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Abstract-Although frequent traversal sequence (FTS) mining 
has been extensively studied over the last decade in web usage 
mining, it is challenging to extend the mining technique to 
dynamic web click streams. The main challenge is that existing 
false-positive methods control memory consumption and output 
accuracy by a relaxation ratio r (r = e/s, e is the error parameter, 
and s is the specified minimum support). However, the higher the 
value of r, the more saving is the memory consumption and the 
better recall but degrades the output precision, while on the 
contrary, decreasing r gives a more precise output but needs 
higher storage space. In this paper, the upper and lower bounds 
are established to constrain r, a weighted harmonic average 
(WHA) of the two bounds is designed to adjust r, and a novel 
algorithm FTS-Stream is proposed to find the FTS over a 
time-sensitive sliding window. Thus, the precision and recall can 
be maintained with the WHA (r). Our analysis and experiments 
show that FTS-Stream has high accuracy and requires less 
memory in dynamic Web clickstreams. 
 

I. INTRODUCTION 
 
Mining frequent traversal sequence (FTS) has been studied 
over the last decade [1, 2], which is an important application of 
sequential mining technique for mining traversal patterns. Past 
research only focuses on mining FTS from static database. 
Recent emerging applications, such as network traffic analysis, 
Web click stream mining, sensor network data analysis, and 
dynamic tracing of stock fluctuation, call for study of a new 
kind of data, called data streams, as opposed to finite, statically 
stored data sets. Traditional Web click stream mining focuses 
on off-line data mining. However, in practice, Web click stream 
are generate in the form of continuous, rapid data steams, and 
then stored in web servers. Therefore, mining dynamic Web 
click stream is more important in some web applications, such 
as on-line monitoring use behavior, on-line performance 
analysis, and on-line improving web connectivity etc. 

There exist many algorithms for mining frequent pattern (FP) 
over data streams, such as Lossy Counting [3], estWin [7], and 
DSM-PLW [6] etc. Most of these algorithms utilize a relaxation 
ratio, r (r=e/s, e is the error parameter, and s is the specified 
minimum support), to control the output quality of the FP. 
Therefore, these algorithms are mainly false positive, the output 
will plunge into a dilemma because of r. A smaller r can 
present a more accurate output but worsen the recall, lower the 
processing efficiency, and generate a larger number of patterns. 
On the contrary, a higher r can save the memory consumption 
and better recall rate but degrade the output precision. The false 
negative algorithms MineSW [9] and FDPM [12] are proposed 
to deal with the problem caused by r. However, the algorithms 
also encounter the former problem, since the two algorithms do 
not adopt the constraint strategy. The research of mining FP in 

data streams can be divided into three fields: landmark windows 
model, titled-time windows model, and sliding windows model, 
as described briefly as follows. Manku and Motwani [3] firstly 
proposed the landmark model, which utilize the entire history 
data between a particular point of time and the current time for 
mining. Giannella et al. [8] developed the titled-time model that 
mines the recent data at a fine granularity while mining the 
long-term data at a coarse granularity. Teng et al. [5] proposed 
the sliding windows model, which gives a window size w, only 
the latest transactions are utilized for mining. That is to say, as a 
new transaction has been reached, the oldest transaction in the 
sliding window is expired. 

Generally, patterns embedded in data streams are more likely 
to be change as time goes by. Identifying the recent change of 
data streams can quickly provide valuable information for the 
analysis of the data streams. Thus, in certain applications, users 
can only be interested in the data recently arriving within a 
fixed time period. For example, when mining the Web click 
streams, the most recent data usually provides more useful 
information than those that arrived previously. Obviously, 
landmark and titled-time window models are unable to satisfy 
this need. On the contrary, the sliding window model achieves 
the goal. In this paper, we develop a novel algorithm, 
FTS-Stream, for mining FTS from dynamic Web click Streams 
based on a time-sensitive sliding window model. J.Han et al. [4] 
introduced that data mining is an interactive process, and users 
should directly take part in the process through query language 
or GUI. Therefore, according to J.Han’s idea, we design an 
efficient constraint strategy, which users can give two decent 
bound parameters to constrain the relaxation ratio, r. Although 
the strategy possibly limits the frequency of some traversal 
sequences, we can discover more interesting FTS. To solve the 
problem caused by r, we propose a weighted harmonic count, 
and design a weighted harmonic average of the two bounds 
parameters to replace r. Our experiments show that our 
algorithm can simultaneously maintain precision and recall of 
the output, obtain highly precise mining results, and consume 
less main memory. 

We summarized the contributions of this paper. Firstly, a 
constrained methodology is introduced for mining dynamic 
Web click streams. Next, we propose an effective summary data 
structure, IPFTS-tree (Improved Prefix Frequent Traversal 
Sequences tree), to maintain the essential information of the 
Web click streams. Thirdly, we develop a novel single-pass 
algorithm, FTS-Stream, to build and maintain IPFTS-tree to 
mine the FTS over a time-sensitive sliding window model. 

The remaining of the paper is organized as follow. Section 2 
presents the related work and the problem definition is given in 
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Section 3. Section 4 introduces the constraint strategy and 
harmonic count. Section 5 presents the FTS-Stream algorithm, 
while Section 6 introduces the experiments. Section 7 draws a 
conclusion. 
 

II. RELATED WORK 
 
Mining FP from data streams has been investigated by many 
researchers. Existing streaming algorithms mainly focus on 
landmark window model [3, 6]. However, most of these 
algorithms adopt an unchanged granularity, that is landmark 
model is not aware of time and therefore can not distinguish old 
data and new ones. In many cases, FP are usually time sensitive, 
and the old FP may have lost their attraction and importance. 
To overcome this difficulty, many approaches based on sliding 
window model are proposed. These approaches mainly care the 
changes and trends of the recent data. Manku, Chang and Lee 
[3, 13] propose the Lossy Counting algorithm and Carma 
algorithm, which adopt estimation mechanism to mine an 
approximate set of the FP. Lee et al. [10] propose a method to 
mine FP from the candidate 2-itemsets for each slide. But their 
approach may generate huge candidate itemsets, which 
consume large storage space. Moment algorithm proposed by 
Chi et al. [11]. Their algorithm is not suitable for mining FTS 
since Moment mainly finds closed FP. Yu et al. [12] utilize the 
theory of Chernoff bound to propose a false negative algorithm. 
Their method uses a predefined threshold to control the bound 
of memory usage and the quality of output. Cheng et al. [9] also 
propose a false negative algorithm, MineSW with a 
progressively increasing minimum support function. Although 
the two false negative methods can solve some questions that 
the false positive methods exist, they may not tackle the 
dilemma caused by r. All the previous works only consider a 
fixed number of transactions as the basic unit, which is not easy 
for people to specify. By contrast, it is natural for people to 
specify a time period as the basic unit. Therefore, in this paper, 
we propose the time-sensitive sliding window model, which 
regards a fixed time period as the basic unit for mining. 
 

III. FTS-STREAM ALGORITHM 

A. Problem Definition 

Let P = {P1, P2,…, Pn} be the complete set of web pages. A 
session, S, is a traversal sequence that is ordered by timestamp 
in Web click data. A traversal sequence ts = <P1, P2,…, Pm> 
(Pi∈P, 1 ≤ i ≤ m) is a list of web page which is ordered by 
traversal time, and each web page can repeatedly appear in ts. 
Consider two traversal sequences ts1 = <a1, a2,…, an > and ts2 = 
<b1, b2,…, bm > (n ≤ m). If there exists integers 1 ≤ i1<i2<... ≤ m 
with a1=bi1, a2=bi2,..., an=bim, then ts1 is a subsequence of ts2, 
and ts2 is a super-sequence of ts1. We write a ts = <P1, P2,…, 
Pm> as ts = <P1P2…Pm> in this paper. 
 

Given a Web click stream Wcs, Utilizing the cube model 
proposed in [15], Wcs is converted into traversal sessions, 
which compose the Session streams Ss = {S1, S2,…, Sm,…}, 
where, Si denotes a session in Ss. In this paper, we adopt the 
Session streams instead of original Web click streams to mine 

the FTS over the time-sensitive sliding window model. 
 

Given a time point t and a time period tp, the set of all the 
sessions arriving in [t-tp+1, t] will form a basic block. A 
Session stream Ss is decomposed into a sequence of basic 
blocks, which are assigned with serial numbers. Given a 
window with length w, we slide it over those basic blocks to 
observe a set of overlapping blocks, where each block sequence 
is called the time-sensitive sliding window (abbreviated as 
TSsw). A TSsw in the session streams is a window that slides 
forward for every basic block. 

A time interval in the Ss is a set of successive basic block 
units, denoted as B = <Bi,…,Bj>, where i ≤ j. We define Bi as 
the current basic block unit, within which a variable number of 
sessions may arrive and |Bi| as the number of session in Bi. For 
each current block Bi, TSswi consists of the |w| consecutive basic 
blocks from Bi-w+1 to Bi. The TSswi is denoted as TSswi 
=<Bi-w+1,…,Bi>. We define Session (B) as the set of sessions 
that arrive on Web click streams in a time interval B, and 
|Session (B)| as the number of sessions in Session (B). The count 
of traversal sequence ts over B, denoted as Count (ts, B), is the 
number of sessions in Session (B) that include ts. Given a user 
predefined minimum support threshold, s (0 ≤ s ≤ 1), ts is a FTS 
over B if Count (ts, B) ≥ s |Session (B)|. Consequently, the 
problem of online, single-pass mining FTS in a TSsw over a 
session stream Ss is to mine the set of FTSs by one scan of a 
continuous stream of sessions when s is given. 
 

TSsw1    TSsw2           TSswn 

 
B1    B2     B3    B4………… BN        time 

 
 

S1 p1p2p3p5     S3  p3p5  S4 p3p4p5    S6  p1p2p4 
S2 p1p2p3p4              S5  p3p5p1 

 

Fig. 1. Sessions in two TSsws 

Example Given an example to show the definition, Fig. 1 gives 
six sessions that are recorded the four basic block units. The 
four block units form two successive windows, TSsw1 = <B1, B2, 
B3> and TSsw2 = <B2, B3, B4>. Let the minimum support count 
be 3. We can get the set of FTS over TSsw1 and TSsw2, which 
are {<p1>, <p3>, <p5>, <p3p5>} and {<p3>, <p5>, <p3p5>}. 

B. Constraint Strategy and Weighted Harmonic Count 

1) Constraint Strategy 
The precision, recall, and efficiency of mining FTS in dynamic 
Web click streams environment are close relaxed to three 
factors: the constraint strategy, the method to recording the 
history information, and the summary data structure. We firstly 
describe the constraint strategy as follows. 

Given the nature of the Web click streaming data, there exist 
two sources of error when estimating frequent traversal 
sequences. One is that it is possible that some traversal 
sequences observed as frequent might in fact not be frequent 
anymore from a longer observation of the Web click stream. 
The other is that some traversal sequences observed as not 
frequent may well in fact be frequent from a longer history of 
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the Web click stream. The first error source is 
precision-oriented, and the second is recall-oriented. Existing 
algorithms use r=e/s to control the accuracy of the mining 
result. However, r can lead to a problem introduced in former 
sections. Therefore, we give two limited parameters λ1, λ2 to 
constrain the r, and take two efficient strategies to meet the 
mining purpose of the users. 

(1) If r<λ1, where λ1 is the lower bound parameter, then the 
second error source will be triggered. This case denotes a 
smaller r not only degrades the accuracy of the recall-oriented 
output, but increases the main memory consumption, and 
lowers the processing efficiency. Thus the relaxation ratio r 
should be larger than λ1. 

(2) If r>λ2, where λ2 is the upper bound parameter, then the 
first error source will be triggered. This case denotes a larger r 
gives a bad precision-oriented output. That is, larger r will 
degrade the mining precision. Thus the relaxation ratio r should 
be smaller than λ2.  
 

2) Weighted Harmonic Count 
Minimizing r (r ≈ λ1) can lead to minimize the first error source, 
but lower the mining efficiency and maximize the second 
source of error. On the other hand, Maximizing r (r ≈ λ2) leads 
to minimize the second error source, but maximize the first 
error source. Therefore, in this paper, we proposed a weighted 
harmonic average (abbreviated as WHA) of λ1 and λ2, to replace 
the relaxation ratio r. Thus, we can adjust the importance of one 
error source against the other by adjusting the ξ value. That is, ξ 
is a regulatory factor, which function mainly tackles the 
problem caused by the relaxation ratio r. 

WHA (r) = (1+ξ2) λ1λ2 ⁄ (λ1 + ξ2λ2) . (1)

E =s×WHA (r) =s × (1+ξ2) λ1λ2 ⁄ (λ1 + ξ2λ2). (2)

E in the equality (2) does not equal e (r=e/s), since r has been 
replaced by the WHA (r). Based on the equalities (1) and (2), 
the potential count of a ts over a basic block Bi is defined as 
follows: 

0  if Count (ts, Bi) < E |Session (Bi)| 
Count (ts, Bi) = 

Count (ts, Bi)     otherwise. 

(3)

Thus, the support count of ts over a time interval 
B=<Bj,…,Bm> is defined as follows. The type of support count 
is called accumulated count. 

Count (ts, B) = ∑Count (ts, Bi), Bi∈B=<Bj,…,Bm> . (4)

In this way, each ts is associated with the potential count and 
accumulated count. Moreover, the sum of the two counts is 
regarded as the count of the ts in TSswi. 

Given parameters λ1, λ2, and let TSswi = < Bi-w+1,…,Bi> be a 
current time-sensitive sliding window, its size is w, and TSR = < 
Bi-R+1,…,Bi>, where 1≤R≤w, be the most recent R basic block 
units in TSswi. TSR is a subsequence of TSswi. The size of TSR is 
|Session (TSR)|. We define a weighted harmonic count (denoted 
as WHC ()) as follows. 

WHC (R) = s |Session (TSR)| ×WHA (r) . (5)

If we maintain all possible traversal sequences in the current 
sliding window TSswi, this will require too much space, so we 
only maintain the most recent R basic block units, only keep the 
FTS in the window, and drop the remaining tail sequences of 
TSswi. Obviously, the ts over <Bi-w+1,…,Bi-R> is considered as 
infrequent traversal sequences, and its potential count will be 
taken as 0. Specially, we drop the tail <Bi-w+1,…,Bi-R> when the 
following condition holds: 

∑Count (ts, B) < E ∑|Session (Bi)|, where 
Bi∈B=<Bi-w+1,…,Bi-R> . 

(6)

 
3) FTS-Stream 

Our algorithm FTS-Stream (Frequent Traversal Sequence in 
dynamic Web clickStream) is composed of four steps: read a 
fixed size w window Session streams in the memory (step1), 
construct an in-memory summary data structure IPFTS-tree 
(Improved Prefix Frequent Traversal Sequence tree) by 
processing each incoming basic block unit Bi (step2), prune and 
maintain the summary data structure (step3), and mine the set of 
FTS from the current IPFTS-tree (step4). Steps 1 and 2 are 
performed in traversal sequence for a new sliding window TSsw. 
Steps 3 and 4 are usually performed periodically or when they 
are needed. Since the step 1 is straightforward, we shall focus 
on steps 2 and 4, devise algorithms for the effective 
construction and maintenance of data structure, and 
determination of the set of FTS. The process of mining frequent 
traversal sequences in Web click streams is shown Fig. 2. 
 
Web click streams 
                      Buffer1     Buffer2     IPFTS-tree 
 
 
 
                    Session streams 
     Cube Model                              FTS-Stream 
 
                      Approximate FTS  
 
 

Fig. 2.  The process of Mining FTS 
 

a. IPFTS-tree Construction 
An improved prefix frequent traversal sequence tree (abbreviate 
as IPFTS-tree) is a based on prefix tree data structure defined as 
below. 

(1) IPFTS-tree consists of one root labeled as “Root”, and a 
set of page-prefix subtrees (potentially FTS with its subset) as 
the children of the root. 

(2) Each node in the tree consists of six fields: page, MAC, 
flag, Bid, P.count, and A.count, where page registers which is 
the last web page of ts, MAC registers the number of sessions 
represented by the portion of the path reaching this node, flag 
registers whether the node is updated in current basic block unit 
Bi, Bid registers which is the id of the basic block unit, BBid, 
where ts is inserted into the IPFTS-tree, P.count, and A.count 
register prudential count and accumulated count respectively. 

(3) Each node in the IPFTS-tree represents a FTS (from root 
to this node), and its support is equal to the support of the node. 
Thus, an IPFTS-tree is similar with WAP-tree [2], but their 
structures are different. The difference is that IPFTS-tree stores 
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FTS instead of Web click streams. Fig. 3 shows the structure of 
the IPFTS-tree. 
 

Root 
                                          P1P3  
                                                                                  
    P1            P3    page Bid  MAC   flag  P.count A.count 
                        P3   4     9     1      3      6 
   
P2            P3   
 

Fig. 3. Structure of the IPFTS-tree 
 

b. FTS-Stream Algorithm 
Algorithm 1 CIPFTS-Tree: Construct IPFTS-tree 
Input: A Session stream Ss, s, WHA (r), w, λ1 and λ2; 
Output: An IPFTS-tree; 
Create the root of an IPFTS-tree, T, and label it with “Root”; 
For (each Bi∈TSswfirst=<B1,…, Bj>, (1 ≤ i ≤ j))  

Mine all FTS over Session (Bi); 
    For (each ts∈FTS) // TSswfirst denotes the first window. 
       If (ts ⊄ T) and (Count (ts, Bi) ≥ E |session (Bi)|)  

Create a new node of form (page, i, 1, 1, 0);  
Bid (ts) =i; Count (ts) = Count (ts, Bi); 

If ((ts ⊂ T)  
Add Count (ts, Bi) to Count (ts); 

 If (Count (ts) < WHC (i-Bid (ts) +1))  
Delete ts from T;  
Stop mining the supersets of ts over session (Bi); 
Call MIPFTS-tree; 

Subroutine 1 MIPFTS-tree: Maintain IPFTS-tree 
Input: An IPFTS-tree structure, s, λ1, λ2, w, an incoming Bi. 
Output: The updated IPFTS-tree. 
For (each incoming Bi∈TSsw)  

Mine all FTSs over session (Bi); 
For (each ts∈FTS) 
   If (ts⊂ T) and (flag ≠ 1)  

Add Count (ts, Bi) to Count (ts);  
Call PIPFTS-tree; 

   If (ts⊄ T) and (Count (ts, Bi) ≥ E |session (Bi)|)  
Create a new node of form (page, i, 1, 1, 0);  
Bid (ts) = i; Count (ts) = Count (ts, Bi); 

For (each expiring Bi-w+1∈TSsw) 
If (ts ⊂ T) and (i-Bid (ts) + 1 ≥ w)  

Count (ts) = Count (ts) - Count (ts, Bi-w+1); 
If (Count (ts) =0)  

Delete ts from T; 
Else Bid (ts) =i-w+2; 

Subroutine 2 PIPFTS-tree: prune IPFTS-tree 
Input: An IPFTS-tree structure, s, λ1, λ2, w. 
Output: The IPFTS-tree containing the set of FTS. 
For (each ts∈FTS) 
      If ((i-Bid (ts) + 1< w) and (Count (ts) < WHC (i-Bid (ts) 
+1))) or ((i-Bid (ts) + 1) ≥ w) and (Count (ts) <WHC (w))  

Delete ts from T;  
Delete the sub-trees of a node whose Bid is i by 

traversing the IPFTS-tree; 
 

Algorithm 2 FTS-Stream 
Input: A Session stream Ss, s, WHA (r), λ1, λ2 and w. 

Output: A temporal list of FTS, FTS-list. 
FTS-list =∅ ;  
Scan a Bi, and collect all FTS;  
Call MIPFTS-tree; 
Do depth-first-search to mine the FTS; 
If (Count (ts) ≥ s |session (w)|) 

 Store ts in the FTS-list; 
If (FTS-list ≠ ∅ )  

Output FTS from the FTS-list; 
 

FTS-Stream algorithm for mining FTS over a time-sensitive 
sliding window is described in Algorithm 2. In the window 
TSsw initialization phase, an IPFTS-tree is created and all FTS 
are stored in the tree. After the TSsw becoming full, we begin to 
slide TSsw. That is, a new basic block unit is appended to the 
TSsw, and the expiring block unit is removed from the window. 
In this phase, FTS and IPFTS-tree are maintained. When a new 
basic block unit Bi arrives, we mine ts from the Bi and update 
the IPFTS-tree structure. For each ts, if ts does not appear in the 
IPFTS-tree and Count (ts, Bi) ≥ E |session (Bi)|, then we insert 
ts. If ts appears, we add Count (ts, Bi) to Count (ts) and check 
the flag label of the node with ts. If flag ≠ 1, then we update the 
node, and check whether ts should be removed from the 
IPFTS-tree or not. If ts meet the condition of subroutine 2, we 
remove ts from the tree structure. When an old basic unit Bi-w+1 
expires, we should check the weighted harmonic count of ts, 
which is counted from Bi-w+1. If i-Bid (ts) + 1 ≥ w, then we can 
subtract the support count of ts. For traversal sequence ts in the 
IPFTS-tree, if its weighted harmonic count is less than a 
pruning threshold, it is pruned from the IPFTS-tree. Finally, we 
output all the FTS whose support is greater than the minimum 
support. Besides, let k be the number of FTS in the Web click 
stream generated so far. An IPFTS-tree structure has at most 2k 
nodes for storing the set of all FTSs of Web click streams. 
 

IV. EXPERIMENT RESULTS 
 
Our algorithm was written in C++ and compiled using gcc. All of 
our experiments are performed on a 2.4GHz Pentium IV 
processor with 512 MB of main memory, 768 MB of virtual 
memory, and running on Redhat 9.0. We pursue the 
experiments on real datasets to evaluate the performance of 
FTS-Stream algorithm. The real click stream datasets, 
BMS-WebView-1 and BMS-WebView-2, which contain 
several months’ worth of click stream data from two 
e-commerce Web sites. The real datasets was provided by Blue 
Martin Software [14], and is available form the KDD Cup 2000 
home page. The BMS-WebView-1 consists of 367 distinct 
pages, 59602 sessions and the average session size contains 
7-13 pages. The BMS-WebView-2 consists of 320 distinct 
pages, 537083 sessions and the average session size is ten pages. 
Each TSsw consists of 20 basic block units, and each basic unit 
includes 100k sessions. To evaluate the performance of 
FTS-Stream, three group experiments are performed. 

A. Two Bounds Constraint 
In the first group experiment, we run the FTS-Stream 
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algorithm from tow different aspects. One aspect, FTS-Stream 
does not contain the two bound parameters λ1 and λ2. The other 
aspect, FTS-Stream contains the two bound parameters. We set 
λ1 =0.001, λ2 =0.999, ξ =0.031, and s=0.01, respectively. Let 
ET1 be the execution time without λ1 and λ2, and ET2 be the 
execution time with λ1 and λ2. Let PT (PT=1-(ET2/ET1)) be the 
improved performance in percentage. Fig. 4 shows that PT of 
the FTS-Stream clearly increases with the datasets changing 
from 200k to 1000k. 

 
Fig. 4.  Improved performances in percentage for FTS-Stream 

B. Changing Minimum Support threshold 

In the second group experiment, we test the performance of 
FTS-Stream by comparing with previous algorithms Lossy 
Counting and MineSW. However, we renew to set the value of 
the regulatory factor, ξ=0.03 and ξ=0.09. We still hold the 
values of support threshold s and the two bounds λ1 and λ2 as 
same as the first group experiment. We measure FTS-Stream 
with Lossy Counting and MineSW in four aspects: execution 
time, precision, recall and space usage. The results can be seen 
in Fig. 5 ~ Fig.8. In Fig. 5, the execution time of FTS-Stream 
grows smoothly as the support threshold decrease from 2.0% to 
0.05%. However, when ξ=0.03, the time of FTS-Stream is over 
3 times faster than ξ=0.09, while FTS-Stream (ξ=0.03) is about 
4 times than faster MineSW, and 10 more times over Lossy 
Counting. Fig. 6 and Fig. 7 show the precision and recall 
comparison among several algorithms with the changing of the 
support. In this situation, FTS-Stream behaves best. When 
ξ=0.09, precision and recall of FTS-Stream are over 0.93, while 
ξ=0.03, the two aspects are about 0.98.Through adjusting the 
regulatory factor, precision and recall can cater to the purpose 
of the users. As shown in Fig. 8, the space usage of FTS-Stream 
is relatively insensitive to the support. As the support decreases, 
the space usage of FTS-Stream increases stablely. 

 
(a) BMS-WebView-1 

 
(b) BMS-WebView-2 

Fig. 5.  Execution time on two datasets with different threshold 

 
(a) BMS-WebView-1 

 
(b) BMS-WebView-2 

Fig. 6.  Precision on different threshold 

 
(a) BMS-WebView-1 
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(b) BMS-WebView-2 

 
Fig. 7.  Recall on different threshold 

 
(a) BMS-WebView-1 

 
(b) BMS-WebView-2 

 
Fig. 8.  Memory Usage over different threshold 

C. Adjusting the Regulatory Factor 
In the third group experiment, we measure the recall and 
precision of FTS-Stream with Lossy Counting and MineSW by 
adjusting the value of the regulatory factor. λ1, λ2 and s hold the 
same values as the former experiments. In Fig. 8, we plot the 
recall and precision of our algorithm for values of ξ ranging 
from 0.01 to 0.11. The figure shows how increasing ξ leads to 
decrease in recall and precision. Fig. 9 (a) and (b) show that 
FTS-Stream almost has 100% recall and precision as ξ 
increases from 0.01 to 0.11. However, the precision and recall 
of Lossy Counting and MineSW sharply drop. The result 
indicates that Lossy Counting and MineSW often reckon on the 
r to control the recall and precision of the output, while 
FTS-Stream adopt constraint strategy to limit r, and utilize the 
weighted harmonic average of the two bounds to replace it. As 
a result, we can avoid the problem caused by r. 

 
(a) Recall on different regulatory factor 

 
(b) Precision on different regulatory factor 

 
Fig. 9.  Recall and Precision on different threshold 

 
V. CONLUSIONS 

 
In this paper, we propose a novel constraint-based algorithm 
FTS-Stream to discover the set of frequent traversal sequences 
over a time-sensitive sliding window. An effective in-memory 
summary data structure IPFTS-tree is developed to maintain the 
essential information of FTS in the Web click streams so far. In 
the FTS-Stream algorithm, the weighted harmonic average with 
a constraint strategy is used to tackle the abuse of the relaxation 
ratio r. When the lower bound and upper bound are set, we can 
adjust the value of regulatory factor to get the decent recall and 
precision on the mining results. The experimental results show 
that our algorithm significantly outperforms the known Lossy 
Counting and MineSW algorithms in terms of execution time, 
recall, precision, and memory consumption. 
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