
 

 

 

   

 

Abstract— Data mining is concerned with important aspects 

related to both database techniques and AI/machine learning 

mechanisms, and provides an excellent opportunity for 

exploring the interesting relationship between retrieval and 

inference/reasoning, a fundamental issue concerning the 

nature of data mining. In the data mining context, this 

relationship can be restated as connection and differences 

between data retrieval and data mining. In this paper we 

explore this relationship by examining time series data 

indexed through R*-trees, and study the issues of (1) 

retrieval of data similar to a given query (which is a plain 

data retrieval task), and (2) clustering of the data based on 

similarity (which is a data mining task). Along the way of 

examination of our central theme, we also report new 

algorithms and new results related to these two issues. We 

have developed a software package consisting of a similarity 

analysis tool and two implemented clustering algorithms: 

KMeans-R and Hierarchy-R. A sketch of experimental 

results is also provided. 

 

I. INTRODUCTION 

The issue of using R*-trees for similarity analysis and cluster 

analysis is motivated from the following two observations: 

(1) In order to make data mining manageable, data mining 

has to be database-centered. Yet, data mining goes beyond 

traditional realm of database techniques; in particular, 

reasoning methods developed from machine learning 

techniques and other fields in artificial intelligence (AI) have 

made important contributions in data mining. For example, 

since data mining is intended to discover hidden knowledge 

patterns, many data mining methods are based on inductive 

inference. Therefore, data mining offers an excellent 

opportunity to explore the interesting fundamental issue of 

the relationship between data/knowledge retrieval and 

inference/reasoning. Decades ago researchers made an 

important remark stating that since knowledge retrieval must 

respect the semantics of the representation language and 

therefore knowledge retrieval is a limited form of inference 

 
J. Pi is with University of Nebraska at Omaha, Omaha, NE 68182 

(email: jpi@mail.unomaha.edu). 

Y. Shi is with Data Technology and Knowledge Economy Center of 

Chinese Academy of Sciences, Graduate University of Chinese Academy of 

Science,Beijing 100080, China (email: yshi@gucas.ac.cn) and University 

of Nebraska at Omaha, Omaha, NE 68182 (email: 

yshi@mail.unomaha.edu). 

Z. Chen is with University of Nebraska at Omaha, Omaha, NE 68182 

(email: zchen@mail.unomaha.edu). 

 

operating on the stored facts [5]. In addition, the inverse side 

of this statement has also been explored, which views 

inference as an extension of retrieval. For example, [3] 

described a computer model which is able to generate 

suggestions through document structure mapping based on 

the notion of reasoning as extended knowledge retrieval; the 

model was implemented using a relational approach. In the 

context of data mining, the relationship between retrieval and 

inference can be stated as an examination of connection and 

differences between data retrieval and data mining. 

However, although the issue of foundations of data mining 

has attracted much attention among data mining researchers 

[10], little work has been done in this respect. A possible 

reason of lacking such kind of research is the difficulty of 

identifying an appropriate common ground which can be 

used to examine both data retrieval and data mining. 

 

(2) As our second observation, we point out that an 

important approach to achieve efficient data mining is by 

exploiting important features of database primitives. For 

example, as a multidimensional index structure for spatial 

data, R* tree [2] is a powerful database primitive.  A rich 

literature exists in regard to the application of R*-trees for 

data mining (e.g., [8]). Since R*-tree was originally 

developed for spatial data retrieval, such kind of 

development reveals that R* tree structure can serve as a 

common ground to explore the relationship between retrieval 

and mining as discussed above. 

 

In this paper, we take our first step to explore this interesting 

issue. We examine time series data indexed through R*-

trees, and study the issues of (1) retrieval of data similar to a 

given query (which is a plain data retrieval task), and (2) 

clustering of the data based on similarity (which is a data 

mining task). Along the way of examination of our central 

theme, we also report new algorithms and new results related 

to these two issues. We have developed a software package 

consisting of components to handle these two tasks. We 

describe both parts of our work, with an emphasis on dealing 

with the challenges of moving from retrieving individual 

queries similar to a given query, to clustering the entire data 

set based on similarity. 

 

II. BACKGROUND 

Just like a B-Tree, an R-Tree [6] relies on a balanced 

hierarchical structure, in which each tree node is mapped to a 

disk page. However, whereas B-Trees are built on single-

value keys and rely on a total order on these keys, R-Trees 

From similarity retrieval to cluster analysis: 

The case of R*-trees 

Jiaxiong Pi, Yong Shi, Senior member, IEEE and Zhengxin Chen, Member, IEEE 

524

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE



 

 

 

organize rectangles according to a containment relationship. 

Each object to be indexed will be represented by Minimum 

Bounding Box (MBB) in the index structure except point for 

which an MBB simply degrades to a point. All indexed 

objects will eventually be put in leaf nodes. A leaf node 

contains an array of leaf entries. A leaf entry is a pair (mbb, 

oid), where mbb is the Minimum Bounding Box (MBB) and 

oid is the object ID. Each internal node is associated with a 

rectangle, referred to as the directory rectangle (dr), which is 

the minimal bounding box of the rectangle of its child nodes. 

The structure of R-Tree satisfies the following properties:  

• For all nodes in the tree (except for the root), the 

number of entries is between m and M, where 

2/0 Mm ≤≤ . 

• For each entry (dr, node-id) in a non-leaf node N, 

dr is the directory rectangle of a child node of N, 

whose page address is node-id.  

• For each leaf entry (mbb, oid), mbb is the minimal 

bounding box of spatial component of the object 

stored at address oid.  

• The root has at least two entries (unless it is a leaf).  

• All leaves are at the same level.  

R*-Tree [2,7] is a variant of the R-Tree that provides several 

improvements to the insertion algorithm. Among other 

things, R* tree reinserts entries upon overflow, rather than 

splitting.   

III. R*-TREES FOR SIMILARITY ANALYSIS 

As shown in [1], when R*-tree is used for time series data 

indexing, each time series of length n is mapped to a point in 

n-dimension space. Thus a similarity query problem can be 

converted to finding those points close to a given point. The 

whole dataset is indexed through an R*-Tree, and similarity 

query is then carried out on the R*-Tree. Since R*-Tree 

indexes spatial objects according to spatial proximity and 

close points tend to be put in the same leaf node, small 

amount leaf nodes will be traversed before similar points are 

found. As a result, fast similarity analysis can be achieved. 

However, due to the so-called “dimensionality curse,” R*-

Tree’s performance degrades rapidly when dimension is 

larger than 10. Provided that some dataset/database is made 

up of time series with large length (>>10), and for R*-Tree 

to work efficiently, a dimensionality reduction technique is 

necessary. Over the years various dimensionality reduction 

techniques have been proposed; for example, [1] adopted 

Discrete Fourier Transform (DFT) as a dimensionality 

reduction method., and [8] proposed a simple data 

transformation technique, Piecewise Aggregation 

Approximation (PAA). However, although principal 

component analysis (PCA) is a well-known method for 

dimensionality reduction, its application for time series 

analysis has not been reported.  

 

We have explored using PCA for dimensionality reduction 

for time series data and developed a tool for similarity 

analysis using PCA and other methods.  The following are 

general steps for performing PCA: 

               Step 1: Construct covariance matrix of column 

vectors; 

               Step 2: Calculate eigenvectors; 

               Step 3: Determine principle components and 

perform  dimensionality reduction.  

 

Compared with DFT and PAA, PCA has following virtues: 

• PCA is an orthogonal transformation and can 

guarantee distance conversation if all eigenvectors 

are used.  

• PCA operates on the whole dataset and can capture 

the primary features such as data distribution and 

variation of the dataset. After dimensionality 

reduction, those primary features can be 

maintained. 

 

We have developed a similarity analysis tool which is made 

up of three modules, namely R*-Tree module, PCA module 

and B-Tree module. In this similarity analysis tool, starting 

from a dataset and a query and ending with similarity results 

found, data go through phases as shown in Figure 1. 

According to this data flow diagram, the similarity analysis 

tool proceeds as follows. First dimensionality reduction is 

performed on a given dataset, then the reduced dataset is 

indexed using R*-Tree. When a query for similarity is 

issued, the dimensionality of query data is reduced using the 

same method. The modified query is then performed on R*-

Tree and IDs of candidate points are returned. Based on 

those IDs of candidate time series, their original time series 

are retrieved through B-Tree. The distance between those 

original time series and original query time series are 

calculated. A candidate time series is a final result only if the 

distance is less than a pre-defined threshold.  In case of a 

reduced distance after transformation, R*-Tree tends to find 

more points for a given query, a refinement procedure or 

post-processing is thus needed to remove those induced false 

points. During post-processing stage, we need access original 

data. For fast access of those data, we index them through a 

B-Tree on the identifiers of the data points.  

 
Figure 1  Data flow diagram in the similarity analysis tool 

when PCA module is used 

Eigen Matrix Original 

Indexed transformed 

  Results with false positives 

Results 

Query 

Transformed query Transformed data  Indexed original data 

transformation 
transformation 

R*-Tree 

query 

post-

B-Tree 

index 

PCA 

525

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



 

 

 

We have also conducted experiments on various data set, and 

compared PCA as a dimensionality reduction method for 

time series data with other methods such as DFT and PAA in 

terms of efficiency, using the similarity tool described above. 

The quantities used in the comparison are measured query 

time, post-processing time and returned false positives. 

Different datasets were used in this study. For a given query, 

the performance of each method is evaluated by query time, 

false positives returned, and post-processing time.  

Due to space limitation, only experiments related to a 

meteorological time series dataset are reported here. First we 

conducted distance conservation experiment. Results show 

that PCA can achieve better distance conservation than PAA 

and DFT, particularly for the reduced dimension larger than 

1/3 of the original one. We then conducted experiments on 

query time efficiency. For this purpose, we constructed two 

types of query, namely exact query and similar query. The 

exact query (or Type I query, which is included in our study 

to compare with similar query) is to retrieve a time series 

present in the dataset while similar query (or Type II query, 

which is our focus) is to retrieve similar counterparts in the 

time series dataset.  

 

To construct a Type II query, we used the 50 queries of Type 

I as base and fluctuate them with amplitude of 1. The plot of 

query result is shown in Figure 2, which shows that PCA has 

slight advantage over PAA, and their query time is not 

sensitive to the number of dimensions. DFT, however, is 5 to 

10 times slower than PCA and PAA at high dimension and 2 

to 3 times slower at low dimension. The general trend of 

query time of DFT is declined with the reduction of 

dimension. The result can be interpreted by the fact that even 

for Type II query, the PCA has the best distance 

conservation and thus candidate points of a query tend to be 

in the same leaf node of the R* -Tree.  

 

 

Figure 2 The query time of Type II query for meteorological 

dataset 

IV. R*-TREES FOR CLUSTER ANALYSIS 

Similarity querying on R*-trees as discussed above takes 

advantage of R*-tree’s feature of grouping objects together 

based on spatial proximity. A natural extension of this study 

would be to push the task of retrieval a step further: to the 

task of clustering, where the entire dataset is clustered into 

groups based on similarity so that the commonality of the 

data in the same cluster can be revealed. However, using R*-

tree for cluster analysis should be done cautiously, as 

researchers already issued the following warning a decade 

ago [4]: 

• IF R*-tree is used for clustering, then all clusters (i.e. 

the directory rectangles) have a rectangular shape and 

these rectangles have to be parallel to the axes of the 

coordinate system. This restriction does not comply with 

the objective of cluster analysis. 

• An R*-Tree is a balanced tree. For all nodes in the tree 

(except for the root), the number of entries is between m 

and M, where M is node capacity, m is set to a constant 

in [0, M/2]. Assuming that each node is a cluster, the 

number of members in every cluster is then between m 

and M. In reality, however, no bound is set for the 

number of cluster members.  

• The R*-Tree structure does not allow users to specify 

the number of clusters, it derives the number of cluster, 

k, indirectly from n and from the capacity of a page. 

This k may be inappropriate for a given application and 

may yield clusterings with a high total distance. 

 

Although there is a mismatch of objectives and behavior 

between R*-tree structure and cluster analysis, the attractive 

indexing characteristics of R*-trees still lends itself for great 

potential of contribution to clustering tasks. Below we 

discuss issues related to this aspect by examining how to take 

advantage of R*-tree’s indexing feature to get around of the 

problems mentioned above, and present two improved 

cluster analysis algorithms by incorporating R*-tree features: 

KMeans-R (a revised K-means algorithm) and Hierarchy-R 

(a revised hierarchical clustering algorithm). These 

algorithms form another part of the software package we 

have developed. 

 

(1)  K-Means extended with R*-Tree: the KMeans-R 

algorithm 

Among the partitioning algorithms, K-Means is a popular 

and widely studied clustering method for points in Euclidean 

space. The algorithm of this method is presented below, 

where IC is the collection of initial centroids of k clusters. S 

is the collection of centroids of leaf nodes. KMeans(IC, 

Data, k) refers to the algorithm of clustering Data into k 

Clusters through K-means with initial centroids of IC, and k 

clusters returned as the result.  

 

K-Means(IC, Data, k) 

1. IC= Φ 

2. Pick randomly from Data k data items, ci i=1 ,…, k, 

icICIC ∪=  

Query time versus 

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

16000 

18000 

15 10 6 5 3 2 

Dimension 

Q
u
e
ry
 t
im
e
 (
µ
s
) 

PCA 

PAA 

DFT 

526

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



 

 

 

3. Initialize k clusters, Cluster(i), i=1, …, k, with centroids of 

ci respectively.  

4. For each data item di, determine its nearest centriods cj, 

then set  jcjClusterjCluster ∪= )()(  

5. Set IC= Φ 

6. Calculate the new centriods, nci , i=1,…, k, of each 

cluster. Set incICIC ∪=  

7. Go to 4 until no variation in clustering results.  

 

The K-means algorithm is simple and fast, and can handle 

high-dimensionality relatively well. However, K-means and 

its variations have a number of limitations. For example, it 

has difficulty detecting the “natural” clusters; it suffers from 

the problem of local minima; it requires provision of total 

number of cluster, k, from the user; its behavior is 

significantly affected by the initial selection of centroids; and 

it has problem when outliers exist; etc. The issue of initial 

selection of centroids is partially addressed by a variant 

(referred to as KMeans-S here) where sampling techniques 

are used to determine optimized centroids in which sampled 

points are selected and clustered first to determine initial 

centroids for clustering the whole dataset  (see below).  

 

KMeans-S(Data, k) 

1. Sample in Data and generate a subset of Data, S 

2. IC= Φ 

3. Apply K-Means(IC, S, k) and obtain new IC 

4. Apply K-Means(IC, Data, k) 

 

Using R*-Trees cannot take care all of the shortcomings of 

KMeans or KMeans-S algorithms. However, it is reasonable 

to expect at least R* Trees can be used to assist better 

sampling. Note that when KMeans-S is used, the sampled 

points are not guaranteed to represent the whole dataset well. 

In our view, when data points are indexed through an R*-

Tree, if we select one point from each leaf node, these 

selected data points collectively should represent the data in 

a way better than random sampling. As a result, the 

clustering result could be improved. Pushing this observation 

a step further, we take centroids of data in leaf nodes as a 

sample instead of using random points, one from each leaf 

node. Those sampled centroids are then used as initial 

centroids for clustering.  Note that in KMeans-S some 

sampled points may not represent well the distribution of 

data points; but in our proposed approach, the sampled 

points should be relatively good representatives of the 

dataset, because the collection of leaf nodes is a partition of 

a dataset and can reflect the distribution of the dataset. Since 

this proposed approach incorporates R*-Tree into K-Means, 

it will be referred to as KMeans-R. The algorithm is shown 

below. 

 

Algorithm KMeans-R(Data, k) 

1. IC=Φ, S= Φ 

2. Index Data by R*-Tree  

3. For each leaf Ni of R*-Tree, obtain the centroid of its data 

elements, ic , then set icSS ∪=  

4. Apply K-Means(IC, S, k), obtain new centroids ICN of 

newly formed clusters, then set IC=ICN 

5. Apply K-Means(IC, Data, k) return the clustering results.  

 

We have the following observation involving these three 

clustering algorithms. KMeans-S uses the centroids of 

sampled dataset as initial centroids instead of randomly 

picked centroids as done in K-Means. Therefore in KMeans-

S, centroids should better capture the spatial distribution of 

data. KMeans-R further improves initial centroids by using 

the centroids of leaf nodes.  Since the quality of K-Means 

clustering can be affected by the selection of initial 

centroids, KMeans-R should perform better than KMeans-S 

and K-Means. Of course, this observation is only a heuristic; 

the algorithm developed based on this heuristic is to be 

confirmed through experimental studies. 

 

(2)  Hierarchical clustering extended with R*-Tree: the 

Hierarchy-R algorithm 

 Unlike the K-Means method for which a user needs to 

specify the number of clusters beforehand, hierarchical 

clustering gives a series of clustering results at each level 

through merging process.  

 

For comparison purpose, the basic algorithm of the 

hierarchical clustering is shown below, where Data is the 

input data with size of n.  Note that distMatrix is a matrix of 

distance between any two clusters. In our implementation, it 

is initially set to an m×m lower triangle matrix with elements 

of 0s in main diagonals where distMatrix(i, j) is the element 

of i
th
 row and j

th
 column of the matrix.  We use 

merge(Cluster(i), Cluster(j)) as the method to merge two 

clusters. The nearest pair of clusters in a collection of 

clusters is the pair of clusters which have shortest all pair 

distance between.  The pair can be easily identified as the 

two clusters corresponding to the row and the column of the 

minimum element blow the diagonal of distMatrix. Note that 

merging process stops when the desired number of clusters 

reaches by setting loop times. Clustering results are stored in 

remaining clusters.  

 

Algorithm Hierarchy(Data) 

1. Assign each points to a cluster, and generate n clusters, 

say, Cluster(1), Cluster(2), …, Cluster(n).  

2. Start off the merging process as follows.  

    2.1. Calculate and form initial an n×n all-pair distance 

matrix, distMatrix(n, n) 

    2.2. Based on distance matrix, identify a pair of nearest 

clusters, say, Cluster(i) and Cluster(j), then merge them.  Set 

Cluster(i) = merge(Cluster(i), Cluster(j)).  

3. Recalculate distance matrix 

    3.1. Assume Cluster(s) is the last one in the sequence of 

clusters, set  Cluster(j) = Cluster(s) and then delete 

Cluster(s).  

527

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



 

 

 

    3.2. Recalculate the distance of Cluster(i) and Cluster(j) to 

other remaining clusters  respectively 

    3.3. Based on above calculation, form an (s-1)×(s-1) 

distance matrix   distMatrix(s-1,s-1) 

4. Go to 2.2 until number of clusters is reduced to 1 

 

If clustering starts off from individual points as done in 

original hierarchical clustering method, the number of start-

up clusters will be large and thus clustering will be temporal 

and spatial expensive (O (m
2
), where m is total number of 

objects).
. 
R*-trees can come for help. Although a leaf node in 

R* tree does not necessarily represent a cluster (as explained 

in Section 1), it is reasonable to hypothesize that when the 

node capacity is low for leaf nodes, the points in an R*-

Tree’s leaf node are likely belonging to same cluster.  

Therefore rather than start clustering process from individual 

points, we can first index those points and then cluster those 

minimal bounding boxes of leaf nodes. The corresponding 

algorithm is presented below. We would like to point out that 

the value of m cannot be big, otherwise the points in a leaf 

node could belong to two or more clusters. The value of m 

cannot be too small either, otherwise Hierarchy-R degrades 

to hierarchical clustering (m=1).   

 

Algorithm Hierarchy-R(Data) 

1. Index Data through R*-Tree and generate m leaf nodes.  

2. Assign the points in each leaf node to a cluster, and 

generate m initial clusters,     

    Cluster(1), Cluster(2), …, Cluster(m).  

3. Merge clusters as done in hierarchical clustering 

V. EXPERIMENTAL EVALUATION 

We have conducted experiments on time series data analysis 

using the proposed algorithms. Due to space limitation, here 

we only report one of the experiments on yeast cell cycle 

dataset [9], which shows the fluctuation of expression levels 

of approximately 6000 genes over two cell cycles (17 time 

points). It has been identified 420 genes which peak at 

different time points and categorized them into five phases of 

cell cycle. Out of the 420 genes they classified, 384 genes 

were classified into only one phase (some genes peak at 

more than one phase of cell cycle). For this dataset, we have 

prior knowledge that 5 classes exist (see Table 1). The 

clustering results in Table 1 indicate that none of four 

clustering methods produces a result same as our prior 

knowledge. The original clusters (prior knowledge) is split in 

our newly formed clusters. In KMeans-R and Hierarchy-R, 

original clusters are less spread which can be seen from the 

dominance of the numbers in the diagonal. On the other 

hand, in K-Means, original clusters spread out much in 

newly formed clusters. KMeans-S is a little better than K-

Means, but worse than KMeans-R and Hierarchy-R.  

To evaluate the clustering results accurately, we resort to the 

Rand Index (RI), Adjusted Rand Index (ARI) and 

information gain (IG). For the clustering results in Table 2, 

the calculated RI and ARI are shown in Table 3. 

For the clustering output, one can see the calculated ARIs 

are much less than RIs. The ratio of RI between KMeans-R 

and KMeans is 148.1
711.0

816.0
=  , while the ratio of ARI is 

809.2
173.0

486.0
=  .This means ARI is more sensitive to 

clustering method than RI, and thus more suitable for 

clustering quality evaluation.  

Clusters U1 U2 U3 U4 U5 

Number 67 135 75 52 55 

Table 1.  Known clusters and the number of elements in the 

yeast cell cycle dataset 

 
 

Table 2. The generated contingency table  

 

 K-

Means 

K-Means-

S 

K-Means-

R 

Hierarchy-

R 

RI 

ARI 

0.711 

0.173 

0.739 

0.255 

0.816 

0.486 

0.802 

0.453 

Table 3. Calculated RI and ARI based on Table 2 

 

Both RI and ARI are the highest in KMeans-R and lowest in 

K-Means. The RI and ARI in Hierarchy-R are a little smaller 

than those in KMeans-R, but they are comparable. The two 

indexes in KMeans-S are slightly greater than in KMeans. 

Therefore in terms of clustering quality, KMeans-R and 

Hierarchy-R outperform both KMeans and KMeans-S. The 

result of using IG for evaluation is similar.  

VI. CONCLUSION 

 

Data mining is concerned with important aspects related to 

both database techniques and AI/machine learning 

mechanisms, and provides an excellent opportunity for 

exploring the interesting relationship between retrieval and 

inference.  

 

This paper reports and important step toward this direction 

of study from a data mining-related perspective. R*-tree 

indexing techniques have been used to deal with similarity 

retrieval and clustering. As our work shows, extending 

similarity retrieval to clustering is not a straightforward 

process. The general lesson we learned from this study is that 

528

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



 

 

 

since this relationship is a complex issue, it should be studied 

on a case-by-case base; for example, in our study, we have 

exploited features of R*-trees. However, this is not to say 

that there is no commonality on different cases of 

relationship between retrieval and reasoning. Rather, finding 

such a commonality is a challenging task which deserves 

much effort.    

 

Future trends in regard to the research work related to this 

paper can be divided into two categories. On the one hand, 

as an attractive database primitive, R* trees will continue to 

play an important role in similarity retrieval and cluster 

analysis. On the other hand, R* trees are only one of many 

spatial data structures. Many other spatial data structures, 

such as Octrees and KD-trees, have been proposed. Spatial 

data structures typically address the important issue of 

dealing with high dimensionality, a common concern behind 

index structures such as X-tree, TV-tree, SR-tree, among 

others. However, studies of similarity retrieval and cluster 

analysis regarding to these data structures are less matured 

than the case of R*-trees, and more research work is still 

ahead. 

REFERENCES 

[1] R. Agrawal, R., C. Faloutsos, and A. Swami, Efficient 

similarity search in sequence databases, Proc. of the 4
th
 

Conference on Foundations of Data Organization and 

Algorithms, 1993. 

[2] N. Beckmann, H. P. Kriegel, R. Schneider and B. 

Seeger, The R*-Tree: An Efficient and Robust Access 

Method for Points and Rectangles, Proc. SIGMOD 

Conference, 322-331, 1990. 

 

[3] Z. Chen, Generating suggestions through document 

structure mapping, Decision Support Systems, 16(4), 

297-314, 1996. 

[4] M. Ester, H. P. Kriegel, and X. Xu, Knowledge 

discovery in large spatial databases: Focusing 

techniques for efficient class identification, Proceedings 

of 4
th
 International Symposium on Large Spatial 

Databases (SSD’95), Portland, ME, LNCS, Springer, pp 

67-82, 1995. 

[5] A. M. Frisch and J. F. Allen, Knowledge retrieval as 

limited inference, Proceedings of the 6
th
 Conference on 

Automated Deduction (Lecture Notes in Computer 

Science), Loveland, D. (ed.), 274-291, 1982.  

[6] A. Guttman, R-trees: A Dynamic Index Structure for 

Spatial Searching, Proc. ACM SIGMOD Int. Conf. on 

Management of Data, pp. 47-54, 1984. 

[7] V. Gaede and O. Günther, Multidimensional Access 

Methods, ACM Computing Surveys, 30(2):170-231, 

June 1998. 

[8] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, 

Dimensionality reduction for fast similarity search in 

large time series databases, Knowledge and information 

Systems 3(3):263-286, 2000. 

[9] K. Y. Yeung and W. L. Ruzzo, Principle component 

analysis for clustering gene expression data, 

Bioinformatics, 17(9):763-774, 2001. 

[10] Foundation of Data Mining Workshop Call for Papers, 

http://biomig.csie.cgu.edu.tw/meeting/2004.07.25.htm 

 

529

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)


