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Abstract. Outlier detection has recently become an important 
problem in many industrial and financial applications. This 
problem is further complicated by the fact that in many cases, 
outliers have to be detected from data streams that arrive at an 
enormous pace. In this paper, an incremental LOF (Local Outlier 
Factor) algorithm, appropriate for detecting outliers in data 
streams, is proposed. The proposed incremental LOF algorithm 
provides equivalent detection performance as the iterated static 
LOF algorithm (applied after insertion of each data record), 
while requiring significantly less computational time. In addition, 
the incremental LOF algorithm also dynamically updates the 
profiles of data points. This is a very important property, since 
data profiles may change over time.  The paper provides 
theoretical evidence that insertion of a new data point as well as 
deletion of an old data point influence only limited number of 
their closest neighbors and thus the number of updates per such 
insertion/deletion does not depend on the total number of points 
N in the data set. Our experiments performed on several 
simulated and real life data sets have demonstrated that the 
proposed incremental LOF algorithm is computationally 
efficient, while at the same time very successful in detecting 
outliers and changes of distributional behavior in various data 
stream applications.  
 

I. INTRODUCTION 

Despite the enormous amount of data being collected in 
many scientific and commercial applications, particular events 
of interests are still quite rare. These rare events, very often 
called outliers or anomalies, are defined as events that occur 
very infrequently (their frequency ranges from 5% to less than 
0.01% depending on the application). Detection of outliers 
(rare events) has recently gained a lot of attention in many 
domains, ranging from video surveillance and intrusion 
detection to fraudulent transactions and direct marketing. For 
example, in video surveillance applications, video trajectories 
that represent suspicious and/or unlawful activities (e.g. 
identification of traffic violators on the road, detection of 
suspicious activities in the vicinity of objects) represent only a 
small portion of all video trajectories. Similarly, in the 
network intrusion detection domain, the number of cyber 
attacks on the network is typically a very small fraction of the 
total network traffic. Although outliers (rare events) are by 
definition infrequent, in each of these examples, their 
importance is quite high compared to other events, making 
their detection extremely important. 

Data mining techniques developed for this problem are 
based on both supervised and unsupervised learning. 
Supervised learning methods typically build a prediction 
model for rare events based on labeled data (the training set), 
and use it to classify each event [1, 2]. The major drawbacks 
of supervised data mining techniques include: (1) necessity to 

have labeled data, which can be extremely time consuming for 
real life applications, and (2) inability to detect new types of 
rare events. In contrast, unsupervised learning methods 
typically do not require labeled data and detect outliers as data 
points that are very different from the normal (majority) data 
based on some measure [3]. These methods are typically 
called outlier/anomaly detection techniques, and their success 
depends on the choice of similarity measures, feature selection 
and weighting, etc. They have the advantage of detecting new 
types of rare events as deviations from normal behavior, but 
on the other hand they suffer from a possible high rate of false 
positives, primarily since previously unseen (yet normal) data 
can be also recognized as outliers/anomalies.  

Very often, data in many rare events applications (e.g. 
network traffic monitoring, video surveillance, web usage 
logs) arrives continuously at an enormous pace thus posing a 
significant challenge to analyze it [36]. In such cases, it is 
important to make decisions quickly and accurately. If there is 
a sudden or unexpected change in the existing behavior, it is 
essential to detect this change as soon as possible. Assume, for 
example, there is a computer in the local area network that 
uses only limited number of services (e.g., Web traffic, telnet, 
ftp) through corresponding ports. All these services 
correspond to certain types of behavior in network traffic data. 
If the computer suddenly starts to utilize a new service (e.g., 
ssh), this will certainly look like a new type of behavior in 
network traffic data. Hence, it will be desirable to detect such 
behavior as soon as it appears especially since it may very 
often correspond to illegal or intrusive events. Even in the case 
when this specific change in behavior is not necessary 
intrusive or suspicious, it is very important for a security 
analyst to understand the network traffic and to update the 
notion of the normal behavior. Further, on-line detection of 
unusual behavior and events also plays a significant role in 
video and image analysis [14-16]. Automated identification of 
suspicious behavior and objects (e.g., people crossing the 
perimeter around protected areas, leaving unattended luggage 
at the airport installations, cars driving unusually slow or 
unusually fast or with unusual trajectories) based on 
information extracted from video streams is currently an 
active research area. Other potential applications include 
traffic control and surveillance of commercial and residential 
buildings. These tasks are characterized by the need for real-
time processing (such that any suspicious activity can be 
identified prior to making harm to people, facilities and 
installations) and by dynamic, non-stationary and often noisy 
environment. Hence, there is necessity for incremental outlier 
detection that can adapt to novel behavior and provide timely 
identification of unusual events. 
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Recently, LOF (Local Outlier Factor) algorithm [9] has been 
successfully applied in many domains for outlier detection in a 
batch mode [4, 5]. In this paper, we propose a novel 
incremental LOF algorithm that is appropriate for detecting 
outliers in data streams. The proposed incremental LOF 
algorithm is the first incremental outlier detection algorithm to 
the best of our knowledge. It provides equivalent detection 
performance as the static LOF algorithm, and has O(NlogN) 
time complexity, where N is the total number of data points. 
The paper shows that insertion of new data points as well as 
deletion of obsolete points influence only limited number of 
their nearest neighbors and thus insertion/deletion time 
complexity per data point does not depend on the total number 
of points N. Our experiments performed on several simulated 
and real life data sets have demonstrated that the proposed 
incremental LOF algorithm can be very successful in detecting 
outliers in various data streaming applications. 
 

II. BACKGROUND 

Outlier detection techniques [40] can be categorized into 
four groups: (1) statistical approaches; (2) distance based 
methods; (3) profiling methods; and (4) model-based ap-
proaches. In statistical techniques [3, 6, 7], the data points are 
typically modeled using a stochastic distribution, and points 
are labeled as outliers depending on their relationship with this 
model. Distance based approaches [8, 9, 10] detect outliers by 
computing distances among points. Several recently proposed 
distance based outlier detection algorithms are based on (1) 
computing the full dimensional distances among points using 
all the available features [10] or only feature projections [8]; 
and (2) on computing the densities of local neighborhoods [9, 
35]. In addition, clustering-based techniques have also been 
used to detect outliers either as side products of the clustering 
algorithms (points that do not belong to clusters) [11] or as 
clusters that are significantly smaller than others [12]. In pro-
filing methods, profiles of normal behavior are built using 
different data mining techniques or heuristic-based 
approaches, and deviations from them are considered as 
outliers (e.g., network intrusions). Finally, model-based 
approaches usually first characterize the normal behavior 
using some predictive models (e.g. replicator neural networks 
[13] or unsupervised support vector machines [4, 12]), and 
then detect outliers as deviations from the learned model. 

Initially proposed outlier detection algorithms determine 
outliers once all the data records (samples) are present in the 
dataset. We refer to these algorithms as static outlier detection 
algorithms. In contrast, incremental outlier detection tech-
niques [38, 39, 41] identify outliers as soon as new data record 
appears in the dataset. Incremental outlier detection was also 
used within more general framework of activity monitoring 
[38]. In addition, Domingos and Hulten [39] proposed broad 
requirements that incremental algorithms need to meet, while 
Yamanishi and Takeuchi [41] used on-line discounting distri-
butional learning of Gaussian mixture model and scoring 
based on the estimated probability density function. 

In this study, we use propose an incremental outlier 
detection algorithm based on computing the densities of local 

neighborhoods. In our previous work [4], we have 
experimented with numerous outlier detection algorithms for 
network intrusion identification, and we have concluded that 
the local density based outlier detection approach (e.g. LOF) 
typically achieved the best prediction performance.  

The main idea of the LOF algorithm [9] is to assign to each 
data record a degree of being outlier. This degree is called the 
local outlier factor (LOF) of a data record. Data records 
(points) with high LOF have local densities smaller than their 
neighborhood and typically represent stronger outliers, unlike 
data points belonging to uniform clusters that usually tend to 
have lower LOF values. The algorithm for computing the 
LOFs for all data records has the following steps: 
1. For each data record q compute k-distance(q) as distance to 
the k-th nearest neighbor of q (for definitions, see Section III).  
2. Compute reachability distance for each data record q with 
respect to data record p as follows:  
  reach-distk(q,p)= max(d(q,p), k-distance(p))                (1) 

where d(q,p) is Euclidean distance from  q to  p.  
3. Compute local reachability density (lrd) of data record q 
as inverse of the average reachability distance based on the k 
nearest neighbors of the data record q (In original LOF 
publication [9], parameter k was named MinPts). 
  

( )
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=
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k kpqdistreach
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4. Compute LOF of data record q as ratio of average local 
reachability density of q’s k nearest neighbors and local 
reachability density of the data record q. 
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The main advantages of LOF approach over other outlier 
detection techniques include: 
- It detects outliers with respect to density of their neighboring 
data records; not to the global model. 
- It is able to detect outliers regardless the data distribution of 
normal behavior, since it does not make any assumptions 
about the distributions of data records. 

In order to fully justify the need for incremental outlier 
detection techniques, it is important to understand that 
applying static LOF outlier detection algorithms to data streams 
would be extremely computationally inefficient and/or very 
often may lead to incorrect prediction results. Namely, static 
LOF algorithm may be applied to data streams in three ways: 
1. “Periodic” LOF. Apply LOF algorithm on the entire data set 

periodically (e.g., after every data block of 1000 data 
records is inserted, similar to the strategy discussed in [39]) 
or after all the data records are inserted. The major problem 
of this approach is inability to detect outliers related to the 
beginning of new behavior that initially appear within the 
inserted block. Fig. 1 illustrates this scenario. Assume that a 
new data point dn (red asterisk in Fig. 1a) is added to the 
original data distribution (blue dots in Fig. 1a). Initially, 
point dn is an outlier since it is distinct from all other data 
records. However, when additional data records (red 
asterisks in Fig. 1b) start to group around the initial data 
record dn, these new points are no longer outliers since they 
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form their own cluster. Ideally, at the time of its insertion, 
data record dn should be identified as an outlier [38]. 
However, in this “periodic” scenario, the LOF algorithm is 
applied when all data records are added to the original data 
set and thus already formed the new distribution. Hence, all 
the points from the new cluster, including dn, will be 
identified as normal behavior! On the other hand, if an 
incremental LOF algorithm is applied after every new data 
instance is inserted into the data set, not only it is possible to 
detect points like dn as outliers but also to detect the moment 
in time when this change of behavior occurred. 

  
Fig. 1. Inability of static LOF algorithms to identify change of behavior: a) 
Point dn can be correctly identified as outlier by “supervised” LOF algorithm 
but not by “periodic” LOF; b) Points belonging to the new distribution are 
incorrectly identified as outliers by “supervised” LOF. 

2. “Supervised” LOF. Given a training data set D0 at time 
interval t0, LOF algorithm is first applied to compute the k-
distances, lrd and LOF values for all data records from the 
training data set D0. For every time interval, t > t0, when a 
new data record dn is inserted into the data set, k-distance, 
reachability distances and lrd values are computed for the 
new record dn. However, when computing LOF(dn) using 
Eq. (3), lrd(dn) is used along with pre-computed lrd values 
for the original data set D0. It is apparent that this approach 
will result in several problems: (i) Estimated value  LOF(dn) 
will not be accurate, since it uses pre-computed k-distance, 
reach-dist and lrd values; (ii) a new behavior (shown as red 
asterisks in Fig. 1b) will always be detected as outlier since 
this approach does not update the normal behavior profile; 
(iii) masquerading (attempt of hiding within existing 
distribution) cannot be identified, since all inserted data 
points will always be considered as normal as they belong to 
normal distribution (Fig. 2). Namely, assume that a new data 
point dn (red square in Fig. 2a) is inserted within existing 
data distribution and all new data points start to group 
around the point dn (red squares in Fig. 2b) but with much 
higher density than the original data distribution. 
Apparently, these newly added points will form a cluster of 
very high density which is substantially different than the 
cluster of the original distribution. “Supervised” LOF 
approach considers these points to belong to the original 
data distribution, since it is not aware of new data points 
forming the dense cluster. On the other hand, incremental 
LOF algorithm, after insertion of each new data point, 
would identify this phenomenon, since it can take into 
account the newly added points, when updating lrd and LOF 
values of existing points (that are already in the database). 

  
Fig. 2. Detecting masqueraders (hiding within existing distribution) 

3. “Iterated” LOF. Re-apply the static LOF algorithm every 
time a new data record dn is inserted into the data set. This 
static LOF algorithm does not suffer from aforementioned 
problems, but is extremely computationally expensive, since 
every time a new point is inserted, the algorithm recomputes 
LOF values for all the data points from the data set. 
Knowing that time complexity of LOF algorithm is O(n·log 
n) [9], where n is the current number of data records in the 
data set, total time complexity for this “iterated” approach, 
after insertion of N points, is : 
            )log(log 2

1
NNOnnO

N

n
⋅=





 ∑

=

,                     (4) 

Our proposed incremental LOF algorithm is designed to 
provably provide the same prediction performance (detection 
rate and false alarm rate) as the “iterated” LOF. It is achieved 
by consistently maintaining for all existing points in the 
database the same LOF values as the “iterated” LOF 
algorithm. Our proposed incremental LOF algorithm 
efficiently addresses the problems mentioned in Fig. 1 and 2, 
but has time complexity O(N⋅logN) thus clearly outperforming 
the static “iterated” LOF approach. After all N data records are 
inserted into the data set, the final result of the incremental 
LOF algorithm on N data points is independent of the order of 
insertion and equivalent to the “periodic” LOF executed after 
all the data records are inserted.  
 

III. METHODOLOGY 

When designing incremental LOF algorithm, we have been 
motivated by two goals. First, the result of the incremental 
algorithm must be equivalent to the result of the “static” 
algorithm every time t a new point is inserted into a data set. 
Thus, there would not be a difference between applying 
incremental LOF and the “periodic” static LOF when all data 
records up to time instant t are available. Second, asymptotic 
time complexity of incremental LOF algorithm has to be 
comparable to the static LOF algorithm. In order to have 
feasible incremental algorithm, it is essential that, at any time 
moment t, insertion/deletion of the data record results in 
limited (preferably small) number of updates of algorithm 
parameters. Specifically, the number of updates per each 
insertion/deletion must not be dependent on the current 
number of records in the dataset; otherwise, the performance 
of the incremental LOF algorithm would be Ω(N2) where N is 
the final size of the dataset. In this section, we demonstrate 
efficient insertion and deletion of records in the incremental 
LOF algorithm and provide its exact time complexity analysis. 

dn 

a) b

a) b

d
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A. Incremental LOF algorithm 
The proposed incremental LOF algorithm computes LOF 

value for each data record inserted into the data set and instantly 
determines whether inserted data record is outlier. In addition, 
LOF values for existing data records are updated if needed. 

i. Insertion. In the insertion part, the algorithm performs two 
steps: a) insertion of new record, when it computes reach-dist, 
lrd and LOF values of a new point; b) maintenance, when it 
updates k-distances, reach-dist, lrd and LOF values for 
affected existing points. Let us first illustrate these steps 
through the example of inserting a new data point n into a data 
set shown on Fig. 3a. If we assume k = 2, we first need to 
compute reachability distances to two nearest neighbors of the 
new data point n (data points 4, 6 in Fig. 3a), so that its lrd 
value can be computed. As it is shown further in the paper 
(Theorem 1), insertion of the point n may decrease the k-
distance of certain neighboring points, and it can happen only 
to those points that have the new point n in their k-
neighborhood. Hence, we need to determine all such affected 
points, (points 1, 3, 4, 6 have point n in their 2-neighborhood, 
see Fig. 3a). According to Eq. (1), when k-distance(p) changes 
for a point p, reach-dist(q,p) will be affected only for points q 
that are in k-neighborhood of the point p. In our example, 
previous 2-neighbors of data point 3 are the data points 2, and 
11, so reach-dist(11,3), and reach-dist(2,3) will be updated 
(Fig. 3b). According to Eq. (2), lrd value of a point q is 
affected if: a) the k-neighborhood of the point q changes or b) 
reach-dist from point q to one of its k-neighbors changes. The 
2-neighborhood of a point will change only if the new point n 
becomes one of its 2-neighbors. Hence, we need to update lrd 
on all points to which the point n is now one of their 2-
neighbors (points 1, 3, 4, 6 in Fig. 3b) and on all points q 
where reach-dist(q,p) is updated and p is among 2-nearest 
neighbors of q (points 2,5,7 in Fig. 3c). According to Eq. (3), 
LOF values of an existing point q should be updated if lrd(q) 
is updated (points 1,2,3,4,5,6,7 in Fig. 3d) or lrd(p) of one of 
its 2-neighbors p changes (points 8,9,10 In Fig 3d). Note that 
LOF value of point 11 is not updated since point 3 (where lrd 
is updated) is not among its 2 nearest neighbors. 

The general framework for the incremental LOF method is 
shown in Fig. 4. As in the static LOF algorithm [9], we define 
k-th nearest neighbor of a record p as a record q from the 
dataset S such that for at least k records o’∈S \ {p} it holds 
that d(p,o’) ≤ d(p,q), and for at most k-1 records o’∈S \ {p} 
holds that d(p,o’) < d(p,q), where d(p,q) denotes Euclidean 
distance between data records p and q. We refer d(p,q) as k-
distance(p). k nearest neighbors (referred to as kNN(p)) 
include all points r∈S \ {p} such that d(p,r) ≤ d(p,q). We also 
define k reverse nearest neighbors of p ( referred to as kRNN 
(p)) as all points q for which p is among their k nearest 
neighbors. For a given data record p, kNN(p) and kRNN(p) 
can be respectively retrieved by executing nearest-neighbor 
and reverse (a.k.a. inverse) nearest neighbor queries [17-
20,42]on a dataset S. The correctness of the insertion 
algorithm is based on the following Theorems 1-4. 

Theorem 1. The insertion of point pc affects the k-distance at 
points pj that have point pc in their k-nearest neighborhood, 

i.e., where pj∈ kRNN(pc). New k-distances of the affected 
points pj are updated as follows: 

( )( ) ( )
( ) ( )( )





−
=−

otherwise. ,distance 1
 ofneighbor nearest th -  theis  ,,

distance
j

old
jccj

j
new

pk
pkpppd

pk  (5) 

Proof. (sketch). In insertion, k-distance of an existing point pj 
changes when a new point enters the k-th nearest 
neighborhood of pj, since in this case the k-neighborhood of pj 
changes. If a new point pc is the new k-th nearest neighbor of 
pj, its distance from pj becomes the new k-distance(pj). 
Otherwise, old k-1th neighbor of pj becomes the new k-th 
nearest neighbor of pj (see Fig. 5). 

Corollary 1. During insertion, k-distance cannot increase, 
i.e., ( ) ( ) ( ) ( ).distancedistance j

old
j

new pkpk −≤− � 
Theorem 2. Change of k-distance(pj) may affect reach-distk 

(pi,pj) for points pi that are k-neighbors of pj. (see Fig 5b). 
Proof (sketch). Using (1), ∀ pi d(pi, pj) > k-distance(old)(pj), 

⇒ reach-distk
(old) (pi,pj)= d(pi, pj). According to Corollary 1, k-

distance(pj) cannot increase, hence if d(pi, pj) > k-
distance(old)(pj), reach-distk

(new) (pi,pj) = reach-distk
(old) (pi,pj). � 

Theorem 3. lrd value needs to be updated for every record 
(denoted with pm in Fig. 4) for which its k-neighborhood 
changes or for which reachability distance to one of its kNN 
changes. Hence, after each update of reach-distk (pi,pj) we 
have to update lrd(pi) if pj is among kNN(pi). Also, lrd is 
updated for all points pj whose k-distance was updated.  

Proof (sketch). Change of k-neighborhood of pm affects the 
scope of the sum in Eq. (2) computed for all k-neighbors of pm. 
Change of the reachability distance between pm and some of 
its k-nearest neighbors affects corresponding term in the 
denominator of Eq. (2). � 

Theorem 4. LOF value needs to be updated for all data 
records pm which lrd has been updated (since lrd(pm) is a 
denominator in Eq. (3)) and for those records that have records 
pm in their kNNs. Hence, the set of data records where LOF 
needs to be updated (according to (3)) corresponds to union of 
records pm and their kRNN. 
Proof (sketch). Similar to the proof of Theorem 3, using (3).� 

ii. Deletion. In data stream applications it is sometimes 
necessary to delete certain data records (e.g., due to their 
obsoleteness). Very often, not only a single data record is 
deleted from the data set, but the entire data block that may 
correspond to particular outdated behavior. Similarly like in an 
insertion, upon deleting the block of data records Sdelete, there 
is a need to update parameters of the incremental LOF 
algorithm. 

The general framework for deleting the block of data records 
Sdelete from the dataset S is given in Fig. 6. The deletion of each 
record pc ∈ Sdelete from dataset S influences the k-distances of 
its kRNN. k-neighborhood increases for each data record pj 
that is in reverse k-nearest neighborhood of pc. For such 
records, k-distance(pj) becomes equal to the distance from pj to 
its new k-th nearest neighbor. The reachability distances from 
pj’s (k-1) nearest neighbors pi to pj need to be updated. 
Observe that the reachability distance from the k-th neighbor 
of pj to record pj is already equal to their Euclidean distance  
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      (a)              (b) 

      (c)                     (d) 
 
Fig. 3. The illustration of the proposed incremental LOF algorithm. a) Insertion of a new point n (red) results in computation of the reachability distance to its two 
nearest neighbors 4, 6 (cyan) and to update of 2-distance to reverse nearest neighbors of n (1,3,4,6, yellow). b) Reachability distance reach-dist(q,p) is updated to 
all reverse k-neighbors of the point n from their 2-neighbors (blue arrows from q to p). c) lrd is updated for all points where 2-distance is updated and for points 
which reachability distance to their 2-neighbor changes (green). d) LOF is updated for points where lrd is updated and for points where lrd of one of their 2-
neighbors is updated (pink). 
 

 
Fig. 4. The general framework for insertion of data record and computing its 
LOF value in incremental LOF algorithm. 

d(pi, pj) and does not need to be updated (Fig. 7). Analog to 
insertion, lrd value needs to be updated for all points pj where 
k-distance is updated. In addition, lrd value needs to be 
updated for points pi such that pi is in kNN of pj and pj is in 

kNN of pi. Finally, LOF value is updated for all points pm on 
which lrd value is updated as well as on their kRNN. The 
correctness of the deletion algorithm can be proven analog to 
the correctness of the insertion algorithm. 

  
   (a)     (b) 

Fig. 5. Update of k-nearest neighbor distance upon insertion of a new record 
(k=3). a) New record pc is not among 3-nearest neighbors of record pj ⇒ 3-
distance(pj) does not change; b) New record pc is among 3-nearest neighbors 
of  pj ⇒ 3-distance(pj) decreases. Cyan dashed lines denote updates of 
reachability distances between point pj and two old points. 

B. Computational efficiency of the incremental LOF algorithm 
To determine time complexity of the proposed incremental 

LOF algorithm, it is essential to demonstrate that the number 
of affected data records (updates of k-distance, reachability 
distances, lrd and LOF values) does not depend on the current 
number n of records in the dataset, as stated by Theorems 5-8. 
Subsequently, Corollaries 3-5 provide asymptotic time 
complexity for the proposed algorithm. 

ff 

ff 

ff 

ff 

n 

1 

2 

3

4 

5 

6 

7 11 
8 

9 

10 

ff 

ff 

ff 

ff 

n 

1 

2 

3 

4

5

6

7 11 
8

9

10

ff 

ff 

ff 

ff 

n 

1 

2 

3

4 

5 

6 

7 11 
8 

9 

10 

ff 

ff 

ff 

ff 

n 

1 

2 

3 

4

5

6

7 11 
8

9

10

Incremental LOF_insertion(Dataset S) 
• Given: Set S {p1, … ,pN} pi ∈R

D, where D corresponds 
to the dimensionality of data records. 
• For each data point pc in data set S 

 insert(pc) 
 Compute kNN(pc) 
 (∀pj∈ kNN(pc)) 

compute reach-distk(pc,pj) using Eq. (1); 
//Update_neighbors of pc  
 Supdate_k_distance =kRNN(pc); 
 (∀pj ∈ Supdate_k_distance) 

update k-distance(pj) using Eq.(5); 
 Supdate_lrd = Supdate_k_distance;  
 (∀pj ∈ Supdate_k_distance), (∀pi∈kNN(pj)\{pc}) 

reach-distk(pi,pj) =k-distance(pj); 
if pj ∈ kNN(pi) 
Supdate_lrd = Supdate_lrd ∪{pi};   

 Supdate_LOF = Supdate_lrd;  
 (∀pm ∈ Supdate_lrd) 

update lrd(pm) using Eq. (2); 
Supdate_LOF = Supdate_LOF ∪ kRNN(pm); 

 (∀pl ∈ Supdate_LOF) 
update LOF(pl) using Eq.(3); 

 compute lrd(pc) using Eq.(2); 
 compute LOF(pc) using Eq.(3); 

• End //for 

pj 

pc 

3-distance(new)(pj)

3-distance(old)(pj ) 

d(pj, pc) 
< 3-distance(old)(pj ) 

pj 

3-distance(old)(pj ) 

pc 

d(pj, pc)≥ 3-distance(old)( pj ) 

3-distance(new)(pj) 
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Fig. 6. The framework for deletion of data record in incremental LOF method. 

 

       (a)               (b) 
Fig. 7. Update of k-nearest neighbor distance upon deletion of record pc (k=3). 
a) Prior to deletion, data record pc is among 3-nearest neighbors of record pj; 
b) After deletion of pc, 3-distance(pj) increases and reachability distances from 
two nearest neighbors of pj (denoted by cyan dashed lines) are updated to 3-
distance(pj). 

Theorem 5. Maximal number F of k reverse nearest 
neighbors of a record p is proportional to k, exponentially 
proportional to the dimensionality D, and does not depend on 
n. 

To prove Theorem 5, we will first establish a few definitions 
[37] and prove Lemmas 1, 2 necessary to establish D-
dimensional geometry of the space where the considered data 
records reside. 

Definition 1. The cone C in D-dimensional space with vertex 
v and axis l is locus of points x such that the Euclidean 
distance of the point x to the vertex d(x,v) is proportional to 
the distance d(x’,v) of point’s projection x’ onto l to the vertex 
v. A line containing a point x on cone and the origin is called 
generatix. When the vertex is at the origin of the coordinate 
system (v=O) we refer a cone as centered cone. 

 
Fig. 8. Illustration of lemma 2 in three-dimensional space 

Definition 2. A half-axis angle of a cone is an angle 
α/2=∠xvx’. It is angle between the axis and any generatrix. 

Lemma 1.  Coordinates X1, X2,…, XD of a point x on the 
centered cone C, where the axis l of the cone is parallel to the 
x1 axis of the coordinate system, satisfy: 

 X2
2+ X3

2+… XD
2 =a2 X1

2, a > 0             (6) 
where a is a pre-specified parameter. Half-axis angle of C 

satisfies the following condition: 
 

2

1

2

1

1
1

2
cos

aX

X
D

i
i

+
=

∑
=

=

α .             (7) 

Proof. Follows directly from definitions 1 and 2 and the fact 
that the length of x’ is X1 when l is parallel to x1. � 

Definition 3. All points which coordinates satisfy relation 
X2

2+ X3
2+… XD

2 <a2X1
2 are inside the cone C and comprise 

set inside(C). 
Definition 4. [36] The ball B(c,R) in D-dimensional space is 

locus of points x such that the distance of the point x from a 
prespecified point c is smaller or equal R>0. 

Lemma 2. Consider cone C with vertex p and half-axis angle 
α/2≤300. Consider ball  B(p, R), and volume V=B∩C. 
(∀p’∈C) d(p’,p)=R ⇒V ⊂ B’(p’,R) (See Fig. 8 for tree-
dimensional illustration). 

Proof. (sketch). Without loss of generality, we may assume 
that the cone is centered, i.e., that p is at the origin. Let 
coordinates of point p’ be X’1, X’2,…, X’D. Consider a point 
p’’ symmetric to p’ with respect to the x1 axis. The point p’’ 
has coordinates X’1, -X’2,…, -X’D. It is easy to observe that 
p’’∈C and d(p,p’’)=R. The distance between these two points 
is ( ) 1

22
2 2...2'',' aXXXppd D =+= . Since points p’, p’’ are 

on the sphere with radius R, from Eq. (7) we can obtain 

( ) RRRppd =≤= 030sin2
2

sin2'',' α . Therefore, the ball B’(p’, 

R) contains the point p’’ antipodal to p’. It can be shown that 
B’ also contains any other boundary point of V. � 

Definition 5. A frame of cones Ci, i = 1,…,h is defined as a 
set of h cones with the common vertex p and common angle 

α=600 

V 

p 

p’ 

R 

r 

 
 

X1 

x1 

p’’

B 

B’
R 

Incremental LOF_deletion(Dataset S,Sdelete) 
♦ Supdate_k_distance=∅; 
♦ (∀pc ∈ Sdelete) 
 Supdate_k_distance = Supdate_k_distance∪kRNN(pc); 
 delete(pc); //we can delete pc after finding  
    // all reverse neighbors 
♦ Supdate_k_distance= Supdate_k_distance\Sdelete; //points from Sdelete 

may still be present when computing reverse k-
nearest neighbors 

♦ (∀pj ∈ Supdate_k_distance) 
 update k-distance(pj);  
♦ Supdate_lrd = Supdate_k_distance; 
♦ (∀pj ∈ Supdate_k_distance) (∀pi∈(k-1)NN(pj)) 
 reach-distk(pi,pj)=k-distance(pj); 
 if pj ∈ kNN(pi) 
   Supdate_lrd = Supdate_lrd ∪{pi}; 
♦ Supdate_LOF = Supdate_lrd;  
♦ (∀pm ∈ Supdate_lrd) 
 update lrd(pm) using Eq. (2); 
 Supdate_LOF = Supdate_LOF ∪ kRNN(pm); 
♦ (∀pl ∈ Supdate_LOF) 
 update LOF(pl) using Eq.(3); 
return 

pj pj 

pc 

3-distanceold(pj) 

3-distancenew(pj ) 
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α. The frame of cones completely cover the D-dimensional 

Euclidean space ED if: U
h

i

D
i EC

1=
= (see Fig. 9). 

Lemma 3. The lower bound1 for the number of α = 600 cones 

in a D-dimensional frame is ( )D
d

d
h D

D

D

2
sin

sin
6/

0
11

2

0
11

2

min Θ=
∫

∫
=

−

−

π

π

ϕϕ

ϕϕ
. 

Proof (sketch). The lower bound of the number of cones in a 
frame is equal to the ratio of the area of the hypersphere and 
the area of the hyperspherical cap (part of the hypersphere 
inside the cone) with angle α. Details are presented in [21]. 
Note that hmin depends only on geometry of D-dimensional 
space and is independent of the number or the placement of D-
dimensional data records. �  

The following Definition 6 and Corollary 2 link geometry of 
D-dimensional cones to proximity notion in D-dimensional 
datasets.  

Definition 6. Let S’ be set of the D-dimensional data records 
inside a cone C with vertex p. k-nearest neighbor of point p in 
the cone C is a record q from the dataset S’ such that for at 
least k records o’∈S’\{p} it holds that d(p,o’) ≤ d(p,q), and for 
at most k-1 records o’∈S’\{p} holds that d(p,o’)<d(p,q). We 
also define k-distanceC(p) as a distance from record p to its k-
th nearest neighbor q in the cone. k-nearest neighborhood of p 
in cone C, (referred to as kNNc(p)) includes all records r∈S’ \ 
{p} such that d(p,r) ≤ d(p,q).  

Corollary 2. Consider cone C centered at data point  p with 
α ≤ 600. Let p’ be a data point in cone C . 

 ( ) ( ) ( )'')(' pkNNppkNNpCinsidep CC ∉⇒∉∈∀    
Proof. (sketch). Consider ball B(p, k-distanceC(p)). 

According to the Definition 6, the volume V=B∩C contains 
exactly k points other than p. Consider data point p’ such that 
d(p,p’) > k-distanceC(p). Consider now ball B’(p’, k-
distanceC(p)). According to Lemma 2, this ball has as a subset 
the whole volume V that contains total of k + 1  data points 
(including p). Hence, k-distanceC(p’)< k-distanceC(p). � 

Proof of Theorem 5. Due to Corollary 2 and Definitions 5, 6, 

( ) ( )U
h

i
C pkNNpkRNN

i
1=

⊂ , where  Ci, i=1,…,h is frame of cones 

with vertex p. Hence, due to Lemma 3 and Definition 6,  
( ) ( ) ( )DkhpkNNFpkRNN D

Ci
2|||| min Θ=⋅=≤ .Since neither 

minh  nor k depend on n, the number of reverse nearest 

                                                 
1 Suboptimal values for h can be obtained by techniques that 

construct spherical codes [22], followed by covering verification 
(to ensure that the space around p is completely covered), e.g., 
based on examination of convex hulls facets [23]. Analog to the 
problem of optimal spherical codes, the problem of finding the 
smallest possible h for arbitrary D is unresolved and is related (but 
not equivalent) to sphere covering problem [22]. Using the 
aforementioned suboptimal construction, in [21] the upper bound 
on h is shown for several dimensions: more precisely, h is 
demonstrated to have upper bound of 22 (see Fig. 8b), 85, 305 in 
R3, R4, R5, correspondingly 

neighbors does not depend on the current number of points in 
the dataset. � 

 
                (a)      (b) 
Fig. 9. (a) Two 60-degree 3D cones (b) Spherical caps of the frame consisting 
of 22 cones that completely cover 3D space. 

The following theorems provide the upper bound for the 
number of points where k-distance, lrd and LOF are updated. 

 
Theorem 6. The number of data records where k-distance 

needs to be updated is |Supdate_k_distance| ≤ F for insertion, and 
|Supdate_k_distance| ≤ F*|Sdelete|, for deletion block of size  |Sdelete|.  

Proof (sketch). For insertion/deletion of one data record s, k-
distance needs to be updated on all data records that have the 
inserted/deleted data record in its neighborhood, i.e., on all 
reverse nearest neighbors of s. Theorem 5 bounds the number 
of reverse neighbors with F. � 

Theorem 7. Number of data records where lrd is updated is 
|Supdate_lrd| ≤ k⋅|Supdate_k_distance|. 

Proof (sketch). lrd values are updated on points from 
|Supdate_k_distance| and may be updated on their k-nearest 
neighbors.�  

Theorem 8. Number of data records where LOF is updated is 
|Supdate_LOF|≤ (1+F)⋅|Supdate_lrd|. 

Proof (sketch). LOF value is updated on data records from 
|Supdate_lrd| and their reverse nearest neighbors, thus giving the 
bound stated in the Theorem 8. � 

The following corollaries provide asymptotic time 
complexity for the proposed algorithm. 

Corollary 3. The asymptotic time complexity for insertion 
and deletion in incremental LOF is2: 

TincrLOF_ins= O(k⋅F⋅TkNN + k⋅F⋅TkRNN + F2⋅k + Tinsert),           (8) 
TincrLOF_del=O(|Sdelete|⋅ (k⋅F⋅TkNN + k⋅F⋅TkRNN + F2⋅k + Tdelete)).     
Here, TkNN and TkRNN are time complexities of kNN and 

kRNN algorithms respectively, while Tinsert and Tdelete 
correspond to time needed for the insertion and deletion of a 
data record into/from the database (including index updating). 

Proof (sketch). Follows from the algorithms for insertion 
and deletion in incremental LOF, given in Fig. 4 and Fig. 6 
respectively, and Theorems 6-8. � 

                                                 
2 By maintaining list of kRNN(p) for each record p, the time 
complexities can be further reduced to:  
TincrLOF_ins = O(k⋅F⋅TkNN + TkRNN + F2⋅k + Tinsert);  
TincrLOF_del = O(|Sdelete| ⋅ (k⋅F⋅TkNN  + F2⋅k + Tdelete)) 

 

600
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3D 
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Corollary 4. When efficient algorithms for kNN [e.g. 24], 
kRNN [e.g., 17-20,42], as well as efficient indexing structures 
for inserting/deleting the records [25, 26] are used (where TkNN 
= TkRNN = Tinsert = Tdelete = O(log n), the time complexities of 
TincrLOFins and TincrLOFdel are logarithmic in the current size n of 
the database, e.g.,: 
 TincrLOFins = O(k⋅F⋅ log n + F2⋅k). �            (9) 

Corollary 5. Time complexity of the incremental LOF 
algorithm after all updates to the dataset of size N are applied 
is O(N⋅logN). 

Proof. Directly follows from Corollary 4. � 
Note that according to Theorem 5, the time complexity of 

the incremental LOF may exponentially increase with the 
dimensionality D. However, this is well-known problem of 
static LOF [9] as well as other density based algorithms and 
not a particular issue with incremental LOF. 

 
IV. EXPERIMENTAL RESULTS 

Our experiments were performed on several synthetic data 
and real life data sets. In all our experiments, we have 
assumed that we have information about the outliers in the 
data set, so we could evaluate the detection performance. In 
the following subsectios we evaluate time complexity 
(subsection A) and outlier detection accuracy (subsections B, 
C) with respect to ground truth outlier information. 

 
A. Time Complexity Analysis 

Our time complexity analysis was performed on synthetic 
data sets, since we could better control the total number of 
data records N in the data set as well as the number of 
dimensions D. Reported experimental results provide evidence 
about (i) relation between the number of updates for LOF 
values and the total number of data points N; (ii) the 
dependence of the number of updates for LOF values on LOF 
parameter k; and (iii) the dependence of the number of updates 
for LOF values on the dimension D.  

Our synthetic data sets had different number of data records 
(N∈{100,200,…,5000}), as well as different number of 
dimensions, (D∈{2,3,4,5,10}). For each pair (D, N), we have 
created 100 data sets with N random records generated from 
D-variate distribution. We experimented with both uniform 
and standard (zero mean, unit covariance matrix) Gaussian 
distribution. For each of 100 data sets generated for the pair 
(D, N), we varied the values of the parameter k (5, 10, 15, 20) 
of the algorithm and then measured the number of updates for 
k-distance, reach-dist, lrd and LOF values in the incremental 
LOF algorithm for insertion of a new data record into the 
dataset. Here, for each pair (D, N) we report average number 
of LOF updates for all 100 data sets generated using the 
standard Gaussian distributions. Results obtained for the data 
sets generated using uniform distribution are analog and not 
reported here due to lack of space. 

Fig. 10 shows how the number of updates of LOF values 
depends on the total number of data records N (x-axis in Fig. 
10) for different number of dimensions D (different lines in 
graphs in Fig. 10), where each graph corresponds to distinct 
value of parameter k.  
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Fig. 10. The dependence of number of LOF updates on the database size N for 
different number of dimensions D and different values of parameter k. The 
results are averaged over 100 data sets generated from standardized Gaussian 
distribution. 

Analyzing Fig. 10, it can be observed that the number of 
updates of LOF value stabilizes for sufficiently large N, which 
is in accordance with our theoretical analysis from section 
III.B. showing O(1) updates with respect to N. It is interesting 
to note that for larger k, the number of data records, necessary 
to show stabilization of number of LOF updates, is generally 
larger. However, for typically used values of k (5-20) [4,5] the 
number of LOF updates becomes constant for N>5000. 

Fig. 11 shows the average number of LOF updates vs. 
parameter k (each curve corresponds to a particular value of 
D) on database of N = 2000 points. The left graph contains 
abscise in linear scale, while the abscise in the right graph is 
quadratic (proportional to k2). Fig. 11 shows that the actual 
number of updates seems to change not faster than k2. 
Therefore, the worst-case upper bound O(F2⋅k) =O(k3) 
obtained in Section III.B. seems to be rather pessimistic. This 
phenomenon is due to the fact that in reality, not all updates of 
reach-dist values result in update of lrd value. Also, a data 
record may belong to reverse nearest neighbors of multiple 
records on which lrd has been updated. Hence, such data 
record, although output from several kRNN queries, will result 
only in one update of LOF value. 

Fig. 11 also provides an insight on the dependence of the 
number of LOF updates on the number of dimensions D. 
While undoubtedly the number of LOF updates increases with 
D, it was difficult to confirm (or reject) theoretical upper 
boundary of the exponential dependence (see Section III.B). 
However, it is evident that the growth of LOF updates with 
respect to dimensionality D is not explosive (the average 
number of updates stay bellow 1000 even for D=10, k=20). 
One of the reasons is that considered upper bound for the 
number of reverse neighbors is the worst case and is reached 
rather infrequently. Hence, we anticipate that the 
dimensionality of the data will not become the bottleneck of 
the incremental LOF algorithm due to number of LOF 
updates, but rather due to inability of indexing structures to 
resist curse of dimensionality [27]. 
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Fig. 11. The dependence of number of LOF updates on the value of parameter 
k for different number of dimensions D. The results are averaged over 100 
datasets with 2000 records generated from standardized normal distribution. a) 
Linear abscise; b) Abscise proportional to k2. 

 
B. Learning New Behavior 

Our first synthetic data set used to analyze ability of 
incremental LOF to learn new behavior in a non-stationary 
data corresponded to 1000 data records generated from 2-
modal mixture of 2-dimensional Gaussian distributions with 
different means. The data set consisted of 500 records 
generated from Gaussian distribution N(µ1,Σ1)  and 500 
records with Gaussian distribution N(µ2,Σ2), where 
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. 

Fig.12 shows current LOF value after inserting data records 
501, 505, 510 and 1000. At n=501, we identified inserted 
record from a new distribution as an outlier as soon as it 
appeared. However, when the “switch” to the new distribution 
was complete, the incremental LOF learned the new 
distribution as a part of regular behavior (starting from n=510) 
so the new records were correctly labeled as normal. As 
discussed in Section II, if we used “supervised” static LOF 
(trained at n=500), the data records from the new distribution 
will always be marked as outliers, since they did not appear in 
original data on which the “supervised” static LOF was trained 
(see Fig. 1). After all records were inserted, the result (LOF 
value for n=1000) was identical to LOF values obtained using 
the “periodic” static LOF algorithm. However, the “periodic” 
LOF algorithm will identify all records belonging to the new 
distribution as normal (although some of them were outliers at 
the time of insertion). 

The second synthetic data set consisted of 1000 data records 
belonging to 2-modal 2-dimensional Gaussian mixture with 
same mean but different variances. This data set was created 
to illustrate the attempt of masquerading (hiding within 
existing distribution, see Fig. 2). The data set had 500 data 
records of Gaussian distribution N(µ1,Σ1)  and 500 data 
records with Gaussian distribution N(µ2,Σ2), where 
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Fig.13 shows current LOF values obtained using the incre-
mental LOF algorithm, after insertion of records 501, 515, 600 
and 1000. Initially (at n=501), the computed LOF values do 
not reveal any change of behavior. However, while additional 
data records continue to appear within a new distribution, their 
lrd values will start to increase (larger local density of the new 
distribution). According to Eq. (3) this fact will cause increase 

of LOF values for points from the old distribution that are on 
the borders of the new distribution (e.g., for n=600, the 
maximal LOF value becomes larger than 10). Since 
incremental LOF algorithm keeps track of updates of LOF 
values for existing data records (already in the database), this 
phenomenon is easy to identify. Therefore, it is apparent that 
the incremental LOF algorithm is capable of identifying the 
masquerading attempt as well as an approximate time when 
the attempt begins! As already discussed in Section II, 
“supervised” static LOF (trained at n=500 on records from the 
first distribution) is not capable of identifying this behavior, 
since new data records (corresponding to new, much denser 
distribution) are not considered when computing lrd.  
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Fig. 12. The result of incremental LOF algorithm (k=10) on dataset consisting 
of 500 records of Normal distribution N(µ1,Σ)  followed by 500 records with 
Normal distribution N(µ2,Σ). [ ] [ ] )1.0,1.0(,11,11 21 diag=Σ++=−−= µµ after 
a) n=501; b) n=505; c) n=510; d) n=1000 points inserted. New data records 
(inserted at time instant n) are marked red.  

In contrast, “periodic” LOF method will be able to identify 
the masquerading, but this identification will be delayed for 
the period of LOF update. 
 
C. Experiments on real life data sets 

To illustrate the ability of incremental LOF algorithm to 
identify outliers in dynamic environment, we first selected two 
real life data sets containing video sequences. The first data set 
is composed of 100 video frames (data is available at: 
www.cis.temple.edu/~latecki/TestData/SimTest.zip). The 
features from video frames are extracted using the procedure 
described in [28]. Our goal was to identify sudden changes in 
selected video frames, which is important problem in video 
analysis [16], especially in analysis of streaming videos (e.g., 
video-surveillance). Analyzing Fig. 14, it can be observed that 
the proposed incremental LOF correctly detected all the 
sudden changes in video frames, while not producing any false 
alarm. These changes were caused by the appearance of a new 
object (frame 21), zooming objects to camera (frame 31) and 
novel video content (frames 41, 61, 71, 91). On the other 
hand, static “periodic” LOF algorithm computed after all 100 
frames did not detect any of these frames as outliers, while 
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“supervised” LOF algorithm had very large false alarm rate 
due to data non-stationarity. 
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Fig. 13. The result of incremental LOF algorithm (k=10) on dataset consisting 
of 500 recordsaussian distribution N(µ,Σ1)  and 500 records with Gaussian 
distribution N(µ,Σ2). µ=[0 0], Σ1=diag(1,1), Σ2=diag(10-4, 10-4),  after a) 501; 
b) 515; c) 600; d) 1000 data records inserted. 
 

Finding unusual trajectories in surveillance videos may lead 
to early identification of illegal behavior and hence the outliers 
need to be detected as soon as they appear. In such 
applications, due to data non-stationarity, static LOF algorithm 
is not suitable. To identify outliers in this environment, we 
have performed experiments on the second real life data set. 
The dataset corresponds to 239 video motion trajectories, 
where only 2 trajectories (225, 237) are visually identified as 
unusual behavior (person walking right and then back left and 
person walking very slowly). The trajectories were extracted 
from IR surveillance videos using our motion detection and 
tracking algorithms [29]. Each trajectory was represented by 
five equidistant points in [x,y,time] space (two spatial 
coordinates on the frame and the time instant) and the 
dimensionality of this feature vector was further reduced to 
three using the principal component analysis [30]. The dataset 
is available at www.cs.umn.edu/~aleks/inclof 

Results of outlier detection on IR video trajectories are 
shown in Fig. 15. Fig. 15a shows computed values of LOF(t) 
using the incremental LOF algorithm, for each trajectory t at 
the moment of its insertion into the database. As it can be 
observed, the LOF values for trajectories 225 and 237 are 
significantly larger than for the rest of the trajectories, thus 
clearly indicating unusual behavior. To further illustrate 
performance of incremental LOF method, we plotted all 
considered trajectories in [x,y,time] space (Fig. 15b), color-
coded by computed LOF value. It can be seen that the most 
intense color (and the highest LOF) corresponds to clear 
outliers. 

 
Fig. 14. Result of applying incremental (blue asterisks) and static “periodic” 
(red x) LOF algorithm (k=10) on video sequences from our test movie. For the 
static LOF algorithm, LOF values that are shown for each frame t are 
computed when the latest data record is inserted. 

The third data set was 1998 DARPA Intrusion Detection 
Evaluation Data [31].  The original DARPA’98 data contains 
two types: training data and test data. The training data 
consists of seven weeks of network-based attacks inserted in 
the normal background data. Attacks in training data are 
labeled. The test data contain two weeks of network-based 
attacks and normal background data. Seven weeks of data 
resulted in about five million connection records. Since the 
amount of available data is huge (e.g. some days have several 
million connection records), we have chosen only the data 
from fifth week to present our findings. We used tcptrace 
utility software [32] as the packet filtering tool in order to 
extract information about packets from TCP connections and 
to construct new features. The DARPA’98 training data 
includes “list files” that identify the time stamps (start time 
and duration), service type, source IP address and source port, 
destination IP address and destination port, as well as the type 
of each attack. We used this information to map the 
connection records from list files to the connections obtained 
using tcptrace utility software and to correctly label each 
connection record as “normal” or an attack type. The same 
technique was used to construct KDDCup’99 data set [33], but 
this data set did not keep time information about the attacks. 
The main reason for this procedure is to associate new 
constructed features with the connection records from list files 
and to create more informative data set for learning. The 
complete list of the features extracted from “raw tcpdump” 
data using tcptrace software is available in our previously 
published results [4]. 

The results of applying the incremental LOF algorithm on 
DARPA98 data set are shown in Fig. 16. We have chosen to 
illustrate only two phenomena here. The first phenomenon 
corresponds to time moment t = 1368, when new behavior 
starts to appear. This behavior was clearly detected by 
incremental LOF algorithm (Fig 16, dash-dot cyan line). 
Although detected behavior did not correspond to any 
intrusions, it was important to include it when updating 
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characteristics of normal behavior. The second phenomenon at 
time moment t = 1937, corresponds to detection of Denial of 
Service (DoS) attack (Fig. 16, red dashed line). The LOF 
value at this time moment spikes very high, thus resulting in 
immediate DoS detection. If the static “periodic” LOF 
algorithm was applied after 2500 data records have been 
inserted into the data set, this DoS attack would not be 
detected (Fig 16, black dash-dot line), since it would create a 
new data distribution (scenario 1 (Fig.1) in section II). 

 

Fig. 15. Incremental LOF algorithm used for identifying unusual trajectories 
in motion videos (k=10); a) The values of LOF valuer obtained for each 
trajectory; b) Trajectories in [x,y,time] feature space colored according to the 
values of LOF value. 

 
V. CONCLUSIONS AND FUTURE WORK 

A framework for incremental density-based outlier detection 
scheme is presented. The proposed algorithm has the same 
detection performance as the static “iterated” LOF algorithm 
that is applied after insertion of each data record, but it is 
much more computationally efficient. Experimental results on 
several synthetic and real life data sets from video and 
intrusion detection domains indicate that the proposed 
incremental LOF algorithm can provide additional 
functionality that is difficult to achieve using static variants of 
LOF algorithm, including detection of new behavior as well as 
identification of masquerading outliers.  
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Fig. 16. Instant LOF values for all the data records in the dataset at time 
instants 1368, 1937, 2500 obtained using incremental LOF algorithm (k=10) 
on Network Intrusion dataset. 

The fact that the number of updates in the incremental LOF 
algorithm per insertion/deletion of a single data record does 
not depend on the total number of data records is quite 
appealing for its use in real-time data stream applications. 
However, its performance crucially depends on efficient 
indexing structures to support k-nearest neighbor and reverse 
k-nearest neighbor queries. Due to limitations of existing 
indexing structures with high data dimensionality, the 
proposed incremental LOF (similar as static LOF) is not 
applicable when the data have large number of dimensions. 
The approximate k-NN and reverse k-NN algorithms might 
improve the applicability of incremental LOF with 
multidimensional data. 

Future work on deleting data records from database is 
needed. More specifically, it would be interesting to design an 
algorithm with exponential decay of weights, where the most 
recent data records will have the highest influence on the local 
density estimation. In addition, an extension of the proposed 
methodology to create incremental versions of other emerging 
outlier detection algorithms, (e.g., Connectivity Outlier Factor 
(COF) [34], LOCI [35]), is also worth considering. Additional 
real-life data sets will be used to evaluate the proposed 
algorithm and ROC curves [38] will be applied to quantify the 
algorithm performance. 
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