavy for large amount of data.  

The more recent work on clustering tree-structured data is 
the XCLS algorithm [14]. This algorithm does not use the 
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edit distance between two trees. It clusters heterogeneous 
XML documents based on the global criterion function 
LevelSim. In this algorithm, the hierarchical relationships of 
elements are considered by counting common elements 
sharing common ancestors.

However, the process of structure matching between two 
objects in XLCS, ignores some embedded similarities. For 
example consider figure 1. The XCLS algorithm generates 
the tree shown in figure 1.(c) as the similarity between ‘tree 
1’ and ‘tree 2’. It seems that the real similarity between these 
two trees is tree 1.(d). Moreover, when comparing two 
ordered trees, XCLS do not consider the order of children of 
trees.

a) Tree 1 b) Tree 2 

c) The similarity between ‘tree 
1’ and ‘tree 2’ returned by XCLS

d) The proper similarity between 
‘tree 1’ and ‘tree 2’ 

Figure 1. A similarity ignored by XCLS 

To overcome these problems we propose TreeCluster, a 
novel and heuristic algorithm for clustering ordered rooted 
trees. This algorithm considers a representative tree for each 
cluster. For each input tree T, TreeCluster computes the 
composition of T and each of the tree clusters. The tree T
belongs to the cluster whose composed tree gains the best 
score. After adding a tree to a cluster the representative tree 
of that cluster is updated. 

The rest of this paper is organized as follows. In section 2, 
the problem of clustering tree-structured data and required 
definitions are given. Section 3 describes the process of 
composition of two trees. In section 4, we define a scoring 
method. Section 5 describes our proposed algorithm, 
TreeCluster. We empirically evaluate the effectiveness and 
accuracy of the algorithm in section 6 and the paper is 
concluded in section 7. 

II. DEFINITIONS

Rooted labeled tree [8]: A rooted labeled tree ( , )T V E ,
is a directed, acyclic and connected graph with {0,1,..., }V n

as the set of vertices and {( , ) | , }E x y x y V  as the set of 
edges. One distinguished vertex r V  is selected as the root, 

and for all x V , there is a unique path from r to x. Further, 
:l V L  is a labeling function mapping vertices to a set of 

labels 1 2{ , ,...}L l l .
Embedded subtree [20]: For a rooted unordered tree T

with vertex set V, edge set E, and no labels on the edges, a 
tree T  with vertex set V , edge set E , and no labels on the 
edges, is an embedded subtree of T if and only if (1)V V ,
(2) the labeling of the nodes of V  in T is preserved in T
and (3) 1 2( , )v v E , where 1v  is the parent of 2v  in T , only 
if 1v  is an ancestor of 2v  in T. If T and T  are rooted 
ordered trees, then for T  to be an embedded subtree of T, a 
fourth condition must hold: (4) for 1 2( , )v v V ,

1 2( ) ( )preorder v preorder v  in T  if and only if 

1 2( ) ( )preorder v preorder v  in T, where the preorder of a 
node is its index in the tree according to the preorder 
traversal.

Ascendant-descendant relation: Consider node i and node 
j in the rooted ordered tree T with r as its root and assume 
that node j is deeper than node i. There is ascendant-
descendant relation between i and j if i has placed on the 
unique path from j to r. j is called ascendant and i is called 
descendant.

Sibling relation: Consider node i in the rooted ordered 
tree T. There is sibling relation between i and any node j if 
these two nodes do not have ascendant-descendant relation.  

III. COMPOSITION OF TREES

The composition process takes two trees as input and 
returns their composed tree. The tree generated from the 
composition of two trees is called composed tree and each of 
two input trees are called composing trees.

When composing two trees, at first each input tree is 
divided into some distinct paths. For each leaf node, there is 
a distinct path and there is no node in tree belonging to more 
than one distinct path. Moreover, all nodes of a distinct path 
have ascendant-descendant relation. For example, consider 
the tree of figure 2. In this figure, each rectangle shows a 
distinct path. We define the parent of distinct path p as the 
parent of the first node of p and the depth of p as the depth 
of its parent. The rightmost distinct path is the distinct path 
that contains the rightmost node of the tree in preorder 
traverse.

Distinct paths of tree T are constructed by traversing it in 
preorder. While T is traversed in preorder, when a backtrack 
(moving from a node to its ascendant) occurs a new distinct 
path is constructed and added to the end of the list of distinct 
paths. When a node is reached, it is added to the end of the 
last constructed distinct path. For each of two composing 
trees a list of distinct paths are formed. These lists are called 
composing lists. 

Lemma 1. Construction of distinct paths of a composing 
tree is done based on the increasingly sorted preorder 
number of the first node of each distinct path. 
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Proof. Directly from the definition of distinct path. 

By scanning a tree (only once), it is fragmented into its 
distinct paths and also the parent and the depth of each 
distinct path is determined. 

(a) Composing tree T 

(b) List of distinct paths of T
Figure 2. Distinct paths of a composing trees 

The next step is to construct the distinct paths of the 
composed tree from the distinct paths of two composing 
trees. For this purpose, we start from the head of two 
composing lists and compare their distinct paths. When 
comparing two distinct paths, one of the following states 
may occur: 

If both of two distinct paths have parents with the same 
label, and one of them is the ‘embedded subpath’ of 
another, the superpath is added to the composed tree and 
two next distinct paths are selected from two lists. 

If both of two distinct paths have parents with the same 
label, but none of them is the ‘embedded subpath’ of 
another, the ‘longest common subpath’ of two distinct 
paths are added to the composed tree and two next 
distinct paths are selected from two lists. 

Otherwise two current distinct paths are ignored and two 
next distinct paths from two lists are selected for the 
comparison. 

Lemma 2. The order of construction of distinct paths of a 
composed tree is according to the preorder number of the 
first node of each distinct path. 

Proof. Directly from the definition of composed tree and 

lemma 1. 

A. Embedded subpath 

Path a is the embedded subpath of path b if: i) all nodes of 
path a do exist in path b, ii) for any two nodes 1 2,n n a ,
node 1n  is the ascendant of node 2n  if 1n  is the ascendant

of node 2n  in path b. If path a is the embedded subpath of 
path b, path b would be the embedded superpath of path a.
For example, consider the path ‘1—2—4—4—2’. Two 
paths ‘1—2—4’ and ‘1—4—2’ are the embedded subpaths 
of this path. 

Assume that subpath b to node j-1 is the embedded 
subpath of path a and node i-1 of path a is equivalent to 
node j-1 of path b. We want to know if adding node j to path 
b keeps it the embedded subpath of path a. For this purpose, 
we start from node i of path a, and scan a until it is 
terminated or a node with the label of node j of path b is 
found. In the first state, there is no node in path a equivalent 
to node j of path b, and therefore path b is not the embedded 
subpath of path a. In the second state, assume that node k of 
path a is equivalent to node j of path b. in this state, path b is 
the embedded subpath of path a to node j, thus we set i to 
k+1 and j to j+1 and continue the process. 

B. Longest common subpath of two paths 

Path a is the longest common subpath of two paths b and 
c if: i) the set of nodes of a is the subset of both the set of 
nodes of b and the set of nodes of c, ii) node x is the parent 
of node y in a if node x is the ascendant of node y in both of 
b and c. iii) for each path d which satisfies properties i and 
ii, the length of a is greater than or equal to the length of d.

Consider two paths a and b. Assume that their longest 
common subpath to the node (i-1) of path a and to node (j-1)
of path b has been found. We want to find the next element 
of the longest common subpath of these two paths. For this 
purpose, we read node i of path a, then we scan path b
beginning from node j until path b is terminated or a node 
with the label of node i is found. In the first state, there is no 
node in path b equivalent to node i of path a, therefore in 
both paths a and b the next node is read (i++ and j++). In 
the second state, assume that node k of path b is equivalent 
to node i of path a. Node i is added to the set of common 
elements and i is increased by one and j is set to k+1.

The above process for determining the longest common 
subpath of two paths is not commutative. For example, 
consider two paths ‘1—4—2—3’ and ‘1—3—4—2’. The 
longest common subpath of ‘1—4—2—3’ and ‘1—3—4—
2’ is ‘1—4—2’, but the longest common subpath of ‘1—3—
4—2’ and ‘1—4—2—3’ is ‘1—3’. To solve this problem; 
we compute the longest common subpath of two paths in 
both of these two states, and return the longer longest 
common subpath. In the above example the path ‘1—4—2’ 
is considered as the longest common subpath of two paths 
‘1—3—4—2’ and ‘1—4—2—3’. 
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C. Merging Distinct Paths

We explained above, how the distinct paths of the 
composed tree are constructed from the distinct paths of two 
composing trees. This is not sufficient by itself. The tree 
generated from the composition of two trees must also be 
consistent. This means that two nodes in the composed tree 
have ascendant-descendant relation, if this relation does 
exist in both of composing trees. And two nodes in the 
composed tree have sibling relation, if this relation does 
exist in both of composing trees. To hold this property in the 
composed tree, we must determine the parent of each 
distinct path in the composed tree correctly. Determining the 
parent of distinct paths in composed tree is not straight 
forward. Especially, when the distinct path containing the 
parent of the next distinct path is the longest common 
subpath of two distinct paths in composing trees; or, when 
there are some nodes with the same label and one of these 
labels is the parent of the next distinct path. 

Lemma 3. If in tree T the preorder number of node a is 
less than the preorder number of node b, and a and b belong 
to two different paths (neither a is the ascendant of b nor b
is the ascendant of node a), the preorder number of all 
ascendants and descendants of node a would be less than 
the preorder number of all ascendants (except the root of T)
and descendants of node b.

Proof. Directly from the definition of preorder traverse. 

In our approach for determining the parent of distinct 
path, when a distinct path is added to the composed tree, the 
number of possible children of any of its nodes is 
determined. The number of possible children of each node is 
defined as the minimum number of the children of that node 
in two composing trees. In order to determine the parent of a 
distinct path that is to be added to the composed tree we take 
advantage of lemma 4. 

Lemma 4. The parent of the distinct path constructed 
from the top distinct paths of two composing lists is the last 
node of the composed tree whose number of possible 
children is greater than zero. 

Proof. Omitted due to lack of space. 

Lemma 5. The nodes of the composed tree whose 
numbers of possible children are greater than zero belong to 
the rightmost path of the composed tree. 

Proof. Omitted due to lack of space. 

Lemma 6: When traversing tree T in preorder, whenever 
a direct backtrack (moving from a node to its direct parent) 
occurs the stack is popped and whenever a node is reached it 
is pushed on the stack, after traversing the part of T that is 
placed before the node i: 1) the top element of the stack 
would show the parent of i, 2) the content of the stack would 
show the set of ascendants of i, and 3) the content of the 

stack would show the rightmost path of the scanned part of 
T.

Proof. Directly from the definition of preorder traverse. 

Since the parents of the distinct paths of the composed 
tree belong to the rightmost path of the constructed part of 
composing tree, as lemma 5 says, we can use a stack-based 
approach in order to determine the nodes of the composed 
tree to whom a distinct path can be added. In this approach, 
for the composed tree a stack is kept and when a node is 
added to the composed tree and the number of its possible 
children is greater than zero, this node is pushed to the stack. 
The parent of next distinct path would be the node at the top 
of the stack. When a distinct path is added to node a, after 
decreasing the number of its possible children, if this 
number is zero, node a will be popped. 

IV. SCORE METHOD

There are two states which in some nodes from both of 
two composing trees are transferred to the composed tree. 
The first state occurs when two distinct paths from two 
composing trees have the embedded subpath relation and the 
second state occurs when the longest common subpath of 
two distinct paths is transferred to the composed tree. 
Regarding these two states, we define the following score 
method: 

N
1Score(tree T, cluster C) = for each embedded relation N
2

N
3+ for each largest common relation N
4

Where 1N  is the number of nodes of the embedded 
subpath, 2N is the number of nodes of the embedded 
superpath, 3N  is the number of nodes of the longest 
common part of two distinct paths and 4N  is the number of 
nodes of the larger distinct path. 

V. TREECLUSTER ALGORITHM

In this algorithm, for each cluster one tree is considered. 
This tree represents all the trees that are the members of this 
cluster. The tree related to each cluster is called its cluster
tree. This algorithm composes two trees, one of them is a 
cluster tree, and another is the tree for which we want to 
determine the cluster. A score is allocated to each composed
tree. Tree T belongs to the cluster C if the composition of T
and C gains the highest score among all clusters, and then 
their composed tree is considered as the new cluster tree of 
cluster C. The high level pseudo code of TreeCluster is 
presented in figure 3. 

VI. EXPERIMENTAL RESULTS

We performed extensive experiments to evaluate the 
performance and correctness of the TreeCluster algorithm 
using both synthetic data and data from real applications. 
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Due to the space limitation, here we only report the results 
for one real dataset. We did our experiments on a 3GHz 
Intel Pentium IV PC with a 1GB main memory, running 
windows XP operating system. All algorithms were 
implemented in C++. 

TreeCluster (a collection of tree-structured data, number of clusters) 
1.  Initiate the cluster trees 
2.  For each tree T 
3.  Begin 
4.           For each cluster C 
5.           Begin 
6.                     ComposedTree = Composed (T, C); 
7.                     If (Score (CompositeTree) > MaxScore) 
8.                     Begin 
9.                               MaxScore = Score (CompositeTree); 
10.                             MaxCluster = CompositeTree; 
11.                    End // of if 
12.          End // of for each cluster 
13.          Dedicate T to cluster i which has gained the highest score; 
14.          Set the cluster tree of clusters i equal to MaxCluster; 
15.          MaxScore = 0; 
16. End // of for each tree

Figure 3. The high level pseudo-code of TreeCluster algorithm 

A. Dataset 

We compared the performance of TreeCluster using a 
dataset of IP multicast trees. This dataset consists of 
MBONE multicast data that was measured during the NASA 
shuttle launch between the 14th and 21th of February, 1999. 
It has 333 distinct vertices and each vertex takes the IP 
address as its label. The data was sampled from this NASA 
data set with 10 minutes sampling interval and has 1,000 
transactions [10], [11]. 

B. Evaluation Criteria 

We use two commonly used evaluation measures: the 
intra-cluster measure and the inter-cluster measure. The 
intra-cluster similarity measures the cohesion within a 
cluster. It determines the amount of similarity among the 
members of a cluster. The intra-cluster similarity of a 
clustering algorithm is the weighted sum of the intra-cluster
similarities of all clusters. The inter-cluster similarity 
measures the amount of separation among different clusters. 
The inter-cluster similarity of a clustering algorithm is the 
weighted sum of inter-cluster similarities between any two 
clusters.

For measuring the amount of similarity between two trees, 
we use the tree edit distance. Here, we use the Klein’s 
method [13] to compute the edit distance between two trees. 

For measuring the intra-cluster similarity of each cluster 
C we propose the following relation: 

1 1

1( )
( , )

n n

i j i
Intra Cluster cluster C

TES T T
i j

Where iT  and jT  are two members of cluster C, method 
TES returns the tree edit distance between two trees based 

on Klein’s algorithm [13] and n is the number of members 
of cluster C. The intra-cluster similarity of a clustering 
algorithm is the weighted sum of intra-cluster of each 
cluster:

( ) ( )1
kIntra Cluster a clustering algorithm Intra Cluster C Ni i i

 Where k is number of clusters and iN  is number of 
members of cluster iC . As long as this measure increases, 
the accuracy of clustering method increases, too. 

To measure the inter-cluster similarity, we present the 
following relation:  

2 ( , )
( ) 1 1 ( 1)

TES C C
i jk kInter Cluster a clustering algorithm i j i k k

Where iC  and jC  are two clusters of solution, and k is the 
number of clusters. Similar to intra-cluster similarity, by 
increasing the amount of inter-cluster similarity of a 
clustering solution, the accuracy of clustering increases, too. 

C. Empirical Evaluation 

Figure 4 displays the intra-cluster similarity and inter-
cluster similarity of TreeCluster and XCLS on the NASA 
dataset for different numbers of clusters. For this dataset, 
when the number of clusters is 2, the values of intra-cluster
similarity and inter-cluster similarity of two algorithms are 
near, but for any other number of clusters the TreeCluster
shows better values in comparison to the XCLS algorithm. 

a) The intra-cluster similarity of TreeCluster vs XCLS

b) The inter-cluster similarity of TreeCluster vs XCLS
Figure 4. TreeCluster vs XCLS on NASA multicast dataset 

Our experiments show that the difference between the 
intra-cluster similarity and inter-cluster similarity of our 
algorithm and those of the XCLS algorithm increases when 
the data are strongly correlated and there are lots of 
embedded tree patterns between input data. The reason of 
this behavior is that the TreeCluster algorithm is based on 
finding the embedding or longest common relations between 
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different parts of trees and as long as number of these 
relations between two trees increases, this algorithm can 
rank the cluster trees more precisely. Dense data is the 
situation in which the other algorithms such as XCLS have 
more problems to cluster correctly. 

TreeCluster and XCLS are sensitive with respect to the 
initial values of cluster trees. I.e. when the tree clusters are 
initialized improperly, the correctness of the clustering 
degrades. In our experiments, for both algorithms, we 
initialized each cluster by randomly selecting a tree. The 
algorithm is run for 10 times and in any of next rounds, the 
trees obtained from the previous round are considered as the 
initial values of clusters. 

Note that TreeCluster holds the commutative property 
when comparing two trees and do not need to compute the 
similarity between two trees for two times. However, the 
XCLS algorithm does not hold this property. 

VII. CONCLUSION

In this paper we tried to address the problem of clustering 
rooted ordered trees by proposing the TreeCluster algorithm. 
This algorithm considers a representative tree for each 
cluster. For each input tree T, TreeCluster computes the 
composition of T and each of the cluster trees, and T belongs 
to the cluster c which its composed tree gains the highest 
score. Then the composed tree is considered as the new tree 
cluster of  c.

As our experimental results show, the TreeCluster
algorithm considers more embedded similarities between 
input trees and as a result the correctness and the accuracy 
of this algorithm is higher than the XCLS algorithm. The 
difference between the intra-cluster similarity and inter-
cluster similarity of our algorithm and those of the XCLS
algorithm increases when the data are strongly correlated 
and there are lots of embedded patterns between data. 
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