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Abstract— This paper introduces a novel method, GAIS, for
detecting interleaved sequential patterns from databases. A case,
where data is of low quality and has errors is considered.
Pattern detection from erroneous data, which contains multiple
interleaved patterns is an important problem in a field of sensor
network applications. We approach the problem by grouping
data rows with the help of a model database and comparing
groups with the models. In evaluation GAIS clearly outperforms
the greedy algorithm. Using GAIS desired sequential patterns
can be detected from low quality data.

I. INTRODUCTION

The widespread deployment of sensors in measurement,
detection, and monitoring applications have created a need for
processing of sequential data [1], [2]. In these sensor network
applications, data usually streams continuously from various
known sources (e.g. sensors) being imprecise, imperfect [3]
and even lost. Because data streams have redundant infor-
mation, it is not appropriate to store all the data but remove
redundancy in preprocessing step. After removal sensor data
can be presented as time series or some other type of sequential
data [4].

Let us consider an example of a monitoring system which
supervises a large machine at a factory. The machine has
several integrated sensors, which measure the temperature,
pressure, motion etc. in various parts of the machine. Mea-
surements are imprecise, they can be out of sensor range
and a sensor itself can break. Data stream from sensors is
preprocessed and redundancy is removed in a sense that we are
only interested in at least moderate changes in measurement
values. Then data is converted into sequential form in which
measurement values are categorized. The machine is super-
vised to predict fault situations. Before faults measurement
values of physical quantities change in a certain way so we
are able to create a database of sequential model patterns.
Changes preceding various faults can overlap so data contains
interleaved patterns.

If sequential data is represented as a sequence of characters
or comparable attribute values, classical string matching ap-
proaches such as Boyer-Moore [5] or Knuth-Morris-Pratt [6]
may be useful. These approaches detect patterns by comparing
characters or attribute values in a pattern to those in data. For
the more complex data, such as multidimensional, there are

pattern matching techniques [7], which use more sophisticated
comparison operations than basic string matching. In case of
real world data, approximate string or pattern matching is
often used [8]. Approximate sequential pattern matching is
considered, especially, in time series similarity research [9],
[10].

Recently, sequential patterns have been detected from data
streams of sensors [11]. These applications usually have real
time requirements and previous values are checked within
a time window. Another interesting application area is user
activity data. There sequential patterns have been used, for
example, in anomaly detection [12]. However, research on low
quality sequential data has been minor even though many real
world applications produce it.

If the detection problem is converted into a combinatorial
optimization problem, many heuristic search methods, such
as simulated annealing [13], swarm intelligence (ant colony
optimization [14], [15] and particle swarm optimization [16]),
tabu search [17] and genetic algorithms [18], [19], can be used
to solve it.

In this paper, we present a method called GAIS (a Genetic
Algorithm based method for Interleaved Sequential pattern de-
tection). Assume we have a database where each row contains
information on one observation including registration time and
measurements. Observations come from various sources and
they can be long-lasting. Instead of starting and ending time,
usually only registration time is available. Measurements can
have missing values and existing values can be incorrect. The
patterns we wish to detect, can contain data from any source
and be temporally interleaved with each other.

Section II introduces event sequence formulation and related
terms. Section III presents the principles of GAIS. Section IV
documents the comparison of GAIS to the greedy algorithm.
Discussion is in Section V and Section VI is the conclusion.

II. EVENT SEQUENCE FORMULATION

Assume a database containing observations. After catego-
rization, each observation can be represented as an event
ek = (ak, tk), where ak is a type and tk is a time stamp.
Type ak is the categorization result and time stamp tk the
registration time of the observation, which corresponds to the
event ek.
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Event sequence E
----------------
Event types: E X O A M N P L E E
Time stamps: 1 2 3 4 5 6 7 8 9 10

Subsequence B1
--------------
Event types: O N E
Time stamps: 3 6 10

Subsequence B2
--------------
Event types: E X A M P L E
Time stamps: 1 2 4 5 7 8 9

Subsequences B1 and B2 form a partition
P of the event sequence E.

Fig. 1. An example of an event sequence E and its two subsequences, B1

and B2. Subsequences form a partition of E, because union of B1 and B2

is E and intersection of B1 and B2 is empty.

An event sequence of length l is E = e1, e2, . . . , el, tk <
tk+1. Empty sequence has length 0. A subsequence of an
event sequence E is B = ep1 , ep2 , . . . , epm

, tpi
< tpi+1

and a subsequence set is C. A subsequence set C of n
subsequences forms a partition P of the event sequence E
if E =

⋃n
i=1 Bi, ∀B ∈ C and Bi

⋂
Bj = ∅, i �= j. A

model m = (E, u) is an event sequence E, which has an
interpretation u. Models form a model set M .

Figure 1 shows an example of an event sequence and its
two subsequences. The subsequences form a partition of the
event sequence. For clarity, this and following examples use
time stamps 1 . . . n.

We developed event histograms because we needed a way to
express the event structure of an event sequence. In addition,
event histograms were found useful in GA operations such
as crossing and fitness value calculation. The event histogram
of an event sequence describes how many times each type
recurs. For example, the event histogram of the event sequence
(A, 1)(E, 2)(E, 3)(B, 4)(C, 5)(B, 6) is 12102 when types are
in order ABCDE.

III. GAIS

This section introduces GAIS, a genetic algorithm based
method for interleaved sequential pattern detection. Figure 2
shows the principles of GAIS in general. At first GAIS
generates an initial population, which consists of randomly
created individuals. Then the fitness value is calculated for
each individual using models in the model set. After fitness
calculation, individuals are selected, crossed and mutated.
Crossing produces new individuals and these individuals form
a new population. Elitism is in use. It is implemented in such
a way that a randomly chosen new individual is replaced
with the best individual of the previous population. Then
all the operations of the iteration cycle are performed again

Fig. 2. The principles of GAIS in general. At first the initial population is
generated, and then fitness calculation, selection, and crossing are performed.
Iteration continues until the stopping criterion is met.

E Event types:

Time stamps: 1

X O A M N P L E E

2 3 4 5 6 7 8 9 10

E A N P E E X O M L

1 4 6 7 9 10 2 3 5 8

O A M N L E E X P E

3 4 5 6 8 10 1 2 7 9

X N E O A M P L E E

2 6 1 3 4 5 7 8 9 10

Individual 1

Population

Chromosome 1 Chromosome 2

Individual 2

Individual n

Fig. 3. An example of an initial population for an event sequence. Population
contains n individuals, which consist in this example of two chromosomes.

beginning from fitness calculation. Iteration continues until the
stopping criterion is met. Finally, decision is made for each
chromosome using the model set.

A. Generation of the initial population

Initial population contains initial individuals. Individuals are
solution candidates, which consist of chromosomes. Chromo-
somes are subsequences Bi of the event sequence E and
chromosomes of an individual form a partition. An initial
individual is formed by distributing all the events in E to the
chromosomes randomly. So an individual contains all events
of E once, and only them. Figure 3 shows an example of
an initial population and clarifies terms. Population size and
chromosome amount can be adjusted. Typical population size
in genetic algorithm applications is from a few dozens to
thousands [19].
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B. Fitness calculation

Fitness values are calculated by comparing chromosomes,
one at a time, with all models. Fitness of a chromosome is
the distance from it to the closest model. Fitness of an indi-
vidual is a weighted sum of its chromosomes’ fitness values.
Two distance measures are used to compare chromosomes.
The first of those measures distance between event sequence
representations and the second between event histograms. The
fitness function is a sum of these measures.

Event sequence representations are compared using Edit
distance [20]. It considers the difference in time order of
events. Edit distance is calculated from types. Comparison
of event histograms is done using Manhattan distance (1.
norm). If corresponding values in the histogram differ from
each other, the distance is added by the absolute value of the
difference.

Equation 1 shows the fitness function f . A partition is Pk

and a model set is M . Function Edit(Bi,mj), where a subse-
quence Bi ∈ Pk and a model mj ∈ M , computes Edit distance
from a subsequence Bi to a model mj . Function L1(Bi,mj)
computes the Manhattan distance from a subsequence Bi to a
model mj . The number of subsequences B is n.

f(Pk,M) =
n∑

i=1

αi min
j

(Edit(Bi,mj) + L1(Bi,mj)) (1)

For the largest distance the weight coefficient α is 1, for
the second largest it is 2 and so on. For the smallest distance,
α is n. Variable α is used, because a partition consisting of
good and poor subsequences is more desirable than a partition
consisting of average ones.

C. Selection and crossing

Selection part of GAIS implements Stochastic Universal
Sampling with linear ranking selection [21]. After selection,
GAIS forms pairs of selected individuals randomly and crosses
them. Crossing is carried out for the event histograms of the
individuals. At first, each chromosome is cut at the same
randomly selected point. Then the parts after the crossing point
are switched between individuals. The crossing point is the
same for each chromosome of an individual pair, but differs
from pair to pair.

Figure 4 illustrates the crossing of two
individuals. Assume an event sequence
(A, 1)(A, 2)(C, 3)(E, 4)(B, 5)(C, 6)(A, 7)(D, 8) and two
selected individuals consisting of two chromosomes each.
Individuals are shown in Figure 4. At first, event histograms
(event order ABCDE) are calculated, and the crossing point
(the value of a random number generator) is chosen. Then
crossing is performed resulting in two new individuals.

D. Mutation

After crossing, GAIS mutates new individuals. A mutation
rate, a probability for an individual to mutate, can be adjusted.
Mutation is either swap mutation or relocation mutation. We
have developed swap mutation to shape the event histogram

Fig. 4. Illustration of the crossing operation. Crossing is performed for event
histograms. The crossing point is marked with the symbol ’|’.

of an individual and relocation mutation to shape the event
sequence representation.

1) Swap mutation: In swap mutation one event from one
chromosome is chosen randomly. Then it is swapped with
another randomly chosen event that has the same type and is
located in some other chromosome (if an event meeting these
criteria exists). After swap mutation, each chromosome has
the same types as they had before it, but the order of events
may be different. This mutation type is useful, when the types
in chromosomes are desired, but their order is wrong.

Assume, for example, an event sequence
(A, 1)(A, 2)(C, 3)(E, 4)(B, 5)(C, 6)(A, 7)(D, 8) and an
individual with two chromosomes (A, 1)(E, 4)(B, 5) and
(A, 2)(C, 3)(C, 6)(A, 7)(D, 8). One event is chosen randomly.
Let it be, for example, (A, 7) in the second chromosome.
Then (A, 7) is swapped with some event, which has the
same type and is located in the other chromosome. That
event is (A, 1). The result is then (E, 4)(B, 5)(A, 7) and
(A, 1)(A, 2)(C, 3)(C, 6)(D, 8). Swap mutation does not
change the histogram of an individual.

2) Relocation mutation: In relocation mutation, an event is
chosen randomly and it is relocated into another chromosome.
Relocation mutation modifies the histograms of chromosomes.
It has an important role in the first few populations, where the
event structure of the chromosomes is not settled yet.

Assume again chromosomes (A, 1)(E, 4)(B, 5) and
(A, 2)(C, 3)(C, 6)(A, 7)(D, 8). When the event (A, 7) in
the second chromosome is chosen and relocated into the
first chromosome, the result is (A, 1)(E, 4)(B, 5)(A, 7) and
(A, 2)(C, 3)(C, 6)(D, 8).
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E. Empty model and decision making

The true number of patterns, which are interleaved in an
event sequence, is not known. Therefore, chromosome amount
cannot be set exactly, only rough upper estimates can be
given. A specialized model, an empty model, is developed to
overcome this situation. Using the fitness function in (1) the
distance from a subsequence to the empty model is commonly
smaller than the distance from a subsequence to any real model
if they do not have the same event structure.

The empty model can be added into a model set at any
given time. However, if it is added too early, results will
suffer, because the empty model is the fittest for random
subsequences of an event sequence. Therefore, the genetic
algorithm must be allowed to form models like event structures
for the subsequences before the empty model is added.

At the end of the execution, GAIS makes a decision for
each chromosome. The decision is the model that fits the best
with the chromosome. The empty model as a decision may
indicate that a previously unseen model has been found.

IV. EXPERIMENTS

This section introduces the comparison of GAIS to the
greedy algorithm. The greedy algorithm has been used in the
following way:

1) The longest common subsequence is taken between the
event sequence and each model.

2) Ratio ”subsequence length per model length” is calcu-
lated for each model.

3) The model, which has the largest ratio, is considered. If
the ratio is greater than or equal to 0.4, the corresponding
subsequence is subtracted from the event sequence and
the model is outputted as a detected pattern. Otherwise
the empty model is outputted.

4) Steps 1-3 are repeated.

In these experiments, GAIS has used the following param-
eter values:

• Population size has been 100.
• Chromosome amount has been 4. (This demonstrates the

situation that the real amount of interleaved patterns is
not known.)

• The mutation rate has been 0.15 (swap mutation rate 0.11
+ relocation mutation rate 0.04)

• The empty model has been added to the model set in
iteration round 50.

Artificial data has been used to evaluate the performance of
the GAIS and the greedy algorithm. Results of the algorithms
are easy to interpret and compare when using artificial data.
Five English language words are used as real models and four
as fake models. Fake models have been chosen to reseble the
real models and they have been added to the model set to
complicate the detection. Table I shows the models. A set of
twenty event sequences have been generated by interleaving
three randomly selected real models for each event sequence.
These sequences are the basis of the test sequences used in

TABLE I

MODELS USED IN TESTS. EVENT SEQUENCES CONSIST OF REAL MODELS.

IN ADDITION TO THE REAL MODELS, THE MODEL SET CONTAINS FAKE

MODELS, WHICH COMPLICATE THE DETECTION.

Real models Fake models
PATTERN PATH
IMPERFECT IMPACT
SEQUENTIAL SEQUENCE
GENETIC GENERIC
ALGORITHM

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
30

40
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Adding test − GAIS
Mixing test − Greedy
Mixing test − GAIS

Fig. 5. Comparison of GAIS to the greedy algorithm. Used event sequences
were deteriorated by adding events and mixing the time order.

adding and mixing tests, and they are referred to the original
event sequences hence.

At first, tests for the original event sequences have been
run. GAIS is able to detect 86% of patterns and the greedy
algorithm 76%.

A. Adding test

In adding tests, new events have been added into the original
event sequences. Added events have the same types as events
in the models. The addition has been done gradually. Let the
length of an original event sequence be l. At first 0.1l new
events have been added, then 0.2l, 0.3l, 0.4l, and 0.5l.

Figure 5 shows the results for adding tests. GAIS clearly
outperforms the greedy algorithm. GAIS is able to detect about
80% of the patterns regardless of added events.

B. Mixing test

In this test, the time order of the original event sequences
has been mixed. Two events have been chosen randomly and
their time stamps have been changed. This has been repeated
0.1l, 0.2l, 0.3l, 0.4l, and 0.5l times. Variable l is the length
of the original event sequence.

Figure 5 shows the results for mixing tests. GAIS outper-
forms the greedy algorithm. Up to the level, where time stamps
have been changed 0.3l times, GAIS is able to detect over 70%
of the patterns.
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V. DISCUSSION

Section I gives an example of a monitoring system, which
supervises a large machine at a factory. Sensors integrated into
the machine produce measurements, which are imprecise or
even missing. Fault situations are predicted from preprocessed
data using sequential model patterns. Changes in physical
quantities are slow and they begin weeks before the real fault
situation. Slow changes of this kind are hard to discover,
especially, if they are related to different fault situations and
take place simultaneously. Sequential data from sensors can be
analyzed regularly using a method like GAIS. Then faults can
be predicted substantially earlier than the real fault situation
occurs.

GAIS assumes the existence of models to guide what kind
of patterns we wish to detect from the event sequence. In
practice, exact models are seldom available. Because GAIS
carries out approximate pattern matching, models do not have
to be exact but they can have minor errors. Often some events
in the model sequence are more significant than the other. In
these cases the weighting of events in the models could lead
to even better results.

VI. CONCLUSION

This paper introduced GAIS, a novel method for detecting
interleaved patterns from event sequences. A case, where data
is of low quality and has errors has been considered. We
approached the problem by partitioning the event sequence
with the help of a model database and comparing subsequences
with the models. A genetic algorithm has been utilized in
partitioning. We have implemented GAIS and compared it
with the greedy algorithm. Evaluation results show that GAIS
clearly outperforms the greedy algorithm, and using GAIS
desired sequential patterns can be detected from low quality
data.
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