
On Mining Dynamic Web ClickStreams for Frequent
Traversal Sequences

Jiadong Ren, Xiaojian Zhang, and Huili Peng
College of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China

xiaojian007love@gmail.com

Abstract-Although frequent traversal sequence (FTS) mining
has been extensively studied over the last decade in web usage
mining, it is challenging to extend the mining technique to
dynamic web click streams. The main challenge is that existing
false-positive methods control memory consumption and output
accuracy by a relaxation ratio r (r = e/s, e is the error parameter,
and s is the specified minimum support). However, the higher the
value of r, the more saving is the memory consumption and the
better recall but degrades the output precision, while on the
contrary, decreasing r gives a more precise output but needs
higher storage space. In this paper, the upper and lower bounds
are established to constrain r, a weighted harmonic average
(WHA) of the two bounds is designed to adjust r, and a novel
algorithm FTS-Stream is proposed to find the FTS over a
time-sensitive sliding window. Thus, the precision and recall can
be maintained with the WHA (r). Our analysis and experiments
show that FTS-Stream has high accuracy and requires less
memory in dynamic Web clickstreams.

I. INTRODUCTION

Mining frequent traversal sequence (FTS) has been studied
over the last decade [1, 2], which is an important application of
sequential mining technique for mining traversal patterns. Past
research only focuses on mining FTS from static database.
Recent emerging applications, such as network traffic analysis,
Web click stream mining, sensor network data analysis, and
dynamic tracing of stock fluctuation, call for study of a new
kind of data, called data streams, as opposed to finite, statically
stored data sets. Traditional Web click stream mining focuses
on off-line data mining. However, in practice, Web click stream
are generate in the form of continuous, rapid data steams, and
then stored in web servers. Therefore, mining dynamic Web
click stream is more important in some web applications, such
as on-line monitoring use behavior, on-line performance
analysis, and on-line improving web connectivity etc.

There exist many algorithms for mining frequent pattern (FP)
over data streams, such as Lossy Counting [3], estWin [7], and
DSM-PLW [6] etc. Most of these algorithms utilize a relaxation
ratio, r (r=e/s, e is the error parameter, and s is the specified
minimum support), to control the output quality of the FP.
Therefore, these algorithms are mainly false positive, the output
will plunge into a dilemma because of r. A smaller r can
present a more accurate output but worsen the recall, lower the
processing efficiency, and generate a larger number of patterns.
On the contrary, a higher r can save the memory consumption
and better recall rate but degrade the output precision. The false
negative algorithms MineSW [9] and FDPM [12] are proposed
to deal with the problem caused by r. However, the algorithms
also encounter the former problem, since the two algorithms do
not adopt the constraint strategy. The research of mining FP in

data streams can be divided into three fields: landmark windows
model, titled-time windows model, and sliding windows model,
as described briefly as follows. Manku and Motwani [3] firstly
proposed the landmark model, which utilize the entire history
data between a particular point of time and the current time for
mining. Giannella et al. [8] developed the titled-time model that
mines the recent data at a fine granularity while mining the
long-term data at a coarse granularity. Teng et al. [5] proposed
the sliding windows model, which gives a window size w, only
the latest transactions are utilized for mining. That is to say, as a
new transaction has been reached, the oldest transaction in the
sliding window is expired.

Generally, patterns embedded in data streams are more likely
to be change as time goes by. Identifying the recent change of
data streams can quickly provide valuable information for the
analysis of the data streams. Thus, in certain applications, users
can only be interested in the data recently arriving within a
fixed time period. For example, when mining the Web click
streams, the most recent data usually provides more useful
information than those that arrived previously. Obviously,
landmark and titled-time window models are unable to satisfy
this need. On the contrary, the sliding window model achieves
the goal. In this paper, we develop a novel algorithm,
FTS-Stream, for mining FTS from dynamic Web click Streams
based on a time-sensitive sliding window model. J.Han et al. [4]
introduced that data mining is an interactive process, and users
should directly take part in the process through query language
or GUI. Therefore, according to J.Han’s idea, we design an
efficient constraint strategy, which users can give two decent
bound parameters to constrain the relaxation ratio, r. Although
the strategy possibly limits the frequency of some traversal
sequences, we can discover more interesting FTS. To solve the
problem caused by r, we propose a weighted harmonic count,
and design a weighted harmonic average of the two bounds
parameters to replace r. Our experiments show that our
algorithm can simultaneously maintain precision and recall of
the output, obtain highly precise mining results, and consume
less main memory.

We summarized the contributions of this paper. Firstly, a
constrained methodology is introduced for mining dynamic
Web click streams. Next, we propose an effective summary data
structure, IPFTS-tree (Improved Prefix Frequent Traversal
Sequences tree), to maintain the essential information of the
Web click streams. Thirdly, we develop a novel single-pass
algorithm, FTS-Stream, to build and maintain IPFTS-tree to
mine the FTS over a time-sensitive sliding window model.

The remaining of the paper is organized as follow. Section 2
presents the related work and the problem definition is given in

477

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

Section 3. Section 4 introduces the constraint strategy and
harmonic count. Section 5 presents the FTS-Stream algorithm,
while Section 6 introduces the experiments. Section 7 draws a
conclusion.

II. RELATED WORK

Mining FP from data streams has been investigated by many
researchers. Existing streaming algorithms mainly focus on
landmark window model [3, 6]. However, most of these
algorithms adopt an unchanged granularity, that is landmark
model is not aware of time and therefore can not distinguish old
data and new ones. In many cases, FP are usually time sensitive,
and the old FP may have lost their attraction and importance.
To overcome this difficulty, many approaches based on sliding
window model are proposed. These approaches mainly care the
changes and trends of the recent data. Manku, Chang and Lee
[3, 13] propose the Lossy Counting algorithm and Carma
algorithm, which adopt estimation mechanism to mine an
approximate set of the FP. Lee et al. [10] propose a method to
mine FP from the candidate 2-itemsets for each slide. But their
approach may generate huge candidate itemsets, which
consume large storage space. Moment algorithm proposed by
Chi et al. [11]. Their algorithm is not suitable for mining FTS
since Moment mainly finds closed FP. Yu et al. [12] utilize the
theory of Chernoff bound to propose a false negative algorithm.
Their method uses a predefined threshold to control the bound
of memory usage and the quality of output. Cheng et al. [9] also
propose a false negative algorithm, MineSW with a
progressively increasing minimum support function. Although
the two false negative methods can solve some questions that
the false positive methods exist, they may not tackle the
dilemma caused by r. All the previous works only consider a
fixed number of transactions as the basic unit, which is not easy
for people to specify. By contrast, it is natural for people to
specify a time period as the basic unit. Therefore, in this paper,
we propose the time-sensitive sliding window model, which
regards a fixed time period as the basic unit for mining.

III. FTS-STREAM ALGORITHM

A. Problem Definition

Let P = {P1, P2,…, Pn} be the complete set of web pages. A
session, S, is a traversal sequence that is ordered by timestamp
in Web click data. A traversal sequence ts = <P1, P2,…, Pm>
(Pi∈P, 1 ≤ i ≤ m) is a list of web page which is ordered by
traversal time, and each web page can repeatedly appear in ts.
Consider two traversal sequences ts1 = <a1, a2,…, an > and ts2 =
<b1, b2,…, bm > (n ≤ m). If there exists integers 1 ≤ i1<i2<... ≤ m
with a1=bi1, a2=bi2,..., an=bim, then ts1 is a subsequence of ts2,
and ts2 is a super-sequence of ts1. We write a ts = <P1, P2,…,
Pm> as ts = <P1P2…Pm> in this paper.

Given a Web click stream Wcs, Utilizing the cube model
proposed in [15], Wcs is converted into traversal sessions,
which compose the Session streams Ss = {S1, S2,…, Sm,…},
where, Si denotes a session in Ss. In this paper, we adopt the
Session streams instead of original Web click streams to mine

the FTS over the time-sensitive sliding window model.

Given a time point t and a time period tp, the set of all the
sessions arriving in [t-tp+1, t] will form a basic block. A
Session stream Ss is decomposed into a sequence of basic
blocks, which are assigned with serial numbers. Given a
window with length w, we slide it over those basic blocks to
observe a set of overlapping blocks, where each block sequence
is called the time-sensitive sliding window (abbreviated as
TSsw). A TSsw in the session streams is a window that slides
forward for every basic block.

A time interval in the Ss is a set of successive basic block
units, denoted as B = <Bi,…,Bj>, where i ≤ j. We define Bi as
the current basic block unit, within which a variable number of
sessions may arrive and |Bi| as the number of session in Bi. For
each current block Bi, TSswi consists of the |w| consecutive basic
blocks from Bi-w+1 to Bi. The TSswi is denoted as TSswi
=<Bi-w+1,…,Bi>. We define Session (B) as the set of sessions
that arrive on Web click streams in a time interval B, and
|Session (B)| as the number of sessions in Session (B). The count
of traversal sequence ts over B, denoted as Count (ts, B), is the
number of sessions in Session (B) that include ts. Given a user
predefined minimum support threshold, s (0 ≤ s ≤ 1), ts is a FTS
over B if Count (ts, B) ≥ s |Session (B)|. Consequently, the
problem of online, single-pass mining FTS in a TSsw over a
session stream Ss is to mine the set of FTSs by one scan of a
continuous stream of sessions when s is given.

TSsw1 TSsw2 TSswn

B1 B2 B3 B4………… BN time

S1 p1p2p3p5 S3 p3p5 S4 p3p4p5 S6 p1p2p4
S2 p1p2p3p4 S5 p3p5p1

Fig. 1. Sessions in two TSsws

Example Given an example to show the definition, Fig. 1 gives
six sessions that are recorded the four basic block units. The
four block units form two successive windows, TSsw1 = <B1, B2,
B3> and TSsw2 = <B2, B3, B4>. Let the minimum support count
be 3. We can get the set of FTS over TSsw1 and TSsw2, which
are {<p1>, <p3>, <p5>, <p3p5>} and {<p3>, <p5>, <p3p5>}.

B. Constraint Strategy and Weighted Harmonic Count

1) Constraint Strategy
The precision, recall, and efficiency of mining FTS in dynamic
Web click streams environment are close relaxed to three
factors: the constraint strategy, the method to recording the
history information, and the summary data structure. We firstly
describe the constraint strategy as follows.

Given the nature of the Web click streaming data, there exist
two sources of error when estimating frequent traversal
sequences. One is that it is possible that some traversal
sequences observed as frequent might in fact not be frequent
anymore from a longer observation of the Web click stream.
The other is that some traversal sequences observed as not
frequent may well in fact be frequent from a longer history of

478

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

the Web click stream. The first error source is
precision-oriented, and the second is recall-oriented. Existing
algorithms use r=e/s to control the accuracy of the mining
result. However, r can lead to a problem introduced in former
sections. Therefore, we give two limited parameters λ1, λ2 to
constrain the r, and take two efficient strategies to meet the
mining purpose of the users.

(1) If r<λ1, where λ1 is the lower bound parameter, then the
second error source will be triggered. This case denotes a
smaller r not only degrades the accuracy of the recall-oriented
output, but increases the main memory consumption, and
lowers the processing efficiency. Thus the relaxation ratio r
should be larger than λ1.

(2) If r>λ2, where λ2 is the upper bound parameter, then the
first error source will be triggered. This case denotes a larger r
gives a bad precision-oriented output. That is, larger r will
degrade the mining precision. Thus the relaxation ratio r should
be smaller than λ2.

2) Weighted Harmonic Count
Minimizing r (r ≈ λ1) can lead to minimize the first error source,
but lower the mining efficiency and maximize the second
source of error. On the other hand, Maximizing r (r ≈ λ2) leads
to minimize the second error source, but maximize the first
error source. Therefore, in this paper, we proposed a weighted
harmonic average (abbreviated as WHA) of λ1 and λ2, to replace
the relaxation ratio r. Thus, we can adjust the importance of one
error source against the other by adjusting the ξ value. That is, ξ
is a regulatory factor, which function mainly tackles the
problem caused by the relaxation ratio r.

WHA (r) = (1+ξ2) λ1λ2 ⁄ (λ1 + ξ2λ2) . (1)

E =s×WHA (r) =s × (1+ξ2) λ1λ2 ⁄ (λ1 + ξ2λ2). (2)

E in the equality (2) does not equal e (r=e/s), since r has been
replaced by the WHA (r). Based on the equalities (1) and (2),
the potential count of a ts over a basic block Bi is defined as
follows:

0 if Count (ts, Bi) < E |Session (Bi)|
Count (ts, Bi) =

Count (ts, Bi) otherwise.

(3)

Thus, the support count of ts over a time interval
B=<Bj,…,Bm> is defined as follows. The type of support count
is called accumulated count.

Count (ts, B) = ∑Count (ts, Bi), Bi∈B=<Bj,…,Bm> . (4)

In this way, each ts is associated with the potential count and
accumulated count. Moreover, the sum of the two counts is
regarded as the count of the ts in TSswi.

Given parameters λ1, λ2, and let TSswi = < Bi-w+1,…,Bi> be a
current time-sensitive sliding window, its size is w, and TSR = <
Bi-R+1,…,Bi>, where 1≤R≤w, be the most recent R basic block
units in TSswi. TSR is a subsequence of TSswi. The size of TSR is
|Session (TSR)|. We define a weighted harmonic count (denoted
as WHC ()) as follows.

WHC (R) = s |Session (TSR)| ×WHA (r) . (5)

If we maintain all possible traversal sequences in the current
sliding window TSswi, this will require too much space, so we
only maintain the most recent R basic block units, only keep the
FTS in the window, and drop the remaining tail sequences of
TSswi. Obviously, the ts over <Bi-w+1,…,Bi-R> is considered as
infrequent traversal sequences, and its potential count will be
taken as 0. Specially, we drop the tail <Bi-w+1,…,Bi-R> when the
following condition holds:

∑Count (ts, B) < E ∑|Session (Bi)|, where
Bi∈B=<Bi-w+1,…,Bi-R> .

(6)

3) FTS-Stream

Our algorithm FTS-Stream (Frequent Traversal Sequence in
dynamic Web clickStream) is composed of four steps: read a
fixed size w window Session streams in the memory (step1),
construct an in-memory summary data structure IPFTS-tree
(Improved Prefix Frequent Traversal Sequence tree) by
processing each incoming basic block unit Bi (step2), prune and
maintain the summary data structure (step3), and mine the set of
FTS from the current IPFTS-tree (step4). Steps 1 and 2 are
performed in traversal sequence for a new sliding window TSsw.
Steps 3 and 4 are usually performed periodically or when they
are needed. Since the step 1 is straightforward, we shall focus
on steps 2 and 4, devise algorithms for the effective
construction and maintenance of data structure, and
determination of the set of FTS. The process of mining frequent
traversal sequences in Web click streams is shown Fig. 2.

Web click streams
 Buffer1 Buffer2 IPFTS-tree

 Session streams
 Cube Model FTS-Stream

 Approximate FTS

Fig. 2. The process of Mining FTS

a. IPFTS-tree Construction
An improved prefix frequent traversal sequence tree (abbreviate
as IPFTS-tree) is a based on prefix tree data structure defined as
below.

(1) IPFTS-tree consists of one root labeled as “Root”, and a
set of page-prefix subtrees (potentially FTS with its subset) as
the children of the root.

(2) Each node in the tree consists of six fields: page, MAC,
flag, Bid, P.count, and A.count, where page registers which is
the last web page of ts, MAC registers the number of sessions
represented by the portion of the path reaching this node, flag
registers whether the node is updated in current basic block unit
Bi, Bid registers which is the id of the basic block unit, BBid,
where ts is inserted into the IPFTS-tree, P.count, and A.count
register prudential count and accumulated count respectively.

(3) Each node in the IPFTS-tree represents a FTS (from root
to this node), and its support is equal to the support of the node.
Thus, an IPFTS-tree is similar with WAP-tree [2], but their
structures are different. The difference is that IPFTS-tree stores

479

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

FTS instead of Web click streams. Fig. 3 shows the structure of
the IPFTS-tree.

Root
 P1P3

 P1 P3 page Bid MAC flag P.count A.count
 P3 4 9 1 3 6

P2 P3

Fig. 3. Structure of the IPFTS-tree

b. FTS-Stream Algorithm
Algorithm 1 CIPFTS-Tree: Construct IPFTS-tree
Input: A Session stream Ss, s, WHA (r), w, λ1 and λ2;
Output: An IPFTS-tree;
Create the root of an IPFTS-tree, T, and label it with “Root”;
For (each Bi∈TSswfirst=<B1,…, Bj>, (1 ≤ i ≤ j))

Mine all FTS over Session (Bi);
 For (each ts∈FTS) // TSswfirst denotes the first window.
 If (ts ⊄ T) and (Count (ts, Bi) ≥ E |session (Bi)|)

Create a new node of form (page, i, 1, 1, 0);
Bid (ts) =i; Count (ts) = Count (ts, Bi);

If ((ts ⊂ T)
Add Count (ts, Bi) to Count (ts);

 If (Count (ts) < WHC (i-Bid (ts) +1))
Delete ts from T;
Stop mining the supersets of ts over session (Bi);
Call MIPFTS-tree;

Subroutine 1 MIPFTS-tree: Maintain IPFTS-tree
Input: An IPFTS-tree structure, s, λ1, λ2, w, an incoming Bi.
Output: The updated IPFTS-tree.
For (each incoming Bi∈TSsw)

Mine all FTSs over session (Bi);
For (each ts∈FTS)
 If (ts⊂ T) and (flag ≠ 1)

Add Count (ts, Bi) to Count (ts);
Call PIPFTS-tree;

 If (ts⊄ T) and (Count (ts, Bi) ≥ E |session (Bi)|)
Create a new node of form (page, i, 1, 1, 0);
Bid (ts) = i; Count (ts) = Count (ts, Bi);

For (each expiring Bi-w+1∈TSsw)
If (ts ⊂ T) and (i-Bid (ts) + 1 ≥ w)

Count (ts) = Count (ts) - Count (ts, Bi-w+1);
If (Count (ts) =0)

Delete ts from T;
Else Bid (ts) =i-w+2;

Subroutine 2 PIPFTS-tree: prune IPFTS-tree
Input: An IPFTS-tree structure, s, λ1, λ2, w.
Output: The IPFTS-tree containing the set of FTS.
For (each ts∈FTS)
 If ((i-Bid (ts) + 1< w) and (Count (ts) < WHC (i-Bid (ts)
+1))) or ((i-Bid (ts) + 1) ≥ w) and (Count (ts) <WHC (w))

Delete ts from T;
Delete the sub-trees of a node whose Bid is i by

traversing the IPFTS-tree;

Algorithm 2 FTS-Stream
Input: A Session stream Ss, s, WHA (r), λ1, λ2 and w.

Output: A temporal list of FTS, FTS-list.
FTS-list =∅ ;
Scan a Bi, and collect all FTS;
Call MIPFTS-tree;
Do depth-first-search to mine the FTS;
If (Count (ts) ≥ s |session (w)|)

 Store ts in the FTS-list;
If (FTS-list ≠ ∅)

Output FTS from the FTS-list;

FTS-Stream algorithm for mining FTS over a time-sensitive
sliding window is described in Algorithm 2. In the window
TSsw initialization phase, an IPFTS-tree is created and all FTS
are stored in the tree. After the TSsw becoming full, we begin to
slide TSsw. That is, a new basic block unit is appended to the
TSsw, and the expiring block unit is removed from the window.
In this phase, FTS and IPFTS-tree are maintained. When a new
basic block unit Bi arrives, we mine ts from the Bi and update
the IPFTS-tree structure. For each ts, if ts does not appear in the
IPFTS-tree and Count (ts, Bi) ≥ E |session (Bi)|, then we insert
ts. If ts appears, we add Count (ts, Bi) to Count (ts) and check
the flag label of the node with ts. If flag ≠ 1, then we update the
node, and check whether ts should be removed from the
IPFTS-tree or not. If ts meet the condition of subroutine 2, we
remove ts from the tree structure. When an old basic unit Bi-w+1
expires, we should check the weighted harmonic count of ts,
which is counted from Bi-w+1. If i-Bid (ts) + 1 ≥ w, then we can
subtract the support count of ts. For traversal sequence ts in the
IPFTS-tree, if its weighted harmonic count is less than a
pruning threshold, it is pruned from the IPFTS-tree. Finally, we
output all the FTS whose support is greater than the minimum
support. Besides, let k be the number of FTS in the Web click
stream generated so far. An IPFTS-tree structure has at most 2k
nodes for storing the set of all FTSs of Web click streams.

IV. EXPERIMENT RESULTS

Our algorithm was written in C++ and compiled using gcc. All of
our experiments are performed on a 2.4GHz Pentium IV
processor with 512 MB of main memory, 768 MB of virtual
memory, and running on Redhat 9.0. We pursue the
experiments on real datasets to evaluate the performance of
FTS-Stream algorithm. The real click stream datasets,
BMS-WebView-1 and BMS-WebView-2, which contain
several months’ worth of click stream data from two
e-commerce Web sites. The real datasets was provided by Blue
Martin Software [14], and is available form the KDD Cup 2000
home page. The BMS-WebView-1 consists of 367 distinct
pages, 59602 sessions and the average session size contains
7-13 pages. The BMS-WebView-2 consists of 320 distinct
pages, 537083 sessions and the average session size is ten pages.
Each TSsw consists of 20 basic block units, and each basic unit
includes 100k sessions. To evaluate the performance of
FTS-Stream, three group experiments are performed.

A. Two Bounds Constraint
In the first group experiment, we run the FTS-Stream

480

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

algorithm from tow different aspects. One aspect, FTS-Stream
does not contain the two bound parameters λ1 and λ2. The other
aspect, FTS-Stream contains the two bound parameters. We set
λ1 =0.001, λ2 =0.999, ξ =0.031, and s=0.01, respectively. Let
ET1 be the execution time without λ1 and λ2, and ET2 be the
execution time with λ1 and λ2. Let PT (PT=1-(ET2/ET1)) be the
improved performance in percentage. Fig. 4 shows that PT of
the FTS-Stream clearly increases with the datasets changing
from 200k to 1000k.

Fig. 4. Improved performances in percentage for FTS-Stream

B. Changing Minimum Support threshold

In the second group experiment, we test the performance of
FTS-Stream by comparing with previous algorithms Lossy
Counting and MineSW. However, we renew to set the value of
the regulatory factor, ξ=0.03 and ξ=0.09. We still hold the
values of support threshold s and the two bounds λ1 and λ2 as
same as the first group experiment. We measure FTS-Stream
with Lossy Counting and MineSW in four aspects: execution
time, precision, recall and space usage. The results can be seen
in Fig. 5 ~ Fig.8. In Fig. 5, the execution time of FTS-Stream
grows smoothly as the support threshold decrease from 2.0% to
0.05%. However, when ξ=0.03, the time of FTS-Stream is over
3 times faster than ξ=0.09, while FTS-Stream (ξ=0.03) is about
4 times than faster MineSW, and 10 more times over Lossy
Counting. Fig. 6 and Fig. 7 show the precision and recall
comparison among several algorithms with the changing of the
support. In this situation, FTS-Stream behaves best. When
ξ=0.09, precision and recall of FTS-Stream are over 0.93, while
ξ=0.03, the two aspects are about 0.98.Through adjusting the
regulatory factor, precision and recall can cater to the purpose
of the users. As shown in Fig. 8, the space usage of FTS-Stream
is relatively insensitive to the support. As the support decreases,
the space usage of FTS-Stream increases stablely.

(a) BMS-WebView-1

(b) BMS-WebView-2

Fig. 5. Execution time on two datasets with different threshold

(a) BMS-WebView-1

(b) BMS-WebView-2

Fig. 6. Precision on different threshold

(a) BMS-WebView-1

481

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

(b) BMS-WebView-2

Fig. 7. Recall on different threshold

(a) BMS-WebView-1

(b) BMS-WebView-2

Fig. 8. Memory Usage over different threshold

C. Adjusting the Regulatory Factor
In the third group experiment, we measure the recall and
precision of FTS-Stream with Lossy Counting and MineSW by
adjusting the value of the regulatory factor. λ1, λ2 and s hold the
same values as the former experiments. In Fig. 8, we plot the
recall and precision of our algorithm for values of ξ ranging
from 0.01 to 0.11. The figure shows how increasing ξ leads to
decrease in recall and precision. Fig. 9 (a) and (b) show that
FTS-Stream almost has 100% recall and precision as ξ
increases from 0.01 to 0.11. However, the precision and recall
of Lossy Counting and MineSW sharply drop. The result
indicates that Lossy Counting and MineSW often reckon on the
r to control the recall and precision of the output, while
FTS-Stream adopt constraint strategy to limit r, and utilize the
weighted harmonic average of the two bounds to replace it. As
a result, we can avoid the problem caused by r.

(a) Recall on different regulatory factor

(b) Precision on different regulatory factor

Fig. 9. Recall and Precision on different threshold

V. CONLUSIONS

In this paper, we propose a novel constraint-based algorithm
FTS-Stream to discover the set of frequent traversal sequences
over a time-sensitive sliding window. An effective in-memory
summary data structure IPFTS-tree is developed to maintain the
essential information of FTS in the Web click streams so far. In
the FTS-Stream algorithm, the weighted harmonic average with
a constraint strategy is used to tackle the abuse of the relaxation
ratio r. When the lower bound and upper bound are set, we can
adjust the value of regulatory factor to get the decent recall and
precision on the mining results. The experimental results show
that our algorithm significantly outperforms the known Lossy
Counting and MineSW algorithms in terms of execution time,
recall, precision, and memory consumption.

REFERENCES

[1] M.S. Chen, J.S, Park, and P.S. Yu: Efficient Data Mining for Path Traversal

Patterns. In IEEE Trans. Knowl. Data Eng, Vol. 10, No. 2, pp. 209-221,
1998.

[2] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu.: Mining Access Pattern
Efficiently from Web Logs. In Proc. of PAKDD, 2000, pp. 396-407.

[3] G. S. Manku and R. Motwani.: Approximate frequency counts over data
streams. In Proc of VLDB, 2002, pp. 346-357.

[4] Jiawei Han, Micheline Kamber. Data Mining: Concepts and Techniques.
In K. Morgan Kanfmann, Chinese, 2001.

[5] W. G. Teng, M. S. Chen, and P. S. Yu.: A Regression-Based Temporal
Pattern Mining Scheme for Data Streams. In Proc. of VLDB, 2003.

[6] Hua-Fu Li, Suh-Yin Lee, and Man-Kwan Shan.: DSM-PLW: Single-Pass
Mining of Path Traversal Patterns over Streaming Web Click-Sequences. In
Journal of Computer Networks, Vol. 9, No. 19, pp. 126-142, 2005.

482

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

[7] J. H. Chang and W. S.Lee. estWin.: Online Data Stream Mining of Recent
Frequent Itemsets by Sliding Window Method. In Journal of Information
Science, Vol. 31, No. 2 2005.

[8] C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu.: Mining Frequent
Patterns in Data Streams at Multiple Time Granularities. H. Kargupta, A.
Joshi, K. Sivakumar, and Y. Yesha (eds.), Next Generation Data Mining,
2003, pp. 191-212.

[9] J. Cheng, Y. Ke, and Wilfred NG.: Maintaining Frequent Itemsets over
High-Speed Data stream. In Proc. of PAKDD, 2006, pp. 462-467.

[10] C. Lee, C. Lin, and M. Chen. Sliding-window Filtering: an Efficient
Algorithm for Incremental Mining. In Proc. of CIKM, 2001.

[11] Y. Chi, H. Wang, P. S. Yu, and R. R. Muntz. Moment: Maintaining Closed
Frequent Itemsets over a Stream Sliding Window. In Proc. of ICDM, 2004,
pp. 59-66.

[12] J. Yu, Z. Chong, H. Lu, and A. Zhou.: False positive or False Negative:
Mining Frequent Itemsets from High Speed Transactional Data Streams. In
Proc. of VLDB, 2004.

[13] C. Hidber. Online Association Rule Mining. In Proc. of SIGMOD, 1999,
pp. 145-156.

[14] Z. Zheng, R. Kohavi, and L. Mason.: Real World Performance of
Association Rule Algorithm. In Proc. of ACM SIGKDD, 2001, pp. 401-406.

[15] Q. Yang, J. Huang, and M. Ng.: A Data Cube Model for Prediction-Based
Web Prefetching. In Journal of Intelligent Information System, Vol. 20, No. 6,
2003, pp. 11-30.

483

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

REFERENCES

[1] M.S. Chen, J.S, Park, and P.S. Yu: Efficient Data Mining for Path Traversal

Patterns. In IEEE Trans. Knowl. Data Eng, Vol. 10, No. 2, pp. 209-221,
1998.

[2] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu.: Mining Access Pattern
Efficiently from Web Logs. In Proc. of PAKDD, 2000, pp. 396-407.

[3] G. S. Manku and R. Motwani.: Approximate frequency counts over data
streams. In Proc of VLDB, 2002, pp. 346-357.

[4] Jiawei Han, Micheline Kamber. Data Mining: Concepts and Techniques.
In K. Morgan Kanfmann, Chinese, 2001.

[5] W. G. Teng, M. S. Chen, and P. S. Yu.: A Regression-Based Temporal
Pattern Mining Scheme for Data Streams. In Proc. of VLDB, 2003.

[6] Hua-Fu Li, Suh-Yin Lee, and Man-Kwan Shan.: DSM-PLW: Single-Pass
Mining of Path Traversal Patterns over Streaming Web Click-Sequences. In
Journal of Computer Networks, Vol. 9, No. 19, pp. 126-142, 2005.

[7] J. H. Chang and W. S.Lee. estWin.: Online Data Stream Mining of Recent
Frequent Itemsets by Sliding Window Method. In Journal of Information
Science, Vol. 31, No. 2 2005.

[8] C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu.: Mining Frequent
Patterns in Data Streams at Multiple Time Granularities. H. Kargupta, A.
Joshi, K. Sivakumar, and Y. Yesha (eds.), Next Generation Data Mining,
2003, pp. 191-212.

[9] J. Cheng, Y. Ke, and Wilfred NG.: Maintaining Frequent Itemsets over
High-Speed Data stream. In Proc. of PAKDD, 2006, pp. 462-467.

[10] C. Lee, C. Lin, and M. Chen. Sliding-window Filtering: an Efficient
Algorithm for Incremental Mining. In Proc. of CIKM, 2001.

[11] Y. Chi, H. Wang, P. S. Yu, and R. R. Muntz. Moment: Maintaining Closed
Frequent Itemsets over a Stream Sliding Window. In Proc. of ICDM, 2004,
pp. 59-66.

[12] J. Yu, Z. Chong, H. Lu, and A. Zhou.: False positive or False Negative:
Mining Frequent Itemsets from High Speed Transactional Data Streams. In
Proc. of VLDB, 2004.

[13] C. Hidber. Online Association Rule Mining. In Proc. of SIGMOD, 1999,
pp. 145-156.

[14] Z. Zheng, R. Kohavi, and L. Mason.: Real World Performance of
Association Rule Algorithm. In Proc. of ACM SIGKDD, 2001, pp. 401-406.

[15] Q. Yang, J. Huang, and M. Ng.: A Data Cube Model for Prediction-Based
Web Prefetching. In Journal of Intelligent Information System, Vol. 20, No.
6, 2003, pp. 11-30.

484

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

