
Scalable Clustering for Large High-Dimensional Data
Based on Data Summarization

Abstract

Clustering large data sets with high dimensionality is a
challenging data-mining task. This paper presents a
framework to perform such a task efficiently. It is based
on the notion of data space reduction, which finds high
density areas, or dense cells, in the given feature space.
The dense cells store summarized information of the data.
A designated partitioning or hierarchical clustering algo-
rithm can be used as the second step to find clusters
based on the data summaries. Using Kmeans as an exam-
ple, this paper presents GARDEN-Kmeans, which per-
forms data space reduction using Gamma Region DEN-
sity partition, and utilizes Kmeans to cluster the summa-
rized information. The experimental study shows that
GARDEN-Kmeans executes several orders of magnitude
faster than basic Kmeans and the recursive bisection
Kmeans algorithm of CLUTO, while producing compara-
ble clustering quality.

1. Introduction

Clustering is the process of partitioning a given data
set into groups of similar objects. Data objects are gener-
ally interpreted as points in a multi-dimensional feature
space. Objects within the same cluster should be similar
according to a similarity metric. Objects in different clus-
ters should be dissimilar under the same metric. High
quality clustering should result in high intra-cluster simi-
larity/relatedness and low inter-cluster similar-
ity/relatedness.

Clustering is one of the most frequently used data min-
ing techniques. It can be used in many applications, such
as multimedia content-based retrieval, geographic and
molecular data analysis, bioinformatics, etc.

The explosive size and dimensionality of data in con-
temporary data-mining applications call for efficient and
scalable clustering algorithms. Clustering sampled data
and clustering summarized data are two widely used ap-
proaches for scaling up existing clustering algorithms

without inventing new clustering methods. There are sev-
eral methods with the sampling-based approach [9, 13].
They differ in the sampling process. With the second ap-
proach, the clustering algorithm is applied only to a sum-
mary of data rather than the original data set. BIRCH
[21], Scalable Kmeans [1], Data Bubbles [2, 22] and
EMADS [7] are some well-known examples. However,
these algorithms are not fully effective when clustering
high dimensional data [6, 11]. This paper presents a new
clustering framework with data summarization, which can
scale to both high dimensionality and large size of data
with comparable clustering quality.

In the rest of the paper, Section 2 reviews related work.
In Section 3, we introduce a cell-based compression tech-
nique. Section 4 describes the proposed clustering algo-
rithm GARDEN-Kmeans. Section 5 shows the experi-
mental results. Section 6 concludes the paper.

2. Related Work

There are four major types of clustering algorithms:
partitioning, hierarchical, density-based, and grid- (cell-)
based. Partitioning algorithms, such as Kmeans [10], de-
compose the data set into K clusters. They iteratively as-
sign membership of each data point and re-estimate clus-
ter parameters. For example, a convergence can be
reached when data points no longer change their member-
ships. Hierarchical clustering algorithms create a hierar-
chical decomposition of a given set of data, which is usu-
ally represented by a tree that splits the data iteratively
into smaller subsets. Density-based algorithms continu-
ously grow the cluster as long as the density in the
“neighborhood” exceeds some threshold. DBSCAN [3]
represents this type. Its key idea is that, for each point in a
cluster, the neighborhood of a given radius must contain a
minimum number of points. Cell-base (grid-based) algo-
rithms divide the input space into hyper-rectangular cells
and then merge the adjacent high-density cells to form
clusters. STING [19], OptiGrid [6], O-Cluster [11] and
GARDENHD [18] are the examples of cell-based cluster-
ing algorithms.

Ying Lai
Computer Science
Illinois Institute of

Technology
Chicago, IL 60616,

U.S.A
laiying@iit.edu

Ratko Orlandic
Computer Science
Univ. of Illinois at

Springfield
Springfield, IL 62703,

U.S.A
rorla2@uis.edu

Wai Gen Yee
Computer Science
Illinois Institute of

Technology
Chicago, IL 60616,

U.S.A
yee@iit.edu

Sachin Kulkarni
Computer Science
Illinois Institute of

Technology
Chicago, IL 60616,

U.S.A
kulksac@iit.edu

456

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

In order to accommodate the increasing size and di-
mensionality of data, many scalable algorithms have been
proposed in the past several years. BIRCH [21], Scal-
ableKM [1], FREM [15], EMADS [7] are all based on a
similar approach. It first compresses the original data set
to certain forms of summary, and then performs partition-
ing clustering on the summarized information. BIRCH
uses a balanced tree structure (CF tree) to store summa-
rized sub-cluster information. CF refers to Clustering
Feature, which is defined as the triple CF = (N, LS, SS),
where N is number of the data points, LS is the linear sum
of the data points, and SS is the square sum of the data
points. BIRCH performs a sequential scan over all data
points and builds a CF-tree similar to the construction of
B+-tree.

ScalableKM is similar to BIRCH. However, it sepa-
rates data points into three types of sets. The first is DS,
containing data points that unlikely change membership
in the iterations of the Kmeans algorithm. The second is
CS, referring to the “tight” sub-clusters of data points.
The third is RS, containing any remaining data points.
DataBubbles [2] uses a structure, called Data Bubble, to
store the data summarization. It is specifically designed to
speed up hierarchical clustering algorithms.

More recently, Jin et al. [7] proposed EMADS, which
applies model-based clustering algorithms, like EM, on
data summaries to speed up the traditional model-based
clustering algorithms. The authors apply two types of data
compression: BIRCH and Grid-based. Their experimental
results demonstrate a superior speed-up over the tradi-
tional EM algorithm with little loss of accuracy.

In this paper, we propose a new framework, based on
GARDENHD clustering [18], using the similar approach as
described in the previous paragraph. Taking GARDEN-
Kmeans as an example, we demonstrate the merit of the
proposed framework. Our method differs from other scal-
able clustering algorithms in that it employs a cell-based
compression scheme which has the advantage in dealing
with large high-dimensional data.

3. Data Space Reduction (Data Compression)

We define data space reduction as the process of re-
ducing the empty regions in the data space so that only
tight, high-density regions are retained. The goal of this
process is to reduce the size of the empty region as much
as possible; in other words, to make the dense regions as
tight as possible so that they will not falsely merge dis-
tinct clusters. The data space reduction technique used in
this paper has been originally developed in [18] as the
first phase of the cell-based GARDENHD clustering tech-
nique. In this paper, we modify the space reduction proc-
ess to make it suitable for summarization-based cluster-
ing.

Our data space reduction technique is built on γ parti-
tioning [16, 18], an efficient method to isolate high den-

sity areas with points, and several heuristics designed to
deal with certain “false dense cells” that can bridge dis-
tinct clusters [18]. The γ partitioning technique recur-
sively decomposes the space into equal size hyper-
rectangles, called γ regions, in a way that can support the
differentiation of data along all dimensions of a high-
dimensional space. However, to avoid false dense cells,
typically not all sides of a given region are split [18].

The data space reduction technique performs a recur-
sive γ partitioning of sparse “live regions” until the densi-
ties of the resulting cells are above the user-defined den-
sity threshold. We define live region as the minimum
bounding hyper-rectangle that holds all points in the given
γ region. The processes of splitting a γ region and com-
puting its live regions are very efficient [18]. The live
regions whose density is above the user-defined threshold
represent dense cells. The result of the data space reduc-
tion is a vastly reduced space represented by a set of
dense cells, which can be used as the summary of original
data. The detailed algorithms of γ partitioning, live-region
identification and data space reduction appear in [18].

Figure 1: Illustration of the recursive data space reduction.

Figure 1 gives an example of this data space reduction

process. The dark ovals represent areas populated by data
points. This figure shows the γ partition of the initial base
region and the live regions with density lower than the
user-defined threshold. In Figures 1b and 1c, sparse live
regions LR1 and LR2 are partitioned further until all their
enclosed dense cells are identified. Whenever a high-
density live region is detected (e.g., LR3 in Figure 1a), it
is included into the set of dense cells. The resulting dense
cells of this example are shown in Figure 1d.

Due to the unique properties of γ partitioning [18], this
data space reduction technique can handle large data sets
of high dimensionality both efficiently and effectively.
Different from traditional grid-based partitioning, which

457

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

in a d-dimensional space produces at least 2d grid cells
within each region that is split, γ partitioning generates at
most d+1 cells within each such region. Thus, the number
of resulting cells increases linearly with dimensionality.
Because of this, we propose to use the above described
data space reduction technique to compress large high-
dimensional data sets.

The summary information we store in each dense cell
includes: the number of points N, linear sum LS, squared
sum SS, density of the dense cell DEN, low end point LP
and high end point HP of the dense cell. Each dense cell
can thus be denoted as (N, LS, SS, DEN, LP, HP). On this
summarized information, we can perform either a parti-
tioning clustering algorithm, e.g. Kmeans, or a hierarchi-
cal clustering algorithm, e.g. CURE, or a model-based
clustering method, e.g. EM.

The previously proposed clustering technique, GAR-
DENHD, uses the same technique to perform data space
reduction. However, in the second phase, it merges the
adjacent dense cells based on their distance in order to
find the final clusters [18]. The data summarization based
clustering framework we proposed in this paper provides
a simple and straightforward way to scale up existing
clustering methods while preserving the intrinsic property
of data distributions. It is worthwhile to notice that the
purpose of this paper is not to demonstrate the superiority
of GARDEN-Kmeans over GARDENHD. Instead, the
paper provides a framework which can improve the scal-
ability of existing clustering algorithms in terms of di-
mensionality and the size of the data set.

4. GARDEN-Kmeans

The GARDEN space reduction technique can be used
to scale up many kinds of existing clustering methods
with slight modification of the original algorithms. Here,
we take Kmeans as an example, and describe the way
Kmeans can be applied on the summary data, i.e. the
dense cells produced by the GARDEN space reduction
technique.

Unlike BIRCH, which constrains the maximum
neighbors in the leaf node, GARDEN data space reduc-
tion produces different sizes of dense cells based on the
density of the decomposed areas. Therefore, the cardinal-
ities and densities of different dense cells can vary greatly
from one dense cell to another. When we perform
Kmeans on the condensed information (the information
stored in dense cells), we treat each dense cell as a
pseudo-point. In order to reflect the varying size and den-
sity of each dense cell, we weight each dense cell by its
density. We use the centroid as the representative point of
the dense cells, and assign density as the weight for each
representative point. The weight reflects the impact of
density on shifting the centroid of each intermediate clus-
ter during an iteration of Kmeans clustering.

Let us denote the point vector as P and weight vector
as W. Then the centroid of the weighted dense-cell repre-
sentatives can be calculated as:

∑
∑

=

=
n

i i

n

i ii

w

pw

1

1 where n is num-

ber of dense-cell representatives.
GARDEN-Kmeans first performs GARDEN space re-

duction, which results in a list of dense cells. The algo-
rithm then uses the centroids to represent dense cells and
assigns densities to the representatives as weights. The
second step of GARDEN-Kmeans randomly selects k
representatives as initial k centers. It iteratively assigns
the representatives to the closest group based on the dis-
tance between the representatives and the center of the
group. Afterwards, it re-calculates the center for each
group and starts another round of membership assignment
until the percentage of the points that change the member-
ship is below the threshold. We set 0.5% as the conver-
gent threshold. We also set the maximum number of itera-
tions to 10. In other words, when there are less than 0.5%
data points that change membership or the number of it-
erations reaches 10, the program will terminate. In order
to perform fair comparison, we set the same thresholds in
the implementation of the original Kmeans algorithm.

Since the data space reduction procedure adopted here
does not restrict the depth of recursion, the depth of the
recursion is O(log N). For a uniform distribution, γ parti-
tioning of a base region produces a balanced distribution
of points among the resulting γ regions, ensuring O(log N)
levels of recursion regardless of the value of density
threshold. For skewed data, the fact that γ partitioning is
performed on live regions, and that it is multi-way parti-
tioning, ensures that the volumes of live regions at some
level O(log N) are so small that they are dense even when
the selected density threshold is extremely high.

To derive live regions without restricting the level of
recursion, at most N points will be examined and no point
will be examined more than once. O(1) comparisons will
be performed to allocate each point to a γ sub-region [18].
Thus, with the guaranteed O(log N) depth of the recur-
sion, the running time of the data space reduction is O(N
log N).

Kmeans performs in O(n’⋅k⋅l) time, where n’ is the
number of dense cells, k is the number of clusters, and l is
the number of iterations. Thus, the total running time of
the two phases is O(N log N). By restricting the depth of
recursion, GARDEN-Kmeans can run in guaranteed O(N)
time.

5. Experimental Results

We conducted a series of experiments to test the effi-
ciency and effectiveness of the proposed clustering algo-
rithm. The experiments were performed on the following
data sets:

458

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

DS1: A group of 10 synthetic data sets with 100,000
points and varying dimensionality from 10 to 100. We
denote this data set as DS1-1. The second group of 5 syn-
thetic 10-dimensional data has varying number of points
from 100,000 to 500,000. We denote it as DS1-2. Data in
these groups have “center-corners” distribution, in which
a generated hyper-rectangle is placed in the center and
others in 10 different corners of the space (origin, far cor-
ner, and 8 randomly selected corners). All generated hy-
per-rectangles have the same density. Moreover, each of
the hyper-rectangles has uniform internal distribution and
represents a different class of data. Thus, each point is
assigned to one of 11 classes.

DS2: This synthetic data set with 500,000 points,
called “animals”, is produced by the “animals.c” program
obtained from the UCI ML Repository
(www.ics.uci.edu/~mlearn/MLRepository.html). It has 72
dimensions (the 73rd dimension records the class informa-
tion). There are 4 classes in this set, each of which repre-
sents one type of animal. We denote this set as DS2.

DS3: The real data set, called “covtype”, is also ob-
tained from the UCI Machine Learning Repository. It has
581,012 points with 54 dimensions (the 55th dimension
records the class information of objects). There are 7
classes in this data set each of which represents a type of
tree. This data set will be referred to as DS3.

All experiments were performed on a PC with 3.6 GHz
CPU, 3.25 GB RAM and 1 MB CPU Cache. We compare
GARDEN-Kmeans with Kmeans, GARDENHD, and
CLUTORB [20], which applies recursive bisection
Kmeans. In the implementation of the original Kmeans,
we also select initial k centers randomly. For all metrics,
we compare the average results of 10 trials.

We adopt purity and entropy to measure the effective-
ness of clustering results. Both metrics measure the de-
gree to which each cluster contains objects of a single
class. Entropy metric is derived from information theory.
It is defined as

∑
=

−=
k

i
ii ppCEntropy

1
2log)(,

where C is a cluster, k is the number of classes in cluster
C, pi is the fraction of points in class i of all points in the
cluster C. The entropy of the whole data set is the total of
weighted entropies of all clusters. Intuitively, entropy
measures the impurity of the cluster. Therefore, the lower
the entropy value, the better the cluster quality. Purity
measures the proportion of the majority class in each clus-
ter. Using the above notion pi, purity is the maximum
among pi where i=1,2…k. Total purity is the total of the
weighted purities of all clusters. Intuitively, purity meas-
ures the number of correctly classified points. Therefore,
higher purity value indicates better clustering quality. For
conciseness, we only show the purity results. The entropy
results corroborate all our finding discussed below. The
average running times shown here are in milliseconds.

Figure 2 shows the purity values produced by GAR-
DEN-Kmeans, Kmeans, GARDENHD, and CLUTORB on
DS1-1. In Figure 2, we observe that, with the increasing
dimensionality, GARDEN-Kmeans produces similar
quality clusters as Kmeans. GARDEN-Kmeans performs
slightly better than CLUTORB, especially in high-
dimensional spaces. Among these, GARDENHD produces
clusters of the best quality.

Purity with GARDEN-Kmeans, Kmeans,
GARDEN-HD and CLUTO on DS1-1

0

0.2

0.4

0.6

0.8

1

1.2

10d 20d 30d 40d 50d 60d 70d 80d 90d 100d

Dimensionality
Pu

rit
y

V
al

ue

GARDEN-Kmeans Kmeans GARDEN-HD CLUTO

Figure 2: Purity results on DS1-1 as dimensionality grows.

Running Time with GARDEN-Kmeans, Kmeans,
GARDEN-HD and CLUTO on DS1-1

0

20000
40000

60000
80000

100000

120000
140000

160000

10d 20d 30d 40d 50d 60d 70d 80d 90d 100d

Dimesnionality

Ti
m

e(
M

ill
iS

ec
)e

GARDEN-Kmeans Kmeans GARDEN-HD CLUTO

Figure 3: Running times on DS1-1 as dimensionality grows.

Figure 3 shows the running times of GARDEN-

Kmeans, Kmeans, GARDENHD, and CLUTORB on DS1-
1. This figure clearly shows that GARDEN-Kmeans per-
forms several magnitudes faster than Kmeans and CLU-
TORB as dimensionality increases. It also shows that
GARDEN-Kmeans performs slightly slower than GAR-
DENHD.

459

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Purity with GARDEN-Kmeans, Kmeans, GARDEN-HD,
and CLUTO on DS1-2

0

0.2

0.4

0.6

0.8

1

1.2

100k 200k 300k 400k 500k
Number of Points

Pu
rit

yV
al

ue

GARDEN-Kmeans Kmeans GARDEN-HD CLUTO

Figure 4: Purity results on DS1-2 as the volume of data grows.

Running Time with GARDEN-Kmeans, Kmeans, GARDEN-

HD and CLUTO on DS1-2

0

20000

40000

60000

80000

100000

120000

100k 200k 300k 400k 500k

Number of Points

Ti
m

e(
M

ill
is

ec
)c

GARDEN-Kmeans Kmeans GARDEN-HD CLUTO

Figure 5: Running times on DS1-2 as volume of data grows.

Figure 4 compares the four methods on DS1-2 in terms

of their purity values. This figure shows that GARDEN-
Kmeans produces clusters of similar quality as Kmeans
and CLUTORB as the number of data points increases.
GARDENHD still outperforms the other methods.

Figure 5 compares the speed of GARDEN-Kmeans,
Kmeans, GARDENHD, and CLUTORB on DS1-2. This
figure also shows superior speed of GARDEN-Kmeans
compared to Kmeans and CLUTORB. The execution times
of GARDEN-Kmeans and GARDENHD are very close.

Figure 6 shows the purity values of the four methods
on DS2 and the real data set DS3. The horizontal axis in
this figure represents different data sets and the number of
clusters, K, set by the user. The vertical axis shows the
purity values. The first value on the horizontal axis, “cov-
type(84)”, represents the real life data set “covtype”, and
the user input for number of clusters K = 84. Here, we set
K = 84 because, for the selected input density, GAR-
DENHD generates 84 clusters [17, 18]. Since GARDENHD
does not take the number of clusters K as its parameter,
the second value, covtype(7), is not applicable to GAR-
DENHD. Thus, the corresponding bar is left blank.

Purity with GARDEN-Kmeans, Kmeans, GARDEN-HD and
CLUTO on DS2 and DS3

0

0.2

0.4

0.6

0.8

1

1.2

covtype (84) covtype (7) animals (4)

Data Set (Number of clusters K)

P
ur

ity
V

al
ue

GARDEN-Kmeans Kmeans GARDEN-HD CLUTO

Figure 6: Purity results on DS2 and DS3.

Running times with GARDEN-Kmeans,
Kmeans, GARDEN-HD and CLUTO on DS2 and DS3

0

5

10

15

20

25

covtype (84) covtype (7) animals (4)
Data Set (Number of Clusters K)

Ti
m

e(
M

ill
iS

ec
)

GARDEN-Kmeans Kmeans GARDEN-HD CLUTO

Figure 7: Running times on DS2 and DS3 (log scale).

In terms of purity, GARDEN-Kmeans performs as

well as GARDENHD on the real data set DS3, and slightly
worse on the synthetic set DS2. However, unlike GAR-
DENHD, GARDEN-Kmeans provides the user with the
flexibility to specify the desired number of clusters. This
feature can be an advantage in some applications. How-
ever, this does require the user’s pre-knowledge of the
data set. Kmeans also shows good clustering quality,
similar to that of GARDENHD.

Figure 7 compares the running times of GARDEN-
Kmeans, Kmeans, GARDENHD, and CLUTORB on DS2
and DS3. The horizontal axis in this figure is the same as
in Figure 6. The vertical axis represents the running time.
In order to scale down the difference so that it can be
shown in this figure, we take log of the running times.
The results shown in Figure 7 are the log values of the
recorded running times. Obviously, the performance im-
provements of GARDEN-Kmeans over the original
Kmeans and CLUTORB can be significant. Applying the
GARDEN data space reduction to other clustering meth-
ods, not just Kmeans, can yield similar improvements.

6. Conclusions

460

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

In this paper, we proposed a framework for clustering

large volumes of high-dimensional data. This framework
is built on the data space reduction of GARDENHD [18].
With a slight modification, the existing clustering tech-
niques can perform clustering on the compressed sum-
mary information produced by the GARDEN space re-
duction. Taking Kmeans as an example, we developed
GARDEN-Kmeans based on the proposed framework.
The experimental results show that GARDEN-Kmeans
executes several orders of magnitude faster than either the
original Kmeans or a recursive bisection Kmeans algo-
rithm, CLUTORB, while preserving the clustering accu-
racy. The results on real data show that GARDEN-
Kmeans, which performs clustering on a compressed
summary of data, achieves high clustering accuracy, com-
parable even to that of GARDENHD, though at a slightly
lower speed. On synthetic data sets, GARDENHD main-
tains a slight advantage over GARDEN-Kmeans both in
terms of the clustering speed and clustering quality. These
results further prove the superior speed and effectiveness
of the stand-alone GARDENHD clustering technique pro-
posed in [18]. However, the general framework provided
in this paper enables us to better scale existing clustering
algorithms.

Several papers [12,14] have been published on the use
of data summarization in clustering in order to handle
dynamic or streaming data. In the future, we will adapt
the proposed clustering framework to the problem of clus-
tering dynamic data sets and streaming data. The superior
speed of GARDEN-Kmeans, as demonstrated in this
study, makes this research direction very promising.

7. Acknowledgement

This material is based upon work supported by the Na-
tional Science Foundation under grants no. IIS-0312266
and IIS-0635365.

8. References

[1] P.S. Bradley, U. Fayyad, C. Reina: Scaling Clustering Algo-
rithms to Large Databases. In Proc. 4th Int. Conf. on Knowledge
Discovery and Data Mining, pages, 9-15, 1998.
[2] M. Breunig, H.-P. Kriegel, P. Kröger, J. Sander. Data bub-
bles: quality preserving performance boosting for hierarchical
clustering. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 79-90, 2001.
[3] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial data-
bases with noise. In Proc. 2nd Int. Conf. on Knowledge Discov-
ery and Data Mining, pages 226–231, 1996.
[4] F. Farnstrom, J. Lewis and C. Elkan. Scalability for cluster-
ing algorithms revisited. In SIGKDD Explorations, Volume 2,
Issue 1, pages 51-57, June 2000.

[5] A. Hinneburg and D. Keim. An efficient approach to cluster-
ing in large multimedia databases with noise. In Proc. 4th Int.
Conf. on Knowl. Disc. and Data Mining, pages 58–65, 1998.
[6] A. Hinneburg and D. Keim. Optimal grid-clustering: To-
wards breaking the curse of dimensionality in high-dimensional
clustering. In Proc. Conf. on Very Large Data Bases, 1999.
[7] H. Jin, M-L, Wong, K-S Leung. Scalable Model-based clus-
tering by working on data summaries. In Proc. 13th IEEE Int.
Con. On Data Mining, ICDM’03, pages 91-98, 2003.
[8] G. Karypis. Cluto: A clustering toolkit. Technical Report 02-
017, Computer Science, University of Minnesota, 2003.
[9] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: an
Introduction to Cluster Analysis, John Wiley & Sons, 1990.
[10] J. MacQueen. Some methods for classification and analysis
of multivariate observations. In Proc. 5th Symp. Math. Statist.
and Probability, Vol. 1, pages 281–297, 1967.
[11] B. L. Milenova and M. M. Campos. O-cluster: scalable
clustering of large high dimensional data sets. In Pro. IEEE Int.
Conf. on Data Mining, pages:290 – 297,2002.
[12] S. Nassar, J, Sander, C, Cheng. Incremental and effective
data summarization for dynamic hierarchical clustering. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, 2004.
[13] R. Ng and J. Han. Efficient and effective clustering meth-
ods for spatial data mining. In Proc. 20th Int. Conf. on Very
Large Data Bases, pages 144–155, 1994.
[14] C. Ordonez. Clustering binary data streams with K-means.
In Proc. 8th ACM SIGMOD Workshop on Research Issues in
Data Mining and Knowledge Discovery, pages 12-18, 2003
[15]�C.�Ordonez�and�E.�Omiecinski.�FREM:�Fast�and�ro-
bust� EM� clustering� for� large� data� sets.� In� Proc. 11th Int.
Conf. on Information and Knowledge Management,� CIKM 02,�
pages 590 – 599,�2002.
[16] R. Orlandic. Effective management of hierarchical storage
using two levels of data clustering. In Proc. 20th IEEE/11th
NASA Goddard Conf. on Mass Storage Systems and Technology,
pages 270–279, 2003.
[17] R. Orlandic, Y. Lai, and W. Yee. Clustering high-
dimensional data using an efficient and effective data space
reduction. Technical Report, Computer Science, Illinois institute
of Technology, 2005. www.cs.iit.edu/˜egalite
[18] R. Orlandic, Y. Lai and W.G. Yee. Clustering high-
dimensional data using an efficient and effective data space
reduction, In Proc. ACM Conf. on Information and Knowledge
Management CIKM’05, pages 201-208, 2005.
[19] W. Wang, J. Yang, and R. Muntz. Sting: A statistical in-
formation grid approach to spatial data mining. In Proc. 23rd Int.
Conf. on Very Large Data Bases, pages 186–195, 1997.
[20] Y. Zhao and G. Karypis. Evaluation of hierarchical cluster-
ing algorithms for document datasets. In Proc. ACM Conf. on
Inf. and Knowl. Mgt. CIKM’02, pages 515–524, 2002.
[21] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An effi-
cient data clustering method for very large databases. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 103–
114, 1996.
[22] J. Zhou and J. Sander. Bata bubbles for non-vector data:
speeding-up hierarchical clustering in arbitrary metric spaces. In
Proc. 29th Int. Conf. on Very Large Data Bases, pages 452–463,
2003.

461

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

