
Abstract— Recently, tree structures have gained popularity
for storing data from different domains such as XML
documents, bioinformatics and so on. Clustering these data can
facilitate different operations. In this paper, we propose
TreeCluster, a novel and heuristic algorithm for clustering tree
structured data. This algorithm considers a representative tree
for each cluster. For each input tree T, TreeCluster computes
the composition of the tree T and each of the clusters. Tree T
belongs to the cluster which its composed tree gains the best
score. After adding a tree to a cluster the representative tree of
that cluster is updated. We evaluate the accuracy of the
TreeCluster algorithm in comparison to the previous works.

I. INTRODUCTION

ecently, tree structures have gained popularity as a
means for storing and manipulating data from different

domains. The reason is that the flexible structure of trees
allows the modeling of a wide variety of databases such as
XML documents, bioinformatics, etc in an efficient and
compact way. With the continuous growth in the amount of
these data, discovering knowledge from them becomes
increasingly important. One of the important tasks in mining
tree-structured data is to group them into clusters. Clustering
tree-structured data has a lot of practical applications in
different domains.

One possible solution for clustering tree-structured data
can be to borrow the traditional information retrieval
techniques. In these techniques, each tree is treated as a bag
of words and as a result a significant amount of information
hidden inside the structure of tree-structured data is ignored.
Zaki et al. in [9] presented the XRULE algorithm, a
structural classifier based on frequent tree patterns, and
showed its high performance compared to information
retrieval based classifiers. However, XRULE needs a
training step. Moreover, in this method the trained
classification rules during the training step are not revised
during the testing step and therefore it is highly probable

1 Database Research Group, Control and Intelligent Processing Center Of
Excellence, Faculty of ECE, School of Engineering, University of Tehran,
Tehran, Iran, email m.haghir@ece.ut.ac.ir.

2 Database Research Group, Control and Intelligent Processing Center Of
Excellence, Faculty of ECE, School of Engineering, University of Tehran,
Tehran, Iran, email rahgozar@ut.ac.ir.

3 Database Research Group, Control and Intelligent Processing Center Of
Excellence, Faculty of ECE, School of Engineering, University of Tehran,
Tehran, Iran, email lucas@ipm.ir.

4 Faculty of CE, Sharif University, Tehran, Iran, email
haghir@ce.sharif.edu.

that the classification rules over-fit for the training data.
Another problem of these pattern based approaches is the
high complexity of the algorithms that are used for finding
frequent tree patterns.

Some other works on clustering tree-structured data are
based on tree edit distance. The edit distance between two
rooted ordered labeled trees with vertex labels is the
minimum cost of transforming one tree into the other by a
sequence of elementary operations consisting of deleting
and relabeling existing nodes as well as inserting new nodes
[4].

Shasha et al. in [2] proposed a tree edit distance metric
that permits the insertion and deletion of single nodes
anywhere in the tree, not just at the leaves. Chawathe in [15]
utilized the inserting and deleting and relabeling operations
and tried to optimize the situations when external memory is
needed. In addition to these traditional operations, Chawathe
et al. in [16] defined a move operator that can move a
subtree in a single edit operation. In the subsequent work
[17], the copying of subtrees was added to the set of single
operations.

In [7] Garofalakis et al. proposed the XTRACT algorithm
to extract the DTD automatically. In [1] Nierman et al.
defined a new method for computing the distance between
any two XML documents by introducing allowable edit
operations.

In [21] Zhao et al. evaluated different partitional and
agglomerative approaches for hierarchical clustering. In [3]
the authors provided a matching algorithm for measuring the
structural similarity between an XML document and a DTD.
In [5] a new sequential pattern mining scheme for XML
document similarity computation is proposed.

[6] Presented an algorithm for computing differences
between old and new versions of an XML document based
on hybridization of bottom-up and top-down methods. The
next work on detecting the changes between the different
versions of an XML documents is [12].

In [19] Lian et al. proposed a hierarchical algorithm for
clustering XML documents based on structural information
in the data. Flesca et al. in [18] proposed representing the
structure of an XML document as a time series, in which
each occurrence of a tag in a given context corresponds to
an impulse.

Generally, the time complexity for each of these
algorithms is at least 2()O n (n is the number of nodes of
each of two trees) and this complexity make these
algorithms too heavy for large amount of data.

The more recent work on clustering tree-structured data is
the XCLS algorithm [14]. This algorithm does not use the

Clustering Rooted Ordered Trees

Mostafa Haghir Chehreghani1, Masoud Rahgozar2, Caro Lucas3 and Morteza Haghir Chehreghani4

R

450

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

edit distance between two trees. It clusters heterogeneous
XML documents based on the global criterion function
LevelSim. In this algorithm, the hierarchical relationships of
elements are considered by counting common elements
sharing common ancestors.

However, the process of structure matching between two
objects in XLCS, ignores some embedded similarities. For
example consider figure 1. The XCLS algorithm generates
the tree shown in figure 1.(c) as the similarity between ‘tree
1’ and ‘tree 2’. It seems that the real similarity between these
two trees is tree 1.(d). Moreover, when comparing two
ordered trees, XCLS do not consider the order of children of
trees.

a) Tree 1 b) Tree 2

c) The similarity between ‘tree
1’ and ‘tree 2’ returned by XCLS

d) The proper similarity between
‘tree 1’ and ‘tree 2’

Figure 1. A similarity ignored by XCLS

To overcome these problems we propose TreeCluster, a
novel and heuristic algorithm for clustering ordered rooted
trees. This algorithm considers a representative tree for each
cluster. For each input tree T, TreeCluster computes the
composition of T and each of the tree clusters. The tree T
belongs to the cluster whose composed tree gains the best
score. After adding a tree to a cluster the representative tree
of that cluster is updated.

The rest of this paper is organized as follows. In section 2,
the problem of clustering tree-structured data and required
definitions are given. Section 3 describes the process of
composition of two trees. In section 4, we define a scoring
method. Section 5 describes our proposed algorithm,
TreeCluster. We empirically evaluate the effectiveness and
accuracy of the algorithm in section 6 and the paper is
concluded in section 7.

II. DEFINITIONS

Rooted labeled tree [8]: A rooted labeled tree (,)T V E ,
is a directed, acyclic and connected graph with {0,1,..., }V n

as the set of vertices and {(,) | , }E x y x y V as the set of
edges. One distinguished vertex r V is selected as the root,

and for all x V , there is a unique path from r to x. Further,
:l V L is a labeling function mapping vertices to a set of

labels 1 2{ , ,...}L l l .
Embedded subtree [20]: For a rooted unordered tree T

with vertex set V, edge set E, and no labels on the edges, a
tree T with vertex set V , edge set E , and no labels on the
edges, is an embedded subtree of T if and only if (1)V V ,
(2) the labeling of the nodes of V in T is preserved in T
and (3) 1 2(,)v v E , where 1v is the parent of 2v in T , only
if 1v is an ancestor of 2v in T. If T and T are rooted
ordered trees, then for T to be an embedded subtree of T, a
fourth condition must hold: (4) for 1 2(,)v v V ,

1 2() ()preorder v preorder v in T if and only if

1 2() ()preorder v preorder v in T, where the preorder of a
node is its index in the tree according to the preorder
traversal.

Ascendant-descendant relation: Consider node i and node
j in the rooted ordered tree T with r as its root and assume
that node j is deeper than node i. There is ascendant-
descendant relation between i and j if i has placed on the
unique path from j to r. j is called ascendant and i is called
descendant.

Sibling relation: Consider node i in the rooted ordered
tree T. There is sibling relation between i and any node j if
these two nodes do not have ascendant-descendant relation.

III. COMPOSITION OF TREES

The composition process takes two trees as input and
returns their composed tree. The tree generated from the
composition of two trees is called composed tree and each of
two input trees are called composing trees.

When composing two trees, at first each input tree is
divided into some distinct paths. For each leaf node, there is
a distinct path and there is no node in tree belonging to more
than one distinct path. Moreover, all nodes of a distinct path
have ascendant-descendant relation. For example, consider
the tree of figure 2. In this figure, each rectangle shows a
distinct path. We define the parent of distinct path p as the
parent of the first node of p and the depth of p as the depth
of its parent. The rightmost distinct path is the distinct path
that contains the rightmost node of the tree in preorder
traverse.

Distinct paths of tree T are constructed by traversing it in
preorder. While T is traversed in preorder, when a backtrack
(moving from a node to its ascendant) occurs a new distinct
path is constructed and added to the end of the list of distinct
paths. When a node is reached, it is added to the end of the
last constructed distinct path. For each of two composing
trees a list of distinct paths are formed. These lists are called
composing lists.

Lemma 1. Construction of distinct paths of a composing
tree is done based on the increasingly sorted preorder
number of the first node of each distinct path.

1

3

2 3 5

4

1

2 3 5

1

2 3 5

1

3

451

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Proof. Directly from the definition of distinct path.

By scanning a tree (only once), it is fragmented into its
distinct paths and also the parent and the depth of each
distinct path is determined.

(a) Composing tree T

(b) List of distinct paths of T
Figure 2. Distinct paths of a composing trees

The next step is to construct the distinct paths of the
composed tree from the distinct paths of two composing
trees. For this purpose, we start from the head of two
composing lists and compare their distinct paths. When
comparing two distinct paths, one of the following states
may occur:

If both of two distinct paths have parents with the same
label, and one of them is the ‘embedded subpath’ of
another, the superpath is added to the composed tree and
two next distinct paths are selected from two lists.

If both of two distinct paths have parents with the same
label, but none of them is the ‘embedded subpath’ of
another, the ‘longest common subpath’ of two distinct
paths are added to the composed tree and two next
distinct paths are selected from two lists.

Otherwise two current distinct paths are ignored and two
next distinct paths from two lists are selected for the
comparison.

Lemma 2. The order of construction of distinct paths of a
composed tree is according to the preorder number of the
first node of each distinct path.

Proof. Directly from the definition of composed tree and

lemma 1.

A. Embedded subpath

Path a is the embedded subpath of path b if: i) all nodes of
path a do exist in path b, ii) for any two nodes 1 2,n n a ,
node 1n is the ascendant of node 2n if 1n is the ascendant

of node 2n in path b. If path a is the embedded subpath of
path b, path b would be the embedded superpath of path a.
For example, consider the path ‘1—2—4—4—2’. Two
paths ‘1—2—4’ and ‘1—4—2’ are the embedded subpaths
of this path.

Assume that subpath b to node j-1 is the embedded
subpath of path a and node i-1 of path a is equivalent to
node j-1 of path b. We want to know if adding node j to path
b keeps it the embedded subpath of path a. For this purpose,
we start from node i of path a, and scan a until it is
terminated or a node with the label of node j of path b is
found. In the first state, there is no node in path a equivalent
to node j of path b, and therefore path b is not the embedded
subpath of path a. In the second state, assume that node k of
path a is equivalent to node j of path b. in this state, path b is
the embedded subpath of path a to node j, thus we set i to
k+1 and j to j+1 and continue the process.

B. Longest common subpath of two paths

Path a is the longest common subpath of two paths b and
c if: i) the set of nodes of a is the subset of both the set of
nodes of b and the set of nodes of c, ii) node x is the parent
of node y in a if node x is the ascendant of node y in both of
b and c. iii) for each path d which satisfies properties i and
ii, the length of a is greater than or equal to the length of d.

Consider two paths a and b. Assume that their longest
common subpath to the node (i-1) of path a and to node (j-1)
of path b has been found. We want to find the next element
of the longest common subpath of these two paths. For this
purpose, we read node i of path a, then we scan path b
beginning from node j until path b is terminated or a node
with the label of node i is found. In the first state, there is no
node in path b equivalent to node i of path a, therefore in
both paths a and b the next node is read (i++ and j++). In
the second state, assume that node k of path b is equivalent
to node i of path a. Node i is added to the set of common
elements and i is increased by one and j is set to k+1.

The above process for determining the longest common
subpath of two paths is not commutative. For example,
consider two paths ‘1—4—2—3’ and ‘1—3—4—2’. The
longest common subpath of ‘1—4—2—3’ and ‘1—3—4—
2’ is ‘1—4—2’, but the longest common subpath of ‘1—3—
4—2’ and ‘1—4—2—3’ is ‘1—3’. To solve this problem;
we compute the longest common subpath of two paths in
both of these two states, and return the longer longest
common subpath. In the above example the path ‘1—4—2’
is considered as the longest common subpath of two paths
‘1—3—4—2’ and ‘1—4—2—3’.

1 3 2 3 4

3 2

1 4

5 6

first distinct path

last distinct path

1

3

2

3

4 1

4

3

2

5

6

452

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

C. Merging Distinct Paths

We explained above, how the distinct paths of the
composed tree are constructed from the distinct paths of two
composing trees. This is not sufficient by itself. The tree
generated from the composition of two trees must also be
consistent. This means that two nodes in the composed tree
have ascendant-descendant relation, if this relation does
exist in both of composing trees. And two nodes in the
composed tree have sibling relation, if this relation does
exist in both of composing trees. To hold this property in the
composed tree, we must determine the parent of each
distinct path in the composed tree correctly. Determining the
parent of distinct paths in composed tree is not straight
forward. Especially, when the distinct path containing the
parent of the next distinct path is the longest common
subpath of two distinct paths in composing trees; or, when
there are some nodes with the same label and one of these
labels is the parent of the next distinct path.

Lemma 3. If in tree T the preorder number of node a is
less than the preorder number of node b, and a and b belong
to two different paths (neither a is the ascendant of b nor b
is the ascendant of node a), the preorder number of all
ascendants and descendants of node a would be less than
the preorder number of all ascendants (except the root of T)
and descendants of node b.

Proof. Directly from the definition of preorder traverse.

In our approach for determining the parent of distinct
path, when a distinct path is added to the composed tree, the
number of possible children of any of its nodes is
determined. The number of possible children of each node is
defined as the minimum number of the children of that node
in two composing trees. In order to determine the parent of a
distinct path that is to be added to the composed tree we take
advantage of lemma 4.

Lemma 4. The parent of the distinct path constructed
from the top distinct paths of two composing lists is the last
node of the composed tree whose number of possible
children is greater than zero.

Proof. Omitted due to lack of space.

Lemma 5. The nodes of the composed tree whose
numbers of possible children are greater than zero belong to
the rightmost path of the composed tree.

Proof. Omitted due to lack of space.

Lemma 6: When traversing tree T in preorder, whenever
a direct backtrack (moving from a node to its direct parent)
occurs the stack is popped and whenever a node is reached it
is pushed on the stack, after traversing the part of T that is
placed before the node i: 1) the top element of the stack
would show the parent of i, 2) the content of the stack would
show the set of ascendants of i, and 3) the content of the

stack would show the rightmost path of the scanned part of
T.

Proof. Directly from the definition of preorder traverse.

Since the parents of the distinct paths of the composed
tree belong to the rightmost path of the constructed part of
composing tree, as lemma 5 says, we can use a stack-based
approach in order to determine the nodes of the composed
tree to whom a distinct path can be added. In this approach,
for the composed tree a stack is kept and when a node is
added to the composed tree and the number of its possible
children is greater than zero, this node is pushed to the stack.
The parent of next distinct path would be the node at the top
of the stack. When a distinct path is added to node a, after
decreasing the number of its possible children, if this
number is zero, node a will be popped.

IV. SCORE METHOD

There are two states which in some nodes from both of
two composing trees are transferred to the composed tree.
The first state occurs when two distinct paths from two
composing trees have the embedded subpath relation and the
second state occurs when the longest common subpath of
two distinct paths is transferred to the composed tree.
Regarding these two states, we define the following score
method:

N
1Score(tree T, cluster C) = for each embedded relation N
2

N
3+ for each largest common relation N
4

Where 1N is the number of nodes of the embedded
subpath, 2N is the number of nodes of the embedded
superpath, 3N is the number of nodes of the longest
common part of two distinct paths and 4N is the number of
nodes of the larger distinct path.

V. TREECLUSTER ALGORITHM

In this algorithm, for each cluster one tree is considered.
This tree represents all the trees that are the members of this
cluster. The tree related to each cluster is called its cluster
tree. This algorithm composes two trees, one of them is a
cluster tree, and another is the tree for which we want to
determine the cluster. A score is allocated to each composed
tree. Tree T belongs to the cluster C if the composition of T
and C gains the highest score among all clusters, and then
their composed tree is considered as the new cluster tree of
cluster C. The high level pseudo code of TreeCluster is
presented in figure 3.

VI. EXPERIMENTAL RESULTS

We performed extensive experiments to evaluate the
performance and correctness of the TreeCluster algorithm
using both synthetic data and data from real applications.

453

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Due to the space limitation, here we only report the results
for one real dataset. We did our experiments on a 3GHz
Intel Pentium IV PC with a 1GB main memory, running
windows XP operating system. All algorithms were
implemented in C++.

TreeCluster (a collection of tree-structured data, number of clusters)
1. Initiate the cluster trees
2. For each tree T
3. Begin
4. For each cluster C
5. Begin
6. ComposedTree = Composed (T, C);
7. If (Score (CompositeTree) > MaxScore)
8. Begin
9. MaxScore = Score (CompositeTree);
10. MaxCluster = CompositeTree;
11. End // of if
12. End // of for each cluster
13. Dedicate T to cluster i which has gained the highest score;
14. Set the cluster tree of clusters i equal to MaxCluster;
15. MaxScore = 0;
16. End // of for each tree

Figure 3. The high level pseudo-code of TreeCluster algorithm

A. Dataset

We compared the performance of TreeCluster using a
dataset of IP multicast trees. This dataset consists of
MBONE multicast data that was measured during the NASA
shuttle launch between the 14th and 21th of February, 1999.
It has 333 distinct vertices and each vertex takes the IP
address as its label. The data was sampled from this NASA
data set with 10 minutes sampling interval and has 1,000
transactions [10], [11].

B. Evaluation Criteria

We use two commonly used evaluation measures: the
intra-cluster measure and the inter-cluster measure. The
intra-cluster similarity measures the cohesion within a
cluster. It determines the amount of similarity among the
members of a cluster. The intra-cluster similarity of a
clustering algorithm is the weighted sum of the intra-cluster
similarities of all clusters. The inter-cluster similarity
measures the amount of separation among different clusters.
The inter-cluster similarity of a clustering algorithm is the
weighted sum of inter-cluster similarities between any two
clusters.

For measuring the amount of similarity between two trees,
we use the tree edit distance. Here, we use the Klein’s
method [13] to compute the edit distance between two trees.

For measuring the intra-cluster similarity of each cluster
C we propose the following relation:

1 1

1()
(,)

n n

i j i
Intra Cluster cluster C

TES T T
i j

Where iT and jT are two members of cluster C, method
TES returns the tree edit distance between two trees based

on Klein’s algorithm [13] and n is the number of members
of cluster C. The intra-cluster similarity of a clustering
algorithm is the weighted sum of intra-cluster of each
cluster:

() ()1
kIntra Cluster a clustering algorithm Intra Cluster C Ni i i

 Where k is number of clusters and iN is number of
members of cluster iC . As long as this measure increases,
the accuracy of clustering method increases, too.

To measure the inter-cluster similarity, we present the
following relation:

2 (,)
() 1 1 (1)

TES C C
i jk kInter Cluster a clustering algorithm i j i k k

Where iC and jC are two clusters of solution, and k is the
number of clusters. Similar to intra-cluster similarity, by
increasing the amount of inter-cluster similarity of a
clustering solution, the accuracy of clustering increases, too.

C. Empirical Evaluation

Figure 4 displays the intra-cluster similarity and inter-
cluster similarity of TreeCluster and XCLS on the NASA
dataset for different numbers of clusters. For this dataset,
when the number of clusters is 2, the values of intra-cluster
similarity and inter-cluster similarity of two algorithms are
near, but for any other number of clusters the TreeCluster
shows better values in comparison to the XCLS algorithm.

a) The intra-cluster similarity of TreeCluster vs XCLS

b) The inter-cluster similarity of TreeCluster vs XCLS
Figure 4. TreeCluster vs XCLS on NASA multicast dataset

Our experiments show that the difference between the
intra-cluster similarity and inter-cluster similarity of our
algorithm and those of the XCLS algorithm increases when
the data are strongly correlated and there are lots of
embedded tree patterns between input data. The reason of
this behavior is that the TreeCluster algorithm is based on
finding the embedding or longest common relations between

454

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

different parts of trees and as long as number of these
relations between two trees increases, this algorithm can
rank the cluster trees more precisely. Dense data is the
situation in which the other algorithms such as XCLS have
more problems to cluster correctly.

TreeCluster and XCLS are sensitive with respect to the
initial values of cluster trees. I.e. when the tree clusters are
initialized improperly, the correctness of the clustering
degrades. In our experiments, for both algorithms, we
initialized each cluster by randomly selecting a tree. The
algorithm is run for 10 times and in any of next rounds, the
trees obtained from the previous round are considered as the
initial values of clusters.

Note that TreeCluster holds the commutative property
when comparing two trees and do not need to compute the
similarity between two trees for two times. However, the
XCLS algorithm does not hold this property.

VII. CONCLUSION

In this paper we tried to address the problem of clustering
rooted ordered trees by proposing the TreeCluster algorithm.
This algorithm considers a representative tree for each
cluster. For each input tree T, TreeCluster computes the
composition of T and each of the cluster trees, and T belongs
to the cluster c which its composed tree gains the highest
score. Then the composed tree is considered as the new tree
cluster of c.

As our experimental results show, the TreeCluster
algorithm considers more embedded similarities between
input trees and as a result the correctness and the accuracy
of this algorithm is higher than the XCLS algorithm. The
difference between the intra-cluster similarity and inter-
cluster similarity of our algorithm and those of the XCLS
algorithm increases when the data are strongly correlated
and there are lots of embedded patterns between data.

REFERENCES

[1] A. Nierman and H. V. Jagadish. Evaluating Structural Similarities in
XML Documents. Proceedings of the Fifth International Workshop on
the Web and Databases (WebDB), 2002.

[2] D. Shasha and K. Zhang, Approximate tree pattern matching. In
Pattern Matching in Strings, Trees and Arrays, chapter 14. Oxford
University Press, 1995.

[3] E. Bertino, G. Guerrini, and M. Mesiti, A Matching Algorithm for
Measuring the Structural Similarity between an XML Document and a
DTD and its applications. Information Systems, 29(1): 23-46, 2004.

[4] E. D. Demaine, S. Mozes, B. Rossman and O. Weimann. An O(n3)-
Time Algorithm for Tree Edit Distance, 2006.

[5] H. P. Leung, F. L. Chung and S. C. F. Chan, On the use of hierarchical
information in sequential mining-based XML document similarity
computation. Knowledge and Information Systems, 7(4), pp 476-498,
2005.

[6] K. H. Lee, Y. C. Choy and S. B. Cho, An Efficient Algorithm to
Compute Differences between Structured Documents, IEEE
Transactions on Knowledge and Data Engineering, v.16 n.8, p.965-
979, August 2004.

[7] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri and K. Shim,
Xtract: A system for extracting document type descriptors from XML
documents. In Proc. ACM SIGMOD, pages 165-176, 2000.

[8] M. J. Zaki, Efficiently Mining Frequent Trees in a Forest: Algorithms
and Applications, in IEEE Transaction on Knowledge and Data
Engineering, vol. 17, no. 8, pp. 1021-1035, 2005.

[9] M. J. Zaki and C. Aggarwal, XRules: an effective structural classifier
for XML data. KDD 2003, 316-325, 2003.

[10] R. Chalmers and K. Almeroth, Modeling the branching characteristics
and efficiency gains of global multicast trees, Proceedings of the IEEE
INFOCOM’2001, April 2001.

[11] R. Chalmers and K. Almerothx, On the topology of multicast trees,
Technical Report, UCSB, March 2002.

[12] R. Al-Ekram, A. Adma and O. Baysal, diffX: an algorithm to detect
changes in multi-version XML documents, Proceedings of the 2005
conference of the Centre for Advanced Studies on Collaborative
research, p.1-11, October 17-20, 2005, Toranto, Ontario, Canada.

[13] P. N. Klein, Computing the edit-distance between unrooted ordered
trees. In Proceedings of the 6th annual European Symposium on
Algorithms (ESA), pages 91–102, 1998.

[14] R. Nayak and S. Xu, XCLS: A Fast and Effective Clustering
Algorithm for Heterogenous XML Documents, Accepted by the 10th
Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD), Singapore, April 2006.

[15] S. Chawathe, Comparing hierarchical data in extended memory. In
Proc. of VLDB, pages 90–101, 1999.

[16] S. Chawathe, A. Rajaraman, H. G. Molina and J. Widom, Change
detection in hierarchically structured information. In Proc. of ACM
SIGMOD, pages 493–504, 1996.

[17] S. Chawathe and H. G. Molina, Meaningful change detection in
structured data. In Proc. Of ACM SIGMOD, pages 26–37, 1997.

[18] S. Flesca, G. Manco, E. Masciari, L. Pontieri and A. Pugliese, Fast
Detection of XML Structural Similarities. IEEE Transaction on
Knowledge and Data Engineering, Vol 7 (2), pp 160-175, 2005.

[19] W. Lian, D. W. L. Cheung, N. Mamoulis and S. M. Yiu, An Efficient
and Scalable Algorithm for Clustering XML Documents by Structure,
IEEE Transactions on Knowledge and Data Engineering, v.16 n.1,
p.82-96, January 2004.

[20] Y. Chi, R. Muntz, S. Nijssen and J. Kok, Frequent Subtree Mining -
An Overview, Fundam. Inform. 66(1-2): 161-198, 2005.

[21] Y. Zhao and G. Karypis, Evaluation of Hierarchical Clustering
Algorithms for Document Datasets. The 2002 ACM CIKM, USA.

455

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

