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Abstract— We investigate the problem of frequent itemset
mining over a data stream with bursty traffic. In many modern
applications, data arrives at a system as a continuous stream
of transactions. In many cases, the arrvial rate of transactions
fluctuates wildly. Traditional stream mining algorithms, such as
Lossy Counting (LC), were generally designed to handle data
streams with steady data arrival rates. We show that LC suffers
significant loss of accuracy when the data stream is bursty.
We propose the Adaptive Frequency Counting algorithm (AFC)
to handle bursty data. AFC has a feedback mechanism that
dynamically adjusts the mining speed to cope with the changing
data arrival rate. Through extensive experiments, we show that
AFC outperforms LC under bursty traffics in terms of the
accuracy of the set of freqeunt itemsets.

I. INTRODUCTION

Extracting frequent itemsets from transactional datasets is
a crucial step in association analysis. It finds applications
in many areas such as business decision support and direct
marketing. For example, identifying groups of products that
are frequently purchased together helps a company to for-
mulate its marketing strategies. Traditional mining algorithms
assume a finite dataset over which the algorithms are allowed
to scan multiple times. In recent years, however, researchers
have shifted their attention to mining data streams. A data
stream is an unbounded continuous stream of data records.
Example applications include network traffic monitoring sys-
tem, web logs and click streams, and sensor networks, etc. An
important property that distinguishes data stream mining from
traditional data mining is the unbounded nature of stream data,
which precludes multiple-scan algorithms. Traditional frequent
itemsets mining algorithms are thus not applicable.

Besides an unbounded size, there are other properties of
a data stream that makes stream mining a challenging task.
Let us consider a network monitoring system that identifies
Denial-of-Service (DOS) attacks as an example [2]. In such
an application, network activities are recorded continuously
and records of such activities are sent to a monitoring system
as a data stream. We observe the following properties of the
system.

• Large volumes of data. There could be hundreds of
millions of events that occur in a network each day. The
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number of network activity records is huge. It is thus
expensive to store those records for offline analysis.

• Real-time processing. Standing queries are commons in
a stream-processing system. Hence, the system should
process the data in real-time. For example, network
activities should be tracked and potential attacks should
be detected in real-time.

• Bursty traffic. The traffic rate in a network varies signif-
icantly over a day. Sharp rises in traffic volume within a
short period of time may happen unpredictably.

• Data aging. In some cases, recent data are more important
than old ones. Old data should therefore be discounted
or given a smaller weight of importance in data analysis.

Therefore, a system that analyzes data stream should: (i) be
able to summarize data by a selected set of key statistics
as the complete data are usually not available for analysis,
(ii) work incrementally and avoid multiple scans of the data,
(iii) provide an accuracy guarantee on the results if only an
approximate solution is possible due to the unavailability of the
complete dataset, (iv) handle data bursts gracefully without a
significant performance penalty, and (v) discount the effect of
old data. Previous solutions to the problem of mining frequent
itemsets from data streams satisfy only some of the above five
requirements. In particular, there are relatively few works that
address bursty traffic handling. The goal of this paper is to
provide a solution to the mining problem with a focus on a
bursty data stream environment.

A. Related Work

Lossy Counting [10] (LC) was the first algorithm for finding
frequent itemsets from a data stream. LC is a one-pass
algorithm that provides an accuracy guarantee on the set of
frequent itemsets it reports and their associated support counts.
Basically, given a user-specified support threshold ρs and an
error threshold ε, LC guarantees that any itemset that is not
reported as frequent by the algorithm cannot has a support
greater than ρs − ε. Also, the error of the estimated support
count of a reported frequent itemset cannot exceed εN , where
N is the total number of transactions processed. LC satisfies
the first three requirements we mentioned previously. However,
LC has two main drawbacks. First, LC does not handle data
bursts well. As we will see later, the choice of the error bound
ε critically affects LC’s performance in terms of processing
speed and accuracy. Specifically, a small ε gives high accuracy
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but low processing speed and high memory usage, while a
large ε gives low accuracy but fast processing and low memory
usage. The value of ε, however, has to be preset before the
algorithm starts and cannot be changed afterwards. Given a
bursty data stream, a system designer would have to set ε to a
value that is large enough so that the system can cope with the
highest traffic. This approach suffers from three disadvantages:
(1) the highest data arrival rate is difficult to estimate, (2) low
accuracy of the results, and (3) poor system utilization during
low-traffic periods. The second problem of LC is that it does
not discount the effect of old data. All transactions in the
whole history of the data stream are given equal weight. This
is undesirable in some applications.

There are other algorithms for mining frequent itemsets
from data streams. These include [3], [4], [5], [6], [7], [8],
[13]. Many of these works [3], [5], [7], [8] are similar to LC
in that they allow false positives in the answer set, i.e., some
infrequent itemsets could be reported in the result. Others, such
as [6], [13], allow false negatives, i.e., some frequent itemsets
are not reported. Most of these algorithms employ preset error
thresholds and thus they suffer from the same problem as LC
does in handling bursty data streams.

B. Contribution

In this paper we propose a flexible algorithm called Adap-
tive Frequency Counting (AFC) for mining frequent itemsets
from bursty data streams. AFC is based on Lossy Counting
with three improvements. First, the error threshold can be
adjusted in the middle of the mining exercise. Second, AFC
has a feedback mechanism that dynamically controls the
processing speed to cope with a changing data arrival rate.
Third, an aging data model is defined in AFC so that old
data can be properly discounted. We have conducted extensive
experiments evaluating the relative performance of AFC and
LC. Our results show that AFC outperforms LC significantly
in terms of its ability to provide accurate results under bursty
data.

The rest of the paper is organized as follows. We review
Lossy Counting, describe a data aging model and formally
define the problem in Section II. Section III describes the
AFC architecture and the design of a feedback mechanism,
which is the core component of the AFC algorithm. Section IV
describes the implementation of AFC. Section V reports our
experimental results. Finally, Section VI concludes the paper.

II. LOSSY COUNTING, AGING MODEL AND PROBLEM

DEFINITION

In this section we review the Lossy Counting algorithm,
which inspired our AFC algorithm. We also describe a data
aging model that uses a decay factor to discount old data in a
data stream. Finally, we give a formal definition of our mining
problem.

A. Preliminaries

Let I be a set of items and T be a stream of transactions
such that each transaction is a subset of I . We consider

the transactions in T being segmented into a sequence of
buckets T = T1, T2, . . .. Each bucket contains a number of
transactions. Given an itemset X ⊆ I , the support count σi(X)
of X in bucket Ti is the number of transactions in Ti that
contain X . Suppose n buckets T1, . . . , Tn in T have arrived
at the system, the support count of X with respect to T , σ(X),
is defined as the total number of transactions in T that contain
X , i.e., σ(X) =

∑n

i=1 σi(X). Given a user-specified support
threshold ρs, X is a frequent itemset if σ(X) ≥ ρsN where
N is the total number of transactions in the n buckets.

B. Lossy Counting

In [10], Manku and Motwani proposed the Lossy Counting
(LC) algorithm, the first one-pass algorithm for counting
approximately the set of frequent itemsets over a stream
of transactions. Given a user-specified error bound ε, LC
processes incoming data bucket-by-bucket and updates a
summary structure D. D contains a set of entries of the
form 〈X, σ̂(X), δ(X)〉, where X is an itemset, σ̂(X) is an
approximate support count of X , and δ(X) is the maximum
possible error in σ̂(X). The summary structure D has the
following two properties:

P1. For each itemset X , if X is not in D, then σ(X) ≤ εN ,
where N is the total number of transactions processed.

P2. For each entry 〈X, σ̂(X), δ(X)〉 in D, σ̂(X) ≤ σ(X) ≤
σ̂(X) + δ(X) and δ(X) ≤ εN .

From Property P1, we know that itemsets that are not
present in D have very small supports and are thus not fre-
quent. From Property P2, we know that the maximum possible
support count of an itemset X cannot exceed σ̂(X) + δ(X).
If a user requests a set of frequent itemsets, LC reports all
those itemsets X in D whose support upper bounds are not
less than the support threshold, i.e., σ̂(X) + δ(X) ≥ ρsN .

LC maintains the structure D by the following procedure.
Initially, D is empty. Let us assume that LC has processed
buckets T1, . . . , Ti−1 and has summarized the transactions in
D. After the transactions of the next bucket Ti are collected,
LC starts the process of updating D. Let N1 denote the number
of transactions processed before bucket Ti and N2 denote the
total number of transactions processed including those in Ti.
We have N2 = N1 + |Ti|, where |Ti| denotes the number of
transactions in Ti. Lossy Counting enumerates itemsets that
are present in Ti and counts their supports. Then for each
itemset X , its support count σi(X) in bucket Ti is determined
and D is updated by the following rules:

• If D does not contain an entry for X , we create an entry
〈X, σi(X), εN1〉 if σi(X) + εN1 > εN2.

• Otherwise, X has an entry in D and the approximate
support count σ̂(X) is incremented by σi(X).

• If the updated entry satisfies σ̂(X) + δ(X) ≤ εN2, we
delete the entry from D.

In this paper we use Di to represent the data structure D
right after bucket Ti is processed. It is proved in [10] that the
set of frequent itemsets and their support counts reported by
LC ensure the following guarantees:
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• All itemsets whose true support counts exceed ρsN are
reported.

• No itemset whose true support count is less than (ρs −
ε)N is reported.

• The difference between the reported support count
(σ̂(X) + δ(X)) of an itemset X and the true support
count (σ(X)) is at most εN .

C. Data Aging

In many data stream applications, recent data are more
important than older ones [11]. To capture this, we use a
decay factor α ∈ (0, 1] in calculating itemsets’ support counts.
We call such modified support counts time-weighted support
counts. Again, transactions are divided into buckets Ti (i starts
from 1). When the system has collected a new bucket of
transactions, all itemsets’ support counts decay by a factor
of α. Let σi(X) denote the support count of X in bucket Ti,
and σ1..k(X) denote the time-weighted support count of X
obtained from the first k buckets of the stream. We have,

σ1..k(X) = α × σ1..(k−1)(X) + σk(X) =

k∑

i=1

αk−iσi(X).

We modify the definition of frequent itemsets accordingly.
Specifically, an itemset X is frequent with respect to a data
stream T = T1T2 . . . Tk of k buckets if

σ1..k(X) ≥ ρs

k∑

i=1

αk−i|Ti|.

D. Problem Definition

Given a data stream T with bursty transaction arrivals, a
user-specified support threshold ρs and a decay factor α, the
problem is to report all itemsets X and to estimate their
support counts such that (i) all frequent itemsets in T are
reported, and (ii) a maximum possible error is reported for
each estimated support count. Due to the large volume of
transactions, we also require that transactions be loaded into
memory and processed only once.

III. SYSTEM ARCHITECTURE AND FEEDBACK

MECHANISM

As we mentioned in Section I, most frequent itemset mining
algorithms are unable to adjust their mining speed and thus
do not handle bursty traffic well. In this section we describe
the architecture of AFC and explain in details the feedback
mechanism AFC employs to cope with a bursty data stream.

A. Architecture

Figure 1 shows the architecture. AFC consists of three
modules: the buffer module, the mining module and the speed
regulator. The buffer module receives transactions from the
data stream and put them into memory buffer. The memory
buffer is divided into a number of buffer slots. Each slot can
store one bucket1 of transactions.

1The meaning of bucket here is different from that in LC [10]. In LC, one
bucket contains �1/ε� transactions. Here, one bucket refers to the transactions
to be processed together, which is similar to one batch of buckets in LC.
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Fig. 1. Architecture of Adaptive Frequency Counting (AFC).

The buffer manager monitors the occupancy of the buffer
slots and submits statistical information to the speed regulator
to control the mining speed. The mining module processes
each bucket of buffered data and summarizes the mining result
in its internal summary structure. The mining module submits
feedback statistics to the speed regulator after each bucket is
processed. In our implementation of AFC, the mining module
is based on Lossy Counting except that our implementation
allows a flexible error threshold that can be dynamically
adjusted. The speed regulator receives statistical information
from the buffer manager to estimate the data arrival rate. It
also receives feedback information from the mining module
to determine the mining speed. Base on this information, the
speed regulator determines a target processing speed and sends
a speed control signal to the mining module.

B. Feedback Mechanism

The core component of AFC is the feedback mechanism,
which is implemented in the speed regulator. In summary,
the speed regulator learns about the changes in the buffer
occupancy from the buffer manager to estimate the data
arrival rate and the presence of data bursts. It estimates a
target processing time, denoted by pi, which is the amount
of time within which the mining module should complete the
processing of the next bucket of transactions (Ti). The time pi

is set based on the objective of bringing the buffer occupancy
to a reasonably low level so that the system can gracefully
receive an influx of transactions during data bursts. As we
will explain later, the processing speed of the mining module
depends on the error threshold ε. Unlike Lossy Counting,
which employs a fixed ε, AFC dynamically adjusts ε to control
the mining speed. More specifically, AFC assigns an error
threshold εi for processing bucket Ti. Statistics obtained from
the mining module is considered by the speed regulator to
determine εi so that the amount of time needed to process Ti
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is likely to be close to pi, the target processing time of Ti. We
will explain how AFC estimates pi and how it determines εi

in the following subsections.

C. Estimating Target Processing Time

We estimate the target processing time pi of bucket Ti by
considering the buffer occupancy and the processing time of
the previous bucket Ti−1. Let Q be the number of buffer slots
in the buffer module. (Each slot can contain one bucket of
transactions.) The value of Q is determined by the available
memory. Let qi denote the number of buffer slots that are
occupied just before bucket Ti is processed. The objective
of the feedback mechanism is to try to maintain the buffer
occupancy to a fraction f of the Q buffer slots. For example,
if qi is larger than the target buffer occupancy fQ, AFC should
set pi to a small value so that transactions are mined at a higher
rate to bring the occupancy down towards fQ. The value of
f is a system parameter. A larger f reduces the empty buffer
slots that guard against potential data bursts, while a smaller
f may cause buffer underflows. When buffer underflows, the
system wait for incoming transactions instead of using the time
to improve mining accuracy of buffered buckets. The user can
tune f to get the best system performance.

To determine the processing time pi for maintaining the
buffer occupancy, let us consider the processing of bucket
Ti−1. Let ti−1 be the time taken to process Ti−1. Within
this period of time, the system has consumed one bucket (i.e.,
Ti−1) while the buffer occupancy has changed from qi−1 to
qi. Hence, the number of buckets that have arrived during this
period is 1 + qi − qi−1. Therefore, the bucket arrival rate is
(1+qi−qi−1)

ti−1
buckets per unit time.

Now, if qi > fQ (i.e., the buffer occupancy is larger than
the target occupancy right before the processing of bucket
Ti), we need to increase the mining speed to bring the buffer
occupancy down to fQ. Assume that we want to restore the
target occupancy within a certain time period, trestore, in which
no more than k new buckets have arrived from the stream.
During this period of time, we have k bucket arrivals, and
the occupancy changes from qi to fQ. Hence, the number of
buckets processed is qi + k − fQ. If we assume that buckets
arrive at a constant rate during this period, we have

trestore =
k

bucket arrival rate
,

=
k · ti−1

1 + qi − qi−1
.

Since the system has to process qi + k − fQ buckets within
this period of time, the target processing time of Ti should be

pi =
trestore

(qi + k − fQ)
,

=
k · ti−1

(1 + qi − qi−1)(qi + k − fQ)
. (1)

The value of pi given by 1 is an estimation based on
the current buffer status. This estimation is redone after each
bucket is processed. The value of k is a system parameter. It

0

k

Buffer Occupancy qi
QfQ 0

k

Buffer Occupancy qi
QfQ

(a) (b)

Fig. 2. Two sample functions connecting k and qi.

controls the responsiveness of the system in maintaining the
target buffer occupancy. A smaller value of k leads to a smaller
restoration time (trestore) and thus a higher processing speed
is required at the mining module. As we will see later, this
translates into a larger error threshold and thus less accurate
result. In our implementation, k is a function of the buffer
space available. A smaller number of empty buffers implies a
more critical state that calls for a faster reaction in order to
avoid buffer overflow. Hence, a smaller k is used. Figure 2
shows two possible functions for determining k given qi.

D. Speed Control

In order to control the processing speed of the mining
module, we need to identify the parameters that affect the
processing speed of the mining algorithm. In Lossy Counting,
the key factor that determines the processing speed is the error
threshold ε. In AFC, the algorithm determines a suitable error
threshold εi for processing bucket Ti in order that the target
processing time pi is achieved.

In order to determine the relationship between εi and pi,
we have performed both an analytical study and an empirical
study on the Lossy Counting algorithm. We argue that the
processing time of a bucket Ti is linearly proportional to the
following quantity

Ci =
∑

X∈Di

σi(X).

That is the sum of all the support counts in Ti of the itemsets
that are retained in the summary structure Di after the bucket
Ti is processed2. Moreover, we can discover the relationship
between an εi and this sum Ci. Recall that when the data
structure D is updated, the entry for an itemset X is removed
from D if the maximum possible support count of X is not
greater than εN , where ε is the error threshold and N is the
total number of transactions processed. As a result, the larger
εi (i.e., the error threshold used when processing Ti) is, the
fewer itemsets will be kept in Di, leading to a smaller Ci.
These two pieces of information together allow us to determine
the value of εi given a target processing time pi. We now
describe a two-step approach for determining εi.

2Recall that Di represents the data structure D after bucket Ti is processed.
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Fig. 3. The relationships between (a) bucket processing time and Ci, (b)
Ci−1 and εi−1.

1) Step 1. Estimate a target value of Ci from pi: We
conducted an experiment to verify our hypothesis of a linear
relationship between the time to process a bucket and Ci. In
the experiment, 300 buckets of transactions simulating a data
stream are processed by Lossy Counting. We recorded the
processing time of each bucket Ti and the corresponding value
of Ci. These 300 pairs of values are plotted in Figure 3(a).
From the figure, we see a linear relationship between the two
quantities.

Now, when AFC is applied to mine a real data stream, the
mining module will be instructed by the speed regulator to
finish the processing of a bucket Ti within a target processing
time pi. Assume that the mining module has recorded the
amount of time (ti−1) it took to process bucket Ti−1, and
the value Ci−1, we can estimate that in order to limit the
processing time of Ti to pi, the target value of Ci should be
given by

Ci =
Ci−1

ti−1
× pi, (2)

due to the linear relationship as illustrated by Figure 3(a).
What remains to be solved is to investigate how we can

control Ci by choosing the right error threshold εi.
2) Step 2. Estimate εi from Ci: As we have explained,

a larger εi leads to more entries removed from D and thus
a smaller Ci. To capture the relationship between the two
quantities, we construct a histogram based on the statistics
obtained from processing the previous bucket (Ti−1). More
specifically, after bucket Ti−1 is processed, AFC obtained the
structure Di−1. We note that the value of εi−1 determines the
entries in Di−1 and thus the value of Ci−1. Conceptually,
based on Di−1, we can calculate the values of Ci−1 if
εi−1 were to assume different values. We thus plot a curve
showing the (hypothetical) relationship between Ci−1 and
εi−1. Figure 3(b) shows the general shape of such a curve.
We then use the curve to approximate the relationship between
Ci and εi. Hence, from the curve, we are able to estimate an
appropriate value of εi given Ci.

Here, we summarize our approach to adjust the mining
speed of the mining module in case the buffer occupancy has
exceeded the target occupancy level. AFC constructs a curve
relating Ci−1 and εi−1 after it processes a bucket Ti−1. It
also records the processing time ti−1 of bucket Ti−1 and the
value of Ci−1 is calculated from Di−1. Right before bucket Ti

is processed, if qi > fQ, AFC determines a target processing
time (pi) based on Equation 1. It then calculates a target value
of Ci by Equation 2. Using the Ci−1εi−1 curve (Figure 3(b)),
AFC determines the value of εi given the estimated value
of Ci. This error threshold is then applied when the mining
module processes bucket Ti.

Finally, if the buffer occupancy drops below the target
occupancy (i.e., qi < fQ) during low traffic periods, the
system should lower the error threshold in order to provide
a more accurate result. In our implementation, AFC reduces ε
by a constant fraction (i.e., εi = μεi−1 for some 0 < μ < 1).

IV. ALGORITHMS AND IMPLEMENTATION

We present the algorithms implemented in the AFC sys-
tem model in this section. Similar to LC, AFC maintains
a summary data structure Di after each bucket Ti is pro-
cessed. Di contains a number of entries, each of the form
〈X, σ̂1..i(X), δ1..i(X)〉. Associated with each Di are the error
threshold εi and the number of transactions processed (aged),
denote as N i

age
. More specifically, N i

age
=

∑i

j=1 αi−j |Tj |
is the total number of transactions processed through buckets
T1 . . . Ti weighted due to data aging (see Section II-C). AFC
guarantees that the true time-weighted support count of an
itemset X , σ1..i(X), is bounded by σ̂1..i(X) ≤ σ1..i(X) ≤
σ̂1..i(X) + δ1..i(X). It also guarantees that if an itemset X is
not in Di, then σ1..i(X) ≤ εiN

i
age

.
If AFC is requested by a user to report the mining result

after bucket Ti is processed, it returns a set of itemsets X such
that (i) X has an entry in Di and (ii) σ̂1..i(X) + δ1..i(X) ≥
ρsN

i
age

. AFC provides the following accuracy guarantees:
• All itemsets whose true time-weighted support counts

exceed ρsN
i
age

are returned.
• No itemset whose true time-weighted support count is

less than (ρs − εi)N
i
age

is returned.
• If no buckets are dropped in the processing of the data

stream, then the difference between the reported support
count (σ̂1..i(X)+ δ1..i(X)) of an itemset X and the true
time-weighted support count of X is at most εiN

i
age

.
The AFC algorithm includes two smaller algorithms: the

UpdateD algorithm is a modified version of Lossy Count-
ing that maintains the summary data structure D and, the
Feedback algorithm implements the feedback mechanism
discussed in Section III-B. Like LC, UpdateD is a one-pass
algorithm which processes data one bucket at a time. It differs
from Lossy Counting in that it handles data aging and that it
allows the error threshold to be dynamically adjusted to control
the mining speed. Despite this flexibility, UpdateD ensures that
the accuracy guarantees mentioned above are maintained. Due
to space limitation, readers are referred to [9] for the proofs
of the accuracy guarantees. In addition, this proof also shows
that LC can maintain its accuracy guarantee with data aging.
This is because LC can be treated as a special case of AFC
in which ε is a constant over all buckets.

The AFC algorithm invokes UpdateD whenever a bucket Ti

is to be processed. The UpdateD algorithm takes the following
parameters:
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Algorithm UpdateD
INPUT: Ti, Di−1 , εi−1, Ni−1

age
and α.

OUTPUT: The updated summary structure Di .
1: for all entries 〈X, σ̂1..i−1(X), δ1..i−1(X)〉 ∈ Di−1 do
2: σ̂1..i−1(X) ← σ̂1..i−1(X)α.
3: δ1..i−1(X) ← δ1..i−1(X)α.
4: end for
5: Ni−1

age
= Ni−1

age
α.

6: Ni

age
= Ni−1

age
+ |Ti|.

7: if Ti is dropped then
8: for all entries 〈X, σ̂1..i−1(X), δ1..i−1(X)〉 ∈ Di−1 do
9: Create 〈X, σ̂1..i−1(X), δ1..i−1(X) + |Ti|〉 in Di.

10: end for

11: εi =
εi−1N

i−1
age

+|Ti|

Ni
age

.

12: else
13: εi = FEEDBACK().
14: for all Itemset X do
15: Compute σi(X).
16: if X �∈ Di−1 then
17: if σi(X) > εiN

i

age
− εi−1Ni−1

age
then

18: Create 〈X, σi(X), εi−1Ni−1
age

〉 in Di .
19: end if
20: else
21: if σ̂1..i−1(X) + σi(X) + δ1..i−1(X) > εiN

i

age
then

22: Create 〈X, σ̂1..i−1(X) + σi(X), δ1..i−1(X)〉 in Di.
23: end if
24: end if
25: Update Hi with σi(X).
26: end for
27: end if

Fig. 4. The algorithm UpdateD.

• Ti: The current bucket of transactions.
• Di−1: The summary structure covering all previous trans-

actions processed from bucket T1 to bucket Ti−1.
• εi−1: The error threshold after mining the bucket Ti−1.
• N i−1

age
: The aged number of transactions processed from

bucket T1 to bucket Ti−1.
• α: The decay factor.

Figure 4 shows the UpdateD algorithm. UpdateD first
decays the counts and errors in the old summary structure by
α (Lines 1 to 6). If bucket Ti has been dropped by the system,
for example, due to buffer overflow, Ti will be a null bucket
(Lines 7-11). In that case, we increase the error bound of each

itemset in Di by |Ti| and set εi =
εi−1Ni−1

age
+|Ti|

Ni
age

. If bucket Ti

is not dropped, we proceed to counting itemsets’ supports in
Ti (Lines 12 to 27). Support counting here is similar to that of
Lossy Counting. The only difference is that the error threshold
εi for mining the bucket Ti is dynamically determined by the
Feedback algorithm (Line 13).

The Feedback algorithm determines an error threshold εi for
mining Ti according to the feedback mechanism mentioned in
Section III-B. It considers the following information:

• qi−1, qi: The buffer occupancies before and after the
processing of bucket Ti−1, respectively.

• fQ: Target buffer occupancy.
• ti−1: Processing time of bucket Ti−1.
• Hi−1: The histogram showing the hypothetical relation-

ship between Ci−1 and εi−1 (see Figure 3(b)).
• Ci−1: The sum of all support counts of itemsets that occur

in Di−1, i.e., Ci−1 =
∑

X∈Di−1
σi−1(X).

Algorithm FEEDBACK
INPUT: qi, qi−1, fQ, ti−1, Hi−1, and Ci−1.
OUTPUT: The estimated error threshold εi.
1: Get qi, qi−1 from the buffer module.
2: Get ti−1, Ci−1 and Hi−1 from the mining module.
3: Determine k given qi and fQ.
4: Compute target processing time

pi =
k · ti−1

(1 + qi − qi−1)(qi + k − fQ)
.

5: Compute Ci given pi .

Ci =
Ci−1

ti−1

× pi.

6: Consult Hi−1 for the estimated value of εi given Ci.
7: Return εi.

Fig. 5. The algorithm FeedBack.

V. EXPERIMENTS

We evaluated AFC and compared its performance against
Lossy Counting (LC) through extensive experiments. We focus
on the algorithms’ abilities in handling bursty data streams.
As we have explained in our discussion. One disadvantage of
LC is that the error threshold has to be preset. On the hand,
AFC has the ability to dynamically adjust the error threshold
to cope with the changing data arrival rate. We will illustrate
this adaptability by showing how the error threshold is updated
by AFC given a range of different initial value of the error
threshold.

A. Experiment Settings

We evaluated AFC and LC by applying them to a set of syn-
thetic data streams. The synthetic data streams were created in
two steps. First, we used the IBM synthetic data generator [1]
to generate a sequence of transactions. We have conducted
the experiments on a number of transaction sequences. For
illustration purpose, we show the performance result obtained
from the data sequence generated by the dataset T10.I4.30M
(i.e., the average size of a transaction = 10 items, the average
size of a frequent itemset = 4, 30 million transactions in the
dataset). The items were drawn from a universe of 10,000
items.

Next, the transactions were divided into 300 equal-sized
buckets, each with 100,000 transactions. Each bucket is given
a timestamp specifying the arrival time of the transactions in
the bucket. To simulate a bursty data stream, bucket arrival
times are distributed unevenly over a time period. A data burst
is thus simulated by a relative large number of bucket arrivals
during a short time segment. We adopted the b-model [12] to
obtain such an uneven bucket arrivals distribution.

The b-model models the burstiness of a data stream using a
bias factor b. Given a time period d over which transactions are
distributed, we first divide d into two equal-length segments.
Then, a fraction b of all the transactions are assigned to one
segment, while the rest are assigned to the other segment.
This assignment is performed recursively for 4 levels. Hence,
the time period d is divided into 16 equal-length segments,
each is assigned a certain number of buckets. For each time
segment, the buckets assigned to it are evenly distributed
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Fig. 6. Date rate over different time in a sample stream.

over the segment’s time period. Note that this method assigns
transactions to the segments unevenly. One segment is given
the largest number of transactions while 8 segments have the
fewest transactions. For example, if b = 0.85, the data rate of
the segment with the highest data rate is b4/(1 − b)4 ≈ 1031
times higher than that of the segment with the lowest data rate.
In our experiments we varied b from 0.6 to 0.85 to simulate
different levels of burstiness.

Note that each application of the b model results in only
one segment out of 16 that has the highest data rate, i.e., there
is only one sharp burst in the stream. In order to simulate a
data stream with more than one sharp burst, we concatenated
the data sequences generated by 3 separate runs of the data
generation to construct a data stream. Figure 6 shows the
transaction arrival rate of one such data stream. This data
stream was generated with b = 0.85 and d = 360 seconds.

We implemented both LC and AFC using the C program-
ming language. The experiments were conducted on a machine
with a 2.6GHz P4 CPU and 512MB RAM operating on Linux
Kernel 2.6.10.

B. Comparison with Lossy Counting

Since both LC and AFC report only an approximation of
the set of frequent itemsets and their support counts, accuracy
is an important performance measure of the algorithms. We
evaluated the accuracy of LC and AFC over three metrics,
recall, precision and average relative count error. Recall is
the fraction of actual frequent itemsets that are reported by an
algorithm. Precision is the fraction of the reported frequent
itemsets that are actually frequent. Note that in both LC and
AFC, the reported count of an itemset X is σ̂X + δ(X)3. The
relative count error for X is defined as (σ̂(X)+δ(X))−σ(X)

σ(X) ,
where σ(X) is the actual support count of X .

In our experiment, there were 300 buckets in a data stream.
We queried both LC and AFC to obtain their mining results
after each bucket was processed. We thus compared the
performance of LC and AFC with respect to the three accuracy
metrics at 300 different instants. Figures 7(a), 7(b) and 7(c)
clear show the impact of data bursts on LC and AFC to their
performance. We have conducted experiments on other data
streams, similar results were obtained and those results are
not reported here due to space limitation.

3The values of σ̂(X) and δ(X) are stored in the structure D.
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Fig. 7. The precision/recall, number of buckets dropped, and average relative
count error after mining each bucket of data.

In the experiment, we set the decay factor α = 0.8 and there
are 10 buffer slots in the system (Q = 10), for AFC, the error
threshold was initially set at ε0 = 0.3% and the target buffer
occupancy fQ was set at 2. From Figure 7(a), we observe
that LC suffered from a significant loss in precision at three
different periods. During these periods, LC also suffered from
an extremely high average relative count error as shown in
Figure 7(c). The average relative count error reached 80 at
some points. That is, at certain points in the experiment, the
estimated count of an average itemset was roughly 80 times
of its actual count.

As discussed in Section V-A, there are three sharp bursts in
the synthetic data streams. In this sample data stream, the sharp
bursts started at bucket numbers 36, 138 and 237 and ended
at bucket numbers 87, 189 and 287, respectively. From the
figures, we observe that LC’s accuracy degraded significantly
during and after the data bursts. On the other hand, AFC
maintained a 100% precision, a 100% recall and a low relative
count error for most of the mining period. Therefore, AFC is
able to handle data bursts much more gracefully than LC.

Figure 7(d) shows that LC dropped some buckets of trans-
actions during the data bursts. This is why LC had such a low
precision and high average relative count error. LC, which
mines the data with a preset error threshold and thus a preset
processing rate, cannot cope with the high data arrival rate
during data bursts. As a result, buffer overflows and some
buckets of transactions are dropped. Losing the transactions
of a bucket Ti implies that the maximum error bound δ(X)
of each entry X in Di has to be incremented by |Ti|. This
results in high relative count errors.

We note that the loss of accuracy in LC was mainly caused
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by the buckets dropped during data bursts. Thus, we evaluated
the number of buckets dropped by LC and AFC over different
data streams. Figure 8 shows the number of buckets dropped
by LC and AFC in streams with different burstiness (i.e., the
bias factor b). In this experiment, we set α = 0.8, ε0 = 0.3%,
and Q = 10 buckets. We observe that LC could handle all
data buckets for data streams with mild burstiness (b ≤ 0.65).
However, as burstiness increased, LC could not cope with the
increased data rate during data bursts and more buckets were
dropped. On the other hand, AFC avoided bucket drops even
for very bursty data streams (b = 0.85).

C. Adaptability

Recall that LC requires a fixed preset error threshold (ε).
In some cases, it is hard to predict the data arrival rate and
thus it is difficult to select an appropriate error threshold
for LC. A small ε leads to slow processing speed and LC
cannot cope with data bursts while a large ε implies a loose
accuracy guarantee. On the other hand, since AFC is capable
of dynamically adjusting ε during the mining exercise, the
initial value of the error threshold ε0 does not affect the system
performance much. In the next experiment, we executed AFC
a number of times, each with a different value of ε0 and b. At
the end of each run (i.e., after 300 buckets were processed),
we recorded the final error threshold (ε300). Figure 9 shows the
result. From the figure, we observe that when the burstiness
was high (e.g., when b ≥ 0.75), the final error thresholds were
very similar even under very different initial ε0 settings. This
shows that the initial choice of the error threshold parameter
is not critical for AFC to function properly. It has the ability
to adjust itself in search of an appropriate threshold value.

Also, when the burstiness was mild (e.g., when b = 0.6),
the final threshold value stabilized at different levels. This is
because, in those cases, the transaction arrival rate was man-
ageable even during data bursts. The target buffer occupancy
was rarely exceeded and the the feedback mechanism rarely
increased the error threshold value. As a result, the final error
threshold value stayed close to the initial setting ε0.

VI. CONCLUSIONS

In this paper we reviewed the Lossy Counting algorithm and
identified its weakness in handling bursty data streams. We
proposed the AFC algorithm and described its architecture.
We analyzed the properties of LC and proposed a method
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of controlling its processing speed through the manipulation
of the error threshold parameter. We studied the relationship
between processing speed and the error threshold and designed
a feedback mechanism that can dynamically adjust the bucket
mining time to cope with bursty data traffics. We evaluated
the resulting AFC algorithm and compared its performance
against LC’s in terms of the accuracy of the results reported by
the two algorithms. Through an extensive set of experiments,
we showed that AFC was able to handle bursty data streams
without sacrificing accuracy by much.
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