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Abstract 
 

Clustering large data sets with high dimensionality is a 
challenging data-mining task. This paper presents a 
framework to perform such a task efficiently. It is based 
on the notion of data space reduction, which finds high 
density areas, or dense cells, in the given feature space. 
The dense cells store summarized information of the data. 
A designated partitioning or hierarchical clustering algo-
rithm can be used as the second step to find clusters 
based on the data summaries. Using Kmeans as an exam-
ple, this paper presents GARDEN-Kmeans, which per-
forms data space reduction using Gamma Region DEN-
sity partition, and utilizes Kmeans to cluster the summa-
rized information. The experimental study shows that 
GARDEN-Kmeans executes several orders of magnitude 
faster than basic Kmeans and the recursive bisection 
Kmeans algorithm of CLUTO, while producing compara-
ble clustering quality.          
 
1. Introduction 
 

Clustering is the process of partitioning a given data 
set into groups of similar objects. Data objects are gener-
ally interpreted as points in a multi-dimensional feature 
space. Objects within the same cluster should be similar 
according to a similarity metric. Objects in different clus-
ters should be dissimilar under the same metric.  High 
quality clustering should result in high intra-cluster simi-
larity/relatedness and low inter-cluster similar-
ity/relatedness.  

Clustering is one of the most frequently used data min-
ing techniques. It can be used in many applications, such 
as multimedia content-based retrieval, geographic and 
molecular data analysis, bioinformatics, etc.  

The explosive size and dimensionality of data in con-
temporary data-mining applications call for efficient and 
scalable clustering algorithms. Clustering sampled data 
and clustering summarized data are two widely used ap-
proaches for scaling up existing clustering algorithms 

without inventing new clustering methods. There are sev-
eral methods with the sampling-based approach [9, 13]. 
They differ in the sampling process. With the second ap-
proach, the clustering algorithm is applied only to a sum-
mary of data rather than the original data set. BIRCH 
[21], Scalable Kmeans [1], Data Bubbles [2, 22] and 
EMADS [7] are some well-known examples. However, 
these algorithms are not fully effective when clustering 
high dimensional data [6, 11]. This paper presents a new 
clustering framework with data summarization, which can 
scale to both high dimensionality and large size of data 
with comparable clustering quality.  

In the rest of the paper, Section 2 reviews related work. 
In Section 3, we introduce a cell-based compression tech-
nique. Section 4 describes the proposed clustering algo-
rithm GARDEN-Kmeans. Section 5 shows the experi-
mental results. Section 6 concludes the paper.   
 
2. Related Work 
 

There are four major types of clustering algorithms: 
partitioning, hierarchical, density-based, and grid- (cell-) 
based. Partitioning algorithms, such as Kmeans [10], de-
compose the data set into K clusters. They iteratively as-
sign membership of each data point and re-estimate clus-
ter parameters. For example, a convergence can be 
reached when data points no longer change their member-
ships. Hierarchical clustering algorithms create a hierar-
chical decomposition of a given set of data, which is usu-
ally represented by a tree that splits the data iteratively 
into smaller subsets. Density-based algorithms continu-
ously grow the cluster as long as the density in the 
“neighborhood” exceeds some threshold. DBSCAN [3] 
represents this type. Its key idea is that, for each point in a 
cluster, the neighborhood of a given radius must contain a 
minimum number of points. Cell-base (grid-based) algo-
rithms divide the input space into hyper-rectangular cells 
and then merge the adjacent high-density cells to form 
clusters. STING [19], OptiGrid [6], O-Cluster [11] and 
GARDENHD [18] are the examples of cell-based cluster-
ing algorithms.  
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In order to accommodate the increasing size and di-
mensionality of data, many scalable algorithms have been 
proposed in the past several years. BIRCH [21], Scal-
ableKM [1], FREM [15], EMADS [7] are all based on a 
similar approach. It first compresses the original data set 
to certain forms of summary, and then performs partition-
ing clustering on the summarized information. BIRCH 
uses a balanced tree structure (CF tree) to store summa-
rized sub-cluster information. CF refers to Clustering 
Feature, which is defined as the triple CF = (N, LS, SS), 
where N is number of the data points, LS is the linear sum 
of the data points, and SS is the square sum of the data 
points. BIRCH performs a sequential scan over all data 
points and builds a CF-tree similar to the construction of 
B+-tree. 

ScalableKM is similar to BIRCH. However, it sepa-
rates data points into three types of sets. The first is DS, 
containing data points that unlikely change membership 
in the iterations of the Kmeans algorithm. The second is 
CS, referring to the “tight” sub-clusters of data points. 
The third is RS, containing any remaining data points. 
DataBubbles [2] uses a structure, called Data Bubble, to 
store the data summarization. It is specifically designed to 
speed up hierarchical clustering algorithms.  

More recently, Jin et al. [7] proposed EMADS, which 
applies model-based clustering algorithms, like EM, on 
data summaries to speed up the traditional model-based 
clustering algorithms. The authors apply two types of data 
compression: BIRCH and Grid-based. Their experimental 
results demonstrate a superior speed-up over the tradi-
tional EM algorithm with little loss of accuracy. 

In this paper, we propose a new framework, based on 
GARDENHD clustering [18], using the similar approach as 
described in the previous paragraph. Taking GARDEN-
Kmeans as an example, we demonstrate the merit of the 
proposed framework. Our method differs from other scal-
able clustering algorithms in that it employs a cell-based 
compression scheme which has the advantage in dealing 
with large high-dimensional data.              

 
3. Data Space Reduction (Data Compression) 
 

We define data space reduction as the process of re-
ducing the empty regions in the data space so that only 
tight, high-density regions are retained. The goal of this 
process is to reduce the size of the empty region as much 
as possible; in other words, to make the dense regions as 
tight as possible so that they will not falsely merge dis-
tinct clusters. The data space reduction technique used in 
this paper has been originally developed in [18] as the 
first phase of the cell-based GARDENHD clustering tech-
nique. In this paper, we modify the space reduction proc-
ess to make it suitable for summarization-based cluster-
ing. 

Our data space reduction technique is built on γ parti-
tioning [16, 18], an efficient method to isolate high den-

sity areas with points, and several heuristics designed to 
deal with certain “false dense cells” that can bridge dis-
tinct clusters [18]. The γ partitioning technique recur-
sively decomposes the space into equal size hyper-
rectangles, called γ regions, in a way that can support the 
differentiation of data along all dimensions of a high-
dimensional space. However, to avoid false dense cells, 
typically not all sides of a given region are split [18].  

The data space reduction technique performs a recur-
sive γ partitioning of sparse “live regions” until the densi-
ties of the resulting cells are above the user-defined den-
sity threshold. We define live region as the minimum 
bounding hyper-rectangle that holds all points in the given 
γ region. The processes of splitting a γ region and com-
puting its live regions are very efficient [18]. The live 
regions whose density is above the user-defined threshold 
represent dense cells. The result of the data space reduc-
tion is a vastly reduced space represented by a set of 
dense cells, which can be used as the summary of original 
data. The detailed algorithms of γ partitioning, live-region 
identification and data space reduction appear in [18].  

 

    

        
Figure 1: Illustration of the recursive data space reduction. 

 
Figure 1 gives an example of this data space reduction 

process. The dark ovals represent areas populated by data 
points. This figure shows the γ partition of the initial base 
region and the live regions with density lower than the 
user-defined threshold. In Figures 1b and 1c, sparse live 
regions LR1 and LR2 are partitioned further until all their 
enclosed dense cells are identified. Whenever a high-
density live region is detected (e.g., LR3 in Figure 1a), it 
is included into the set of dense cells. The resulting dense 
cells of this example are shown in Figure 1d. 

Due to the unique properties of γ partitioning [18], this 
data space reduction technique can handle large data sets 
of high dimensionality both efficiently and effectively. 
Different from traditional grid-based partitioning, which 
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in a d-dimensional space produces at least 2d grid cells 
within each region that is split, γ partitioning generates at 
most d+1 cells within each such region. Thus, the number 
of resulting cells increases linearly with dimensionality.  
Because of this, we propose to use the above described 
data space reduction technique to compress large high-
dimensional data sets. 

The summary information we store in each dense cell 
includes: the number of points N, linear sum LS, squared 
sum SS, density of the dense cell DEN, low end point LP 
and high end point HP of the dense cell. Each dense cell 
can thus be denoted as (N, LS, SS, DEN, LP, HP). On this 
summarized information, we can perform either a parti-
tioning clustering algorithm, e.g. Kmeans, or a hierarchi-
cal clustering algorithm, e.g. CURE, or a model-based 
clustering method, e.g. EM. 

The previously proposed clustering technique, GAR-
DENHD, uses the same technique to perform data space 
reduction. However, in the second phase, it merges the 
adjacent dense cells based on their distance in order to 
find the final clusters [18]. The data summarization based 
clustering framework we proposed in this paper provides 
a simple and straightforward way to scale up existing 
clustering methods while preserving the intrinsic property 
of data distributions. It is worthwhile to notice that the 
purpose of this paper is not to demonstrate the superiority 
of GARDEN-Kmeans over GARDENHD.  Instead, the 
paper provides a framework which can improve the scal-
ability of existing clustering algorithms in terms of di-
mensionality and the size of the data set.           
 
4. GARDEN-Kmeans 
 

The GARDEN space reduction technique can be used 
to scale up many kinds of existing clustering methods 
with slight modification of the original algorithms. Here, 
we take Kmeans as an example, and describe the way 
Kmeans can be applied on the summary data, i.e. the 
dense cells produced by the GARDEN space reduction 
technique.  

Unlike BIRCH, which constrains the maximum 
neighbors in the leaf node, GARDEN data space reduc-
tion produces different sizes of dense cells based on the 
density of the decomposed areas. Therefore, the cardinal-
ities and densities of different dense cells can vary greatly 
from one dense cell to another. When we perform 
Kmeans on the condensed information (the information 
stored in dense cells), we treat each dense cell as a 
pseudo-point. In order to reflect the varying size and den-
sity of each dense cell, we weight each dense cell by its 
density. We use the centroid as the representative point of 
the dense cells, and assign density as the weight for each 
representative point. The weight reflects the impact of 
density on shifting the centroid of each intermediate clus-
ter during an iteration of Kmeans clustering. 

Let us denote the point vector as P and weight vector 
as W. Then the centroid of the weighted dense-cell repre-
sentatives can be calculated as: 

∑
∑

=

=
n

i i

n

i ii

w

pw

1

1  where n is num-

ber of dense-cell representatives. 
GARDEN-Kmeans first performs GARDEN space re-

duction, which results in a list of dense cells. The algo-
rithm then uses the centroids to represent dense cells and 
assigns densities to the representatives as weights. The 
second step of GARDEN-Kmeans randomly selects k 
representatives as initial k centers. It iteratively assigns 
the representatives to the closest group based on the dis-
tance between the representatives and the center of the 
group. Afterwards, it re-calculates the center for each 
group and starts another round of membership assignment 
until the percentage of the points that change the member-
ship is below the threshold. We set 0.5% as the conver-
gent threshold. We also set the maximum number of itera-
tions to 10. In other words, when there are less than 0.5% 
data points that change membership or the number of it-
erations reaches 10, the program will terminate. In order 
to perform fair comparison, we set the same thresholds in 
the implementation of the original Kmeans algorithm.     

Since the data space reduction procedure adopted here 
does not restrict the depth of recursion, the depth of the 
recursion is O(log N). For a uniform distribution,  γ parti-
tioning of a base region produces a balanced distribution 
of points among the resulting γ regions, ensuring O(log N) 
levels of recursion regardless of the value of density 
threshold. For skewed data, the fact that γ partitioning is 
performed on live regions, and that it is multi-way parti-
tioning, ensures that the volumes of live regions at some 
level O(log N) are so small that they are dense even when 
the selected density threshold is extremely high. 

To derive live regions without restricting the level of 
recursion, at most N points will be examined and no point 
will be examined more than once. O(1) comparisons will 
be performed to allocate each point to a γ sub-region [18]. 
Thus, with the guaranteed O(log N) depth of the recur-
sion, the running time of the data space reduction is O(N 
log N).  

Kmeans performs in O(n’⋅k⋅l) time, where n’ is the 
number of dense cells, k is the number of clusters, and l is 
the number of iterations. Thus, the total running time of 
the two phases is O(N log N). By restricting the depth of 
recursion, GARDEN-Kmeans can run in guaranteed O(N) 
time.    
 
5. Experimental Results 
 

We conducted a series of experiments to test the effi-
ciency and effectiveness of the proposed clustering algo-
rithm. The experiments were performed on the following 
data sets: 
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DS1: A group of 10 synthetic data sets with 100,000 
points and varying dimensionality from 10 to 100. We 
denote this data set as DS1-1. The second group of 5 syn-
thetic 10-dimensional data has varying number of points 
from 100,000 to 500,000. We denote it as DS1-2. Data in 
these groups have “center-corners” distribution, in which 
a generated hyper-rectangle is placed in the center and 
others in 10 different corners of the space (origin, far cor-
ner, and 8 randomly selected corners). All generated hy-
per-rectangles have the same density. Moreover, each of 
the hyper-rectangles has uniform internal distribution and 
represents a different class of data. Thus, each point is 
assigned to one of 11 classes.  

DS2: This synthetic data set with 500,000 points, 
called “animals”, is produced by the “animals.c” program 
obtained from the UCI ML Repository 
(www.ics.uci.edu/~mlearn/MLRepository.html). It has 72 
dimensions (the 73rd dimension records the class informa-
tion). There are 4 classes in this set, each of which repre-
sents one type of animal. We denote this set as DS2. 

DS3: The real data set, called “covtype”, is also ob-
tained from the UCI Machine Learning Repository. It has 
581,012 points with 54 dimensions (the 55th dimension 
records the class information of objects). There are 7 
classes in this data set each of which represents a type of 
tree. This data set will be referred to as DS3. 

All experiments were performed on a PC with 3.6 GHz 
CPU, 3.25 GB RAM and 1 MB CPU Cache. We compare 
GARDEN-Kmeans with Kmeans, GARDENHD, and 
CLUTORB [20], which applies recursive bisection 
Kmeans. In the implementation of the original Kmeans, 
we also select initial k centers randomly. For all metrics, 
we compare the average results of 10 trials.  

We adopt purity and entropy to measure the effective-
ness of clustering results. Both metrics measure the de-
gree to which each cluster contains objects of a single 
class. Entropy metric is derived from information theory. 
It is defined as  

∑
=

−=
k

i
ii ppCEntropy

1
2log)( , 

where C is a cluster, k is the number of classes in cluster 
C, pi is the fraction of points in class i of all points in the 
cluster C. The entropy of the whole data set is the total of 
weighted entropies of all clusters. Intuitively, entropy 
measures the impurity of the cluster. Therefore, the lower 
the entropy value, the better the cluster quality. Purity 
measures the proportion of the majority class in each clus-
ter. Using the above notion pi, purity is the maximum 
among pi where i=1,2…k. Total purity is the total of the 
weighted purities of all clusters. Intuitively, purity meas-
ures the number of correctly classified points. Therefore, 
higher purity value indicates better clustering quality. For 
conciseness, we only show the purity results. The entropy 
results corroborate all our finding discussed below. The 
average running times shown here are in milliseconds.  

Figure 2 shows the purity values produced by GAR-
DEN-Kmeans, Kmeans, GARDENHD, and CLUTORB on 
DS1-1. In Figure 2, we observe that, with the increasing 
dimensionality, GARDEN-Kmeans produces similar 
quality clusters as Kmeans. GARDEN-Kmeans performs 
slightly better than CLUTORB, especially in high-
dimensional spaces. Among these, GARDENHD produces 
clusters of the best quality.   
 

Purity with GARDEN-Kmeans, Kmeans, 
GARDEN-HD and CLUTO on DS1-1
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Figure 2: Purity results on DS1-1 as dimensionality grows. 
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Figure 3: Running times on DS1-1 as dimensionality grows. 

 
Figure 3 shows the running times of GARDEN-

Kmeans, Kmeans, GARDENHD, and CLUTORB on DS1-
1. This figure clearly shows that GARDEN-Kmeans per-
forms several magnitudes faster than Kmeans and CLU-
TORB as dimensionality increases. It also shows that 
GARDEN-Kmeans performs slightly slower than GAR-
DENHD. 
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Purity with GARDEN-Kmeans, Kmeans, GARDEN-HD, 
and CLUTO on DS1-2
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Figure 4: Purity results on DS1-2 as the volume of data grows. 

 
Running Time with GARDEN-Kmeans, Kmeans, GARDEN-

HD and CLUTO on DS1-2

0

20000

40000

60000

80000

100000

120000

100k 200k 300k 400k 500k

Number of Points

Ti
m

e(
M

ill
is

ec
)c

GARDEN-Kmeans Kmeans GARDEN-HD CLUTO

 
Figure 5: Running times on DS1-2 as volume of data grows. 

 
Figure 4 compares the four methods on DS1-2 in terms 

of their purity values. This figure shows that GARDEN-
Kmeans produces clusters of similar quality as Kmeans 
and CLUTORB as the number of data points increases. 
GARDENHD still outperforms the other methods.      

Figure 5 compares the speed of GARDEN-Kmeans, 
Kmeans, GARDENHD, and CLUTORB on DS1-2. This 
figure also shows superior speed of GARDEN-Kmeans 
compared to Kmeans and CLUTORB. The execution times 
of GARDEN-Kmeans and GARDENHD are very close. 

Figure 6 shows the purity values of the four methods 
on DS2 and the real data set DS3. The horizontal axis in 
this figure represents different data sets and the number of 
clusters, K, set by the user. The vertical axis shows the 
purity values. The first value on the horizontal axis, “cov-
type(84)”, represents the real life data set “covtype”, and 
the user input for number of clusters K  = 84. Here, we set 
K = 84 because, for the selected input density, GAR-
DENHD generates 84 clusters [17, 18]. Since GARDENHD 
does not take the number of clusters K as its parameter, 
the second value, covtype(7), is not applicable to GAR-
DENHD. Thus, the corresponding bar is left blank. 
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Figure 6: Purity results on DS2 and DS3. 
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Figure 7: Running times on DS2 and DS3 (log scale). 

 
In terms of purity, GARDEN-Kmeans performs as 

well as GARDENHD on the real data set DS3, and slightly 
worse on the synthetic set DS2. However, unlike GAR-
DENHD, GARDEN-Kmeans provides the user with the 
flexibility to specify the desired number of clusters. This 
feature can be an advantage in some applications. How-
ever, this does require the user’s pre-knowledge of the 
data set. Kmeans also shows good clustering quality, 
similar to that of GARDENHD.    

Figure 7 compares the running times of GARDEN-
Kmeans, Kmeans, GARDENHD, and CLUTORB on DS2 
and DS3. The horizontal axis in this figure is the same as 
in Figure 6. The vertical axis represents the running time. 
In order to scale down the difference so that it can be 
shown in this figure, we take log of the running times. 
The results shown in Figure 7 are the log values of the 
recorded running times. Obviously, the performance im-
provements of GARDEN-Kmeans over the original 
Kmeans and CLUTORB can be significant.  Applying the 
GARDEN data space reduction to other clustering meth-
ods, not just Kmeans, can yield similar improvements.   
 
6. Conclusions 
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In this paper, we proposed a framework for clustering 

large volumes of high-dimensional data. This framework 
is built on the data space reduction of GARDENHD [18]. 
With a slight modification, the existing clustering tech-
niques can perform clustering on the compressed sum-
mary information produced by the GARDEN space re-
duction. Taking Kmeans as an example, we developed 
GARDEN-Kmeans based on the proposed framework. 
The experimental results show that GARDEN-Kmeans 
executes several orders of magnitude faster than either the 
original Kmeans or a recursive bisection Kmeans algo-
rithm, CLUTORB, while preserving the clustering accu-
racy. The results on real data show that GARDEN-
Kmeans, which performs clustering on a compressed 
summary of data, achieves high clustering accuracy, com-
parable even to that of GARDENHD, though at a slightly 
lower speed. On synthetic data sets, GARDENHD main-
tains a slight advantage over GARDEN-Kmeans both in 
terms of the clustering speed and clustering quality. These 
results further prove the superior speed and effectiveness 
of the stand-alone GARDENHD clustering technique pro-
posed in [18]. However, the general framework provided 
in this paper enables us to better scale existing clustering 
algorithms. 

Several papers [12,14] have been published on the use 
of data summarization in clustering in order to handle 
dynamic or streaming data.  In the future, we will adapt 
the proposed clustering framework to the problem of clus-
tering dynamic data sets and streaming data. The superior 
speed of GARDEN-Kmeans, as demonstrated in this 
study, makes this research direction very promising. 
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