
A Dynamic Graph Model for Analyzing Streaming
News Documents

Elizabeth Leeds Hohman
Naval Surface Warfare Center

Dahlgren, VA 22448
Email: elizabeth.hohman@navy.mil

David J. Marchette
Naval Surface Warfare Center

Dahlgren, VA 22448
Email: david.marchette@navy.mil

Abstract— In this paper we consider the problem of analyzing
streaming documents, in particular streaming news stories. The
system is designed to extract statistics from the document,
incorporate these into a graph-based model, and discard the
document to reduce storage requirements. The model is defined
in terms of a changing lexicon and sub-lexicons at each node
in the graph, with the nodes of the graph representing topics.
An approximation to the TFIDF term weighting is introduced.
We illustrate the methodology on a dataset of news articles, and
discuss the dynamic nature of the model.

I. STREAMING DOCUMENTS

Much research has been performed on text processing
and there are many effective methods for representing and
classifying a corpus of text documents into a set of pre-
defined categories. (A detailed overview of text categorization
is provided by [13].) Some methods have also been developed
for clustering documents when the categories or cluster topics
are not pre-defined ([6], [4], [8], and [11]).

Most text processing tasks assume that all documents in the
corpus are available at once. Less work has been performed
on text processing under the assumption that documents will
continue to be presented. There are many types of evolving
text sources available electronically such as on-line news
sources and web logs. The quantity and nature of this text
makes this an important area of research. We will refer to
this problem as streaming document processing. The Topic
Detection and Tracking (TDT) program [1] refers to the task of
clustering documents in this environment as cluster detection.
As discussed in [2], determining that a new cluster should be
created and evaluating the results of clustering in this context
is a difficult and ongoing research area.

We should explain the difference between this and “stream-
ing text”. In the case of streaming text, the text is being
presented in a streaming manner with no delineation between
chunks of text. For example, someone typing at a keyboard or
transcripts from conversations or news feeds. In this case, the
processing occurs as each word is presented and before the full
document is available. So each word or phrase can be thought
of as an observation. In the case of streaming documents,
each document is considered an observation, whether that be
a news article, an email, a web log entry, or some other
text observation. Any processing is performed on the full
document.

The volumes of text data that can be considered in this way
can vary greatly. News articles can be collected in several
hundred to thousand per day while emails occur at several
hundred per day (for an individual) to several thousand a day
(at a server). Web postings may be in many thousands or
even millions per day if one considers web logs, newsgroups,
chats, and other sources. Other cases of streaming documents
include incidence reports at a major computer vendor, air
traffic reports, and hospital admittance reports (for detecting
outbreaks). These are all examples of streaming documents
that can range from several hundreds to thousands to millions
per day depending on the level of data collection.

A vector space model is usually used to represent text
documents [12]. This representation casts each document as a
vector with length equal to the number of words in the lexicon
and with each vector entry corresponding to a weight for one
of the words in the document. Words are usually weighted by
the frequency of the word in the corpus. This frequency must
be approximated in the case of streaming documents since the
corpus is not fixed.

In Section II, we will briefly explain the vector space model
and the need for an approximation to the model for the
streaming case. We will introduce a method for approximating
the standard TFIDF-weighted vectors in the vector space
model. In Section III, we will describe a graph model for
representing a streaming collection of documents. We describe
the experimental data in Section IV and attempt to visualize
the data and the graph clustering in Section V. Sections VI
and VII explain some weaknesses of the model and discuss
future work to address these issues.

II. TEXT REPRESENTATION

Most text clustering and categorization methods use a vector
space representation of documents [12]. Each document is
represented as a vector, xd ∈ R

L, d = 1, ...,D where D
is the number of documents in the corpus and L is the
number of words in the lexicon. Each dimension of the vector
corresponds to a different word in the lexicon. Let xdj be the
jth entry of xd. Its value depends on the number of times the
jth word in the lexicon occurs in document d as well as its
rate of occurrence in the corpus.

If we no longer assume a fixed corpus, we cannot use
this fixed-dimensional vector space model. Since the lexicon

462

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

is constantly changing, we cannot pre-assign dimensions of
the vector space to specific words. Since the lexicon cannot
grow without limit, approximations must be made to the
representation. New words will appear in documents while
words that have been seen in the past might not be seen again.
The approach we take in this work is to assign a counter to
each word in the lexicon and update the counter each time
the word is seen in a document. Once the lexicon reaches a
pre-defined upper limit, a percentage of words can be removed
from the lexicon where the words chosen for removal are those
with the smallest counter value. In this way, words that fall
out of use or are the result of typographical errors will be
removed. However, if a new document reintroduces a word
to the lexicon, the comparison of the new document to old
documents will assume (not always correctly) that the word
was not in the old documents.

Since vector entries are dependent not only on the frequency
of the word in the document but also on the frequency
of the word in the corpus, the corpus frequency must be
approximated as well in the case of streaming documents.
These details are discussed in the next Section.

A. Frequency-based word weighting

In the vector representation of a document, the jth entry of
the vector depends on the number of times the jth word in
the lexicon occurred in the document. The value is usually the
occurrence of the word multiplied by a word weight which is
dependent on the frequency of the word in the corpus. This
results in high-frequency but context-independent words such
as “the”, “and”, etc. having low values.

The most common weighting method is Term Frequency
Inverse Document Frequency (TFIDF) [12]. Let TFij be the
frequency of word j in document i and let IDFj be the inverse
document frequency of word j in the corpus. That is,

TFij =
nij∑D

k=1 nkj

where nij is the number of times word j occurred in document
i and

IDFj =
D

bj

where D is the number of documents in the corpus and bj

is the number of documents that contain word j. Then the
TFIDF weight for word j in document i is given by

xij = TFij log(IDFj). (1)

The xij become the entries of xj , the L-dimensional vector
representation of document j.

The term frequency must be approximated in the case of
streaming documents since the corpus is not fixed. Reference
[13] states that functions different from TFIDF are needed
when the term frequencies are not available from the start
and points to approximations of TFIDF as in Reference [5].
Reference [5] addresses the problem of on-line document
processing using functions of term counts but does not weight
them by document frequencies. In doing so, the power of the

TFIDF representation – to down-weight content-free words
that appear in most of the documents – is lost.

There have been several algorithms developed for dynamic
text clustering that ignore the effects of a changing corpus on
the term weighting ([3], [7], and [14]). Reference [3] demon-
strates a method termed complexity pursuit to extract topics
of chat line discussions. Although topic-specific words are
extracted, the process operates on vectors computed through
an LSI computed on the full data matrix within a window. This
is not a true streaming algorithm since the process must wait
until the window is full. However, the approach could easily
be modified to a fully streaming algorithm using methods
similar to ours. Hung and Wermter’s dynamic adaptive self-
organizing model (DASH) [7] transforms the data into a
TFIDF vector space representation before proceeding to treat
the data as non-stationary. Zhong’s on-line spherical k-means
(OSKM) algorithm [14] is an adaptive clustering technique but
the experimental results are collected on data that has been
pre-processed as a static corpus. The data is pre-processed
using the Bow toolkit and words that occur in less than three
documents are removed from the lexicon. In a true streaming
application, this would not be possible without windowing the
data stream.

The above mentioned algorithms use the precomputed vec-
tors: in order to obtain those vectors, the entire corpus, or
a windowed subset of documents, must be available. The
work addresses streaming text but uses a representation that
cannot be achieved in a streaming context (the work develops
streaming algorithms but applies them to precomputed text
vectors). This is not a critique of the algorithms but an inherent
property of the text mining approach that the vectors cannot
be produced without the full corpus unless one makes an
approximation to TFIDF. The method we suggest next could
easily be incorporated into these algorithms.

B. A streaming approximation

One solution is to use a time window and calculate the
document frequency within that window. In this work, we use
an exponentially weighted moving average with a parameter
α which allows for varying the amount of history influencing
the value.

Instead of calculating the inverse document frequency, con-
sider the document frequency, DFj , for word j. That is,

DFj =
bj

D
.

Suppose that at each time, t, a new document is observed.
Let Yj(t) ∈ {0, 1} indicate whether word j occurred in
the document read at time t. Then we can approximate the
document frequency for word j at time t by

DFj(t) = αYj(t) + (1− α)DFj(t− 1) (2)

which implements an exponential window on the documents.
Documents can then be written as TFIDF vectors (as in (1))
by using the log of the inverse of (2).

463

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

C. Document similarity

Typically, document similarity is determined by measuring
the cosine of the angle between the vector representations of
the documents [12]. Since under the TFIDF representation the
vector entries are in R

+, the cosine of the angle between any
two documents will be in [0, 1]. Documents that lie close to
each other in document space will have a similarity measure
close to one. Let xa and xb be the vector representations of
documents a and b. Then

s(xa,xb) =
xa · xb

|xa||xb| (3)

is used as a measure of similarity between the documents.

III. A GRAPH REPRESENTATION

We will represent the documents within the framework of a
graph. The vertices (nodes) of the graph will contain statistics
on a collection of articles that share a common theme or topic.
The edges will represent similarities among the nodes. This
representation is updated as each document is processed. The
document is compared with the current nodes and is either
added to a node or used to create a new node. The edges
from the updated node are then updated to capture the changes
to the topic within the graph. This representation performs
two basic functions: it provides a reduced representation
of the documents which incorporates information about the
document topics and the relationships between topics and
it provides a method for visualization and analysis of the
topics and relationships. We will illustrate these ideas in
Sections V and discuss possible extensions and future work in
Sections VI. The graph is dynamic: the nodes and edges are
created/deleted and modified as new documents are processed.
Each node retains its own lexicon vector corresponding to
the word frequencies for the documents in the node. This
frequency vector is updated in much the same manner as (2)
and is explained in Section III-A. The frequency vector (and
other statistics taken from the documents, such as keywords,
title words etc.) can be used to provide a summary of the
node, the “topic” describing the node. These vectors are then
used to define the similarity between nodes, and the edges are
weighted by these similarities.

A. Node creation and updating

An upper limit is placed on the number of nodes in the
graph. As documents are read, they can either be assigned to
an empty node in the graph or used to update an existing node.
Associated with each node is a list of words contained in the
articles that have been assigned to the node. There is also a
count for each of those words that is determined by the word
occurrences in the assigned articles. The count is updated in
much the same way as the document frequency, by using an
exponential window.

Suppose a new article is read, and the length of the
lexicon (including all words in the article) is L. Let za =
(za1 , . . . , zaL

) be the count vector for the words in the article.
If the article is assigned to an empty node in the graph, then
that node will be assigned the counts, za.

If the article is assigned to a node that is not empty, the
counts for the node will be updated. Suppose the article is
assigned to node N. Let zN be the count vector for node N
prior to the assignment. That is, zN = (zN1 , . . . , zNL

), where
the vector is zero-padded to length L if necessary. Then the
entries of zN will be updated by

zNk
←

{
zak

if zNk
= 0

βzak
+ (1− β)zNk

otherwise
. (4)

As with the document frequencies for the words in the lexicon,
this implements an exponentially windowed average for the
counts in the node. This has the effect of reducing the
contribution of the words from older articles. Reference [14]
also uses an exponential decay term in the OSKM algorithm
and points out the intuitive fact that “one needs to forget [in
order] to be adaptive”.

The zN1 , . . . , zNN
contain the counts for the N nodes in the

graph. To obtain the vector space representation of the nodes,
these counts are multiplied by the log of the approximation to
the inverse document frequencies as in (1). When a new article
is read, the similarity between the article and all existing nodes
in the graph is calculated using (3). If the most similar node
has s ≥ τ , the article is added to that node according to (4).
If the maximum similarity is less than τ and there are empty
nodes in the graph, the article is put in an empty node. If the
maximum similarity is less than τ and there are no remaining
empty nodes, the article is put in the node that has gone the
longest without being updated. In that case, the counts for the
node are reset to the counts for the article. (Note that this is
equivalent to setting β = 1 in (4).)

The update rule in (4) requires the parameter β. One method
for adaptively choosing β is to set

β =

{
1− s if s ≥ τ
1 if s < τ

. (5)

This has the effect of making large (small) changes to the node
when the similarity between the article and the node is small
(large).

To see what this rule does, consider the extreme cases. If the
match to the node is perfect (s = 1.0) then the new document
is providing no new information, so it is reasonable to leave
the node unchanged; if s < τ for all nodes, then either a new
node needs to be added (if the graph has not yet reached its
maximum order) or an old node needs to be replaced with
the new document, starting a new topic; if s = τ then the
document is very far from the topic of the node, indicating
that the topic has changed, and the node statistics need to be
changed maximally to adapt to the change. The parameter τ
controls the amount a topic can change before a node is reset.

B. The adjacency matrix

In addition to the statistics from the news articles that are
associated with each node, the graph adjacency matrix is used
to retain information about the connections between the news
topics. For a graph of order N (the order is the number of

464

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

vertices in the graph), the graph adjacency matrix, A is an
N × N matrix where Aij holds information about the edge
from vertex i to vertex j. In this work, the graph is undirected
so the adjacency matrix is symmetric. For an unweighted graph
the adjacency matrix is a binary matrix with Aij = 1 if there
is an edge from vertex i to vertex j and Aij = 0 otherwise.
The graph edges can also be weighted so that Aij ∈ R. In
this work, the graph is weighted and the adjacency matrix
holds the similarities between the vertices where the similarity
is calculated using (3). Each time a node is updated, the
similarity between that node and all other nodes in the graph
is updated. That is, if vertex i is updated, then the ith row and
column (which are identical in the symmetric matrix) are also
updated. This updating scheme is an approximation. Since the
lexicon weights have changed one would need to update the
entire adjacency matrix to reflect the change. In order to reduce
computation, and thus allow larger graphs (more topics), we
chose to implement this approximation. The approximation
may be skipped if the graph is sufficiently small and/or the
rate of the stream is slow enough to allow full updating.

The adjacency matrix can be used to combine nodes that
are similar. This can be done either by considering just the
between-node similarity, or by using the neighborhood infor-
mation within the graph to combine nodes that are both highly
similar and have the same set of “most similar” neighbors.

IV. THE DATA - GOOGLE NEWS

News articles were collected every day from January
through August of 2006. Articles were retrieved through links
provided by the Google news website using five categories
defined by Google. The news categories and their labels were
World (W), US (U), Business (B), Health (H), and Science
and Technology (S). There were approximately 300 articles
collected per day.

The articles were stripped of HTML tags and parsed in
order to find the body of the article. The articles contained
advertisements and links to other articles so effective parsing
was important in order to ensure that the text clustering
methods were working on the article body and not on other
words that were unrelated to the articles. Perfect parsing was
not possible and in cases where articles were found to be
parsed incorrectly, they were eliminated from the data set.
Still, it is possible that some retained articles were incorrectly
parsed.

Articles were also stripped of non-alphabetic characters (all
numbers and punctuation), hyphenated words were split into
separate words, and words were stemmed. The stemming was
performed using the Porter stemming algorithm [10]. Finally,
the remaining words with two or more letters were counted
for each document.

The word counts from the cleaned, parsed, and stemmed
article were used to create a vector representation for each
article. In order to approximate the TFIDF representation, term
frequencies for each article were multiplied by the log of the
approximation of the inverse document frequency for each
word as in (1). The document frequency for each word was

calculated by (2). Each new article necessitated changing the
document frequency for every word.

A growing lexicon was used such that new words were
added to the end of the lexicon. In this preliminary work,
there was no limit placed on the size of the lexicon. It is often
the case that a list of context-free words, called a stop list,
is used to eliminate the consideration of certain words in the
document representation [9]. We did not employ a stop list in
this work. It was expected that the low weighting from the
TFIDF representation would discount any effect from such
words and the savings of only a few hundred words was not
a consideration.

In order to illustrate the process, Fig. 1 shows a small graph
of ten nodes. Articles from the categories of Science and
Technology and World news were processed from January 1
through January 12. The titles displayed are those from the
articles assigned to each node since the last time the node
was reset. Since the graph is so small, nodes are reset often.
For larger graphs, articles are retained in the nodes longer and
there is more clustering of articles from similar topics. In this
graph, we see three nodes that contain more than one article: a
node about the disappearance of frogs due to global warming,
a node about astronomy, and a node about AppleTM.

The gray-scale of the edges is proportional to the cosine
similarity between the nodes. Most of the similarities are
small because articles were placed within nodes to which
they were similar or else they were placed in their own node.
The similarity between all nodes is smaller than the similarity
threshold τ . Still, the largest of these similarities are seen in the
edge between the nodes about Apple and North Korea and the
edge between the nodes about stem cells and frogs. The stem
cell and frog pair shares the word “research” which is weighted
heavily in the TFIDF representation and therefore contributes
to the cosine similarity. The North Korea and Apple pair shares
the word “China” due to a problem parsing the article “Byte of
the Apple”. There are links at the bottom of the Apple article
to articles about news in China. This contributes to the cosine
similarity since the articles do share high weight words but this
is due to the imperfect parsing rather than to any connection
between the stories.

V. VISUALIZATION

The graph was built using an adaptive value of β as in (5).
The document frequency was approximated using α = 0.1
in (2). The maximum order of the graph was set to 200.
The similarity threshold in (5) was τ = 0.1. The data were
articles from January 2006 from the five classes described in
Section IV. Fig. 2 shows the articles assigned to one node in
the graph over several days’ time. The first article is about
bird flu. There were no further bird flu articles, so this node
remained unchanged while other nodes were updated, until
it became the oldest node in the graph. The article about
Symantec was not similar (above the threshold τ = 0.1) for
any nodes, and so was assigned to this, the oldest node. Once
this article is assigned to the node, the node is re-initialized and
the words and corresponding weights from the first article are

465

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

 (S) Ward Melville with nation−leading 12

 (W) North Korean Leaders Whereabouts Unknown

 (W) Election Role Wont Soften Hamas Anger
 at Israelis

 (W) Stem Cell Hype and Hope

 (S) Vanishing of frogs, toads tied to global warming
 (S) Warming Tied To Extinction Of Frog Species
 (S) Global Warming Hits Earths Frog Population

 (S) FBI warns public of bogus e−mails

 (S) School sued over intelligent design

 (S) Good old Hubble discovers new stars
 (S) New Doubts Are Cast on Einsteins Cosmological Constant
 (S) Astronomers Find That Many Milky Way Planets Have Multiple Suns
 (S) Astronomer sees a brake in cosmic expansion
 (S) A Challenge to Evolution of Universe

 (W) Russia, Ukraine leaders clear the air

 (S) Byte of the Apple
 (S) How media companies ideas were
 received at this months Macworld

Fig. 1. A small example graph – The titles displayed are those from the articles assigned to each node since the last time the node was reset. The gray-scale
of the edges is proportional to the similarity between the nodes.

dropped. The following two articles are also about Symantec
and are assigned to the node due to the high similarity. The
fourth article, “Ahern leads trade mission to India”, has low
similarity but is assigned to the node due to the node remaining
unchanged longer than any other node in the graph. All of
the articles that follow are assigned to the node due to their
similarity and show the evolution of the meaning of the node.
We see that the node evolves from India to India and Pakistan
to Pakistan and the United States, to terrorism and finally to
al-Qaida. The latter articles show variations of the spelling
“al-Qaida” and “al-Qaeda”.

Fig. 3 gives another view of this node. The axes correspond
to the words in the node and the article titles (time) with
gray-scale value depicting the weight of the word at the time
the article is incorporated into the node. For each article,
the words chosen to display are those with the three highest
TFIDF values. In addition to the top three words, the TFIDF
value for other words is shown due to overlap in the lexicon
at different times. For example, the Symantec articles also
have the word “attack” which is a high weight word from the
eleventh article (“US: Contacts with Pakistan Positive Despite
Attack Protests”).

The evolution of the word importance can be seen in
the diagonal gray region. Early on, the important words

are “Turkey”, “bird” and “flu”. Then words about Symantec
become important for a while. The two resets are clear in
this picture, indicated by the blocks in the lower corner. Then
words about India become important, followed by Pakistan
and then words related to terrorism. We can see here the
progression of the topic about the India/Pakistani subcontinent
morphing from stories about trade missions into stories about
terrorism. The rate at which the node is allowed to change is
driven by the parameters α and τ , which control the memory
of the lexicon and the threshold of similarity for addition to
the node.

VI. EXTENSIONS

There are several obvious extensions that could be incorpo-
rated. First, the nodes could be allowed to split. For instance, in
the above example if articles about trade missions continued to
be observed while articles about terrorism were also observed,
one might want to split this node into two. This can be
implemented through a hierarchical graph method, allowing
each node to spawn its own subgraph. Thus, we would have
high level generic topics, with subtopics in a graph underneath
each topic.

We currently assign each article to a single node. It would
be easy to allow articles to be assigned to multiple nodes,

466

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

similarity

 Turkish tourism industry fears bird flu impact

 Symantec confesses to using rootkit technology

 Symantec comes clean on Norton rootkit

 Symantec Denies It Uses Rootkit In Software

 Ahern leads trade mission to India

 Indo−Pak talks from today

 Pakistan Foreign Secretary in Delhi for next round of talks

 Importance of Indo−Pak CBMs

 India, Pakistan meet again

 Pakistan wants South Asia free of ABMs

 US: Contacts with Pakistan Positive Despite Attack Protests

 Terrorists among the killed in Pakistan

 Pakistanis say foreign militants were killed in airstrike

 U.S., Pakistan say attack killed 4 linked to al−Qaida

 Strike Reportedly Kills al−Qaida Militants

 Strike Reportedly Kills al−Qaida Militants

 Three Top al−Qaida Operatives Believe Killed in U.S. Missile Strike

 Strike killed al−Qaida bomb expert

 Confusion over identities of al−Qaeda leaders killed

 Confusion over al−Qaeda deaths

 AL respects UN probe into Hariris death: chief

 Attack may have weakened al−Qaida in Afghan

(H)

(S)

(S)

(S)

(B)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

(W)

0 0.2 0.4 0.6 0.8 1

Fig. 2. Articles assigned to one of the nodes in the graph – The first article is shown at the top, and the titles of the added articles are listed in order. The
similarity between the article and the graph node is shown by the gray line to the left of the article titles. The value of τ is 0.1, and articles with a similarity
less than this value were added to the node not due to similarity but because the node had been unchanged for longer than any other node in the graph.

467

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

T
ur

ki
sh

 t

ou
ris

m

 i
nd

us
tr

y

 f
ea

rs

 b
ird

 f

lu

 i
m

pa
ct

S
ym

an
te

c

 c
on

fe
ss

es

 t
o

 u

si
ng

 r

oo
tk

it

 t
ec

hn
ol

og
y

S
ym

an
te

c

 c
om

es

 c
le

an

 o
n

 N

or
to

n

 r
oo

tk
it

S
ym

an
te

c

 D
en

ie
s

 I

t
 U

se
s

 R

oo
tk

it

 I
n

 S

of
tw

ar
e

A
he

rn

 l
ea

ds

 t
ra

de

 m
is

si
on

 t

o

 I
nd

ia

In
do

−
P

ak

 t
al

ks

 f
ro

m

 t
od

ay

P
ak

is
ta

n

 F
or

ei
gn

 S

ec
re

ta
ry

 i

n

 D
el

hi

 f
or

 n

ex
t

 r
ou

nd

 o
f

 t
al

ks

Im
po

rt
an

ce

 o
f

 I
nd

o−
P

ak

 C
B

M
s

In
di

a,

 P
ak

is
ta

n

 m
ee

t
 a

ga
in

P
ak

is
ta

n

 w
an

ts

 S
ou

th

 A
si

a

 f
re

e

 o
f

 A
B

M
s

U
S

:
 C

on
ta

ct
s

 w

ith

 P
ak

is
ta

n

 P
os

iti
ve

 D

es
pi

te

 A
tta

ck

 P
ro

te
st

s

T
er

ro
ris

ts

 a
m

on
g

 t

he

 k
ill

ed

 i
n

 P

ak
is

ta
n

P
ak

is
ta

ni
s

 s

ay

 f
or

ei
gn

 m

ili
ta

nt
s

 w

er
e

 k

ill
ed

 i

n

 a
irs

tr
ik

e

U
.S

.,

 P
ak

is
ta

n

 s
ay

 a

tta
ck

 k

ill
ed

 4

 l

in
ke

d

 t
o

 a

l−
Q

ai
da

S
tr

ik
e

 R

ep
or

te
dl

y

 K
ill

s

 a
l−

Q
ai

da

 M
ili

ta
nt

s

S
tr

ik
e

 R

ep
or

te
dl

y

 K
ill

s

 a
l−

Q
ai

da

 M
ili

ta
nt

s

T
hr

ee

 T
op

 a

l−
Q

ai
da

 O

pe
ra

tiv
es

 B

el
ie

ve

 K
ill

ed

 i
n

 U

.S
.

 M
is

si
le

 S

tr
ik

e

S
tr

ik
e

 k

ill
ed

 a

l−
Q

ai
da

 b

om
b

 e

xp
er

t

C
on

fu
si

on

 o
ve

r

 i
de

nt
iti

es

 o
f

 a
l−

Q
ae

da

 l
ea

de
rs

 k

ill
ed

C
on

fu
si

on

 o
ve

r

 a
l−

Q
ae

da

 d
ea

th
s

A
L

 r

es
pe

ct
s

 U

N

 p
ro

be

 i
nt

o

 H
ar

iri
s

 d

ea
th

:
 c

hi
ef

A
tta

ck

 m
ay

 h

av
e

 w

ea
ke

ne
d

 a

l−
Q

ai
da

 i

n

 A
fg

ha
n

tu
rk

ei

bi
rd

flu

ro

ot
ki

t
hi

de

ru
ss

in
ov

ic
h

sy
m

an
te

c
di

re
ct

or
i

ah
er

n
m

is
si

on

ed
uc

de

lh
i

ja
n

in
di

a
ro

un
d

di
sc

us
s

ja
m

m
u

pa
ki

st
an

ka

sh
m

ir
pa

ki
st

an
i

st
at

e
ru

pe
rt

za

w
ah

ri
at

ta
ck

al

qa

id
a

qa
ed

a
ha

rir
i

un

Fig. 3. Important words in the node over time – The words chosen for display are those with the three highest TFIDF values after the addition of each
article. The gray-scale is proportional to the TFIDF value.

468

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

proportional to their similarity. However, care must be taken to
ensure that this doesn’t cause the nodes to all move together,
resulting in a set of essentially identical nodes, each about
“everything” and none specifically about anything.

Both α and τ are static in this implementation, parameters
set by the user. We are investigating a method for adapting
α by monitoring the “stable” words in the lexicon. That
is, an appropriate value of α will result in a near-constant
document frequency for some words. By adapting α based on
the document frequency of these words, different text sources
will adapt at different rates. For example, on-line news may
adapt more slowly than a set of web logs but more quickly
than articles from an on-line science journal. An adaptive and
node-specific value of τ is another area of research and would
allow different nodes in the graph to change at different rates.

VII. DISCUSSION

We have described a method for analysis of streaming
documents that uses dynamic lexicons and word weighting
to organize the topics into a graph structure. We have not
discussed the graph itself in depth, focusing in this paper on
the methods for populating the nodes of the graph. Future work
will involve extracting useful information from the graph, and
implementing various extensions of these ideas.

We have not presented an evaluation of our methods. We
have used the graph on benchmark datasets where time can
be extracted such as the Yahoo! 20 newsgroups dataset 1.
However, the graph is not meant to perform text categorization
so even testing class purity within the nodes is difficult since
the nodes are meant to evolve in time. We are currently
testing the TFIDF approximation in benchmark datasets using
a simple classifier and measuring the change in classification
rate.

The graph provides us with a convenient structure within
which to both analyze the current topics and merge topic
threads when they become similar. A hierarchical version
of the graph would allow splitting of topics into subtopics.
Extracting invariants from the graph may be a problem in a
streaming environment, since many of the things one would
like to do (spectral clustering, for example) are quite compu-
tational in nature. Fast approximations are needed to provide
analysis in a streaming fashion. More sophisticated analysis
could be done off-line, to provide snapshots of the document
stream.

We have shown only the most rudimentary of visualization
methods in this paper. More sophisticated ways of visualizing
the data are clearly needed. Relationships between topics can
be investigated through the similarities or links in the graph
and descriptions of topics can be improved through dynamic
lexicon weighting. Better ways to describe the topics and their
relationships is an area for future research.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-
20/www/data/news20.html

ACKNOWLEDGMENT

This work was funded by the Office of Naval Research
through the In-House Laboratory Independent Research (ILIR)
program.

REFERENCES

[1] J. Allan, Topic Detection and Tracking: Event-Based Information Orga-
nization. Norwell, MA: Kluwer Academic Publishers, 2002.

[2] J. Allan, “Introduction to Topic Detection and Tracking”, in Topic
Detection and Tracking: Event-Based Information Organization. Norwell,
MA: Kluwer Academic Publishers, 2002.

[3] E. Bingham, A. Kaban, and M. Girolami, “Finding topics in dynamical
text: application to chat line discussions,” in 10th Int. World Wide Web
Conf. Poster Proc., 2001, pp. 198-199.

[4] D.R. Cutting, D.R. Karger, J.O. Pedersen, and J.W. Tukey, “Scatter/gather:
A cluster-based approach to browsing large document collections,” in
Proceedings of ACM SIGIR, 1992, pp. 318-329.

[5] I. Dagan, Y. Karov and D. Roth, “Mistake-Driven Learning in text
Categorization,” in Proceedings of the Second Conference on Empirical
Methods in NLP, 1997, pp 55-63.

[6] I.S. Dhillon and D.S. Modha. “A data clustering algorithm on dis-
tributed memory machines,” in ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 1999.

[7] C. Hung and S. Wermter, “A dynamic adaptive self-organizing hybrid
model for text clustering,” in Proceedings of the 3rd International Con-
ference on Data Mining (ICDM 2003). Melbourne, FL: IEEE Computer
Society, December 2003, pp. 75-82.

[8] X. Lin, D. Soergel, and G. Marchionini, “A self-organizing semantic map
for information retrieval,” in Proceedings of the 14th Annual international
ACM SIGIR Conference on Research and Development in information
Retrieval, New York: ACM Press, 1991, pp. 262-269.

[9] C. Manning and H. Schütze, Foundations of Statistical Natural Language
Processing, Cambridge, MA: MIT Press, May 1999.

[10] M.F. Porter, “An algorithm for suffix stripping,” Program, 14(3), 1980,
pp 130-137.

[11] E. Rennison, “Galaxy of News: An Approach to Visualizing and Under-
standing Expansive News Landscapes,” in UIST 94, ACM Symposium on
User Interface Software and Technology, New York: ACM Press, 1994.

[12] G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval, New York: McGraw-Hill, 1983.

[13] F. Sebastiani, “Machine learning in automated text categorization,” Tech.
Rep. IEI-B4-31-1999, Consiglio Nazionale delle Ricerche, Pisa, Italy,
1999.

[14] S. Zhong, “Efficient streaming text clustering,” Neural Networks, 18(5-
6), 2005, pp 790-798.

469

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

